Search results

Search for "cation" in Full Text gives 748 result(s) in Beilstein Journal of Organic Chemistry. Showing first 200.

Synthesis of ether lipids: natural compounds and analogues

  • Marco Antônio G. B. Gomes,
  • Alicia Bauduin,
  • Chloé Le Roux,
  • Romain Fouinneteau,
  • Wilfried Berthe,
  • Mathieu Berchel,
  • Hélène Couthon and
  • Paul-Alain Jaffrès

Beilstein J. Org. Chem. 2023, 19, 1299–1369, doi:10.3762/bjoc.19.96

Graphical Abstract
  • cesium cation with the halogen atom and the activation of the Sn–O bond of the stannylene acetal via a pentacoordinated intermediate with the fluoride anion [110]. The acetylation of the secondary alcohol and the deprotection of the primary alcohol with 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ
PDF
Album
Review
Published 08 Sep 2023

Non-noble metal-catalyzed cross-dehydrogenation coupling (CDC) involving ether α-C(sp3)–H to construct C–C bonds

  • Hui Yu and
  • Feng Xu

Beilstein J. Org. Chem. 2023, 19, 1259–1288, doi:10.3762/bjoc.19.94

Graphical Abstract
  • -methylisochroman, 3-methoxyanisole). Mechanism experiments showed that the coupling of aromatic ring radicals with ether oxygen ions produced an intermediate radical cation, which achieves a catalytic cycle through the Cu center. Lee et al. disclosed TBHP as an oxidant and Pd(OAc)2/Cu(OTf)2 as the catalyst to
  • ) process, the carbocation intermediate B is generated, which is attacked by a nucleophile to afford the target product. Further, C–H bonds in the ortho-position of a heteroatom are activated through a SET pathway generating a radical cation C, which is easily deprotonated by an oxidant to generate a
PDF
Album
Review
Published 06 Sep 2023
Graphical Abstract
PDF
Album
Supp Info
Review
Published 08 Aug 2023

Exploring the role of halogen bonding in iodonium ylides: insights into unexpected reactivity and reaction control

  • Carlee A. Montgomery and
  • Graham K. Murphy

Beilstein J. Org. Chem. 2023, 19, 1171–1190, doi:10.3762/bjoc.19.86

Graphical Abstract
  • proposed that electron donor–acceptor (EDA) complex 36 was initially formed between 32 and a sacrificial equivalent of 31, and that 36 underwent a SET to give radical anion 37 and radical cation 38 (Figure 8). While one equivalent of the ylide orchestrated a series of proton transfer (PT) and SET events
PDF
Album
Review
Published 07 Aug 2023

Selective and scalable oxygenation of heteroatoms using the elements of nature: air, water, and light

  • Damiano Diprima,
  • Hannes Gemoets,
  • Stefano Bonciolini and
  • Koen Van Aken

Beilstein J. Org. Chem. 2023, 19, 1146–1154, doi:10.3762/bjoc.19.82

Graphical Abstract
  • on the rate than acids and bases and both the anion and cation appear to influence the reaction kinetics. A deliberate choice of salt can either significantly improve the kinetics or quench the reaction. The latter might be exploited e.g., in late-stage functionalization strategies in order to
  • originates from water. In this tentative mechanism, the sulfide I forms with water and oxygen a photoactive complex II which is excited at 365 nm towards III. Via single-electron transfer both a radical cation IV and the superoxide V are generated. Subsequently, the sulfide radical cation IV undergoes a
PDF
Album
Supp Info
Full Research Paper
Published 31 Jul 2023

Photoredox catalysis harvesting multiple photon or electrochemical energies

  • Mattia Lepori,
  • Simon Schmid and
  • Joshua P. Barham

Beilstein J. Org. Chem. 2023, 19, 1055–1145, doi:10.3762/bjoc.19.81

Graphical Abstract
  • radical anion or radical cation. As a semi-stable, higher energy ground-state entity, this can accumulate in sufficient concentration under the reaction conditions to absorb another photon and thereby generate a super-reducing or super-oxidizing excited state (Figure 2 left). In addition to ‘radical ion
  • -BF4 as a suitable conPET catalyst. Following the conPET catalytic cycle, the Mes-Acr+ cation is excited and reductively quenched by DIPEA to yield the acridine radical Mes-Acr• (Figure 10C) [54]. Upon excitation to its twisted intramolecular charge-transfer (TICT) state, Mes-Acr• has an excited-state
  • oxidizing this radical to the corresponding cation. In the presence of Et3N, [FeIII(btz)3]3+ is reductively quenched after excitation to its 2LMCT excited state to generate [FeII(btz)3]2+ (equivalent to PC•− in the classical conPET mechanism) (Figure 20C). [FeII(btz)3]2+ is excited again to the more
PDF
Album
Review
Published 28 Jul 2023

Synthesis of tetrahydrofuro[3,2-c]pyridines via Pictet–Spengler reaction

  • Elena Y. Mendogralo and
  • Maxim G. Uchuskin

Beilstein J. Org. Chem. 2023, 19, 991–997, doi:10.3762/bjoc.19.74

Graphical Abstract
  • rearrangement to a more stable benzhydryl-type cation resulting in the formation of isomeric products. In an alternative group of methods, more accessible 2-substituted furans are used as starting compounds. For example, a construction of tetrahydrofuro[3,2-c]pyridines based on the Pictet–Spengler reaction [17
  • ][18] was described (Scheme 1c). The most studied variation of this cyclization is based on the generation of an acyliminium cation from the corresponding alcohols [19][20][21][22][23] or alkenes [24][25][26][27][28][29], subsequent attack of furan ring and the formation of annulated tetrahydrofuro[3,2
  • -c]pyridines. Moreover, multistep cascade processes with the simultaneous construction of several cores were described, where the key step is the generation of an acyliminium cation and the Pictet–Spengler cyclization [30][31][32], including solid-phase synthesis [33][34][35]. Another route for the
PDF
Album
Supp Info
Full Research Paper
Published 30 Jun 2023
Graphical Abstract
  • dehydration to generate isoxazolium cation 80 paired with a phosphate anion. This chiral phosphate is engaged in H-bonding with the free NH of the heteroarene ring to ease the stereoselective 1,2-addition to in situ generate the cationic heterocyclic scaffold 81. The reaction proceeded faster with pyrroles
PDF
Album
Review
Published 28 Jun 2023

Clauson–Kaas pyrrole synthesis using diverse catalysts: a transition from conventional to greener approach

  • Dileep Kumar Singh and
  • Rajesh Kumar

Beilstein J. Org. Chem. 2023, 19, 928–955, doi:10.3762/bjoc.19.71

Graphical Abstract
  • adjacent strong Lewis acid sites, and the acidity of these Lewis acid sites is due to the inductive effect of sulfate on the metallic cation. Therefore, this nano-sulfated titanium dioxide acts as a new type of Lewis acid catalyst. Intermediate A was first formed by reaction of the catalyst with 2,5-DMTHF
PDF
Album
Review
Published 27 Jun 2023

Photoredox catalysis enabling decarboxylative radical cyclization of γ,γ-dimethylallyltryptophan (DMAT) derivatives: formal synthesis of 6,7-secoagroclavine

  • Alessio Regni,
  • Francesca Bartoccini and
  • Giovanni Piersanti

Beilstein J. Org. Chem. 2023, 19, 918–927, doi:10.3762/bjoc.19.70

Graphical Abstract
  • selectively targeted by photoredox catalysis to enable unprecedented modification of the amino acid. In this context, it is worth mentioning that the single-electron oxidation of the indole moiety in tryptophan provides the radical cation, which enables selective C-radical generation at the weaker benzylic
  • proton transfer from the oxidized indole radical cation [75], generated by SET from the activated photocatalyst. The α-amino radical generated by reductive decarboxylation of a DMAT derivative with a redox-active ester (−1.26 V to −1.37 V vs a saturated calomel electrode) would enable turnover of the
  • a tentative mechanism (Figure 2). First, the radical cation I was generated via the oxidation of indole 5 by the excited Ir-based photocatalyst, followed by sequential regioselective proton transfer on the benzylic dimethylallyl unit C–H bond of the C4 side-chain, thereby generating II. Here, the
PDF
Album
Supp Info
Full Research Paper
Published 26 Jun 2023

First synthesis of acylated nitrocyclopropanes

  • Kento Iwai,
  • Rikiya Kamidate,
  • Khimiya Wada,
  • Haruyasu Asahara and
  • Nagatoshi Nishiwaki

Beilstein J. Org. Chem. 2023, 19, 892–900, doi:10.3762/bjoc.19.67

Graphical Abstract
  • reactive allenes (reaction e), which serve as synthetic intermediates for polyfunctionalized enynes [8]. The ring strain of the cyclopropane ring facilitates the cleavage of the C–C bond, and both cation and anion are stabilized by the adjacent phenyl group and ester functions, respectively (reaction f
  • proceeded, to produce furan 13 with a 46% yield (Scheme 6). The coordination of two carbonyl groups to the tin species facilitated the ring opening of the cyclopropane ring to afford betaine [7], then the oxygen atom of the enolate attacked the benzyl cation to construct a five-membered ring. The subsequent
PDF
Album
Supp Info
Full Research Paper
Published 21 Jun 2023

A fluorescent probe for detection of Hg2+ ions constructed by tetramethyl cucurbit[6]uril and 1,2-bis(4-pyridyl)ethene

  • Xiaoqian Chen,
  • Naqin Yang,
  • Yue Ma,
  • Xinan Yang and
  • Peihua Ma

Beilstein J. Org. Chem. 2023, 19, 864–872, doi:10.3762/bjoc.19.63

Graphical Abstract
  • + ions [34]. Because of the synergistic combination of Q[8], SQ2 and Hg2+ ions, it shows fluorescence quenching. Cong's group found that Q[7] can encapsulate the benzimidazole part of N-(2-benzimidazolylmethyl)-N,N-bis(2-pyridylmethyl)amine cation (BIBPA+) to construct a host–guest fluorescent probe. The
  • ability of the probe to detect Hg2+ ions The metal cation interference experiment was used to investigate whether the G@TMeQ[6] fluorescent probe can selectively detect Hg2+ ion in the presence of other metal cations (Figure 6). The fluorescence intensity of the system was determined by adding other metal
PDF
Album
Supp Info
Full Research Paper
Published 13 Jun 2023

Enolates ambushed – asymmetric tandem conjugate addition and subsequent enolate trapping with conventional and less traditional electrophiles

  • Péter Kisszékelyi and
  • Radovan Šebesta

Beilstein J. Org. Chem. 2023, 19, 593–634, doi:10.3762/bjoc.19.44

Graphical Abstract
  • Mg enolates generated from cyclic and linear enones 1 and 85 and enoyloxazolidinones 87. Apart from the most robust tropylium and benzodithiolium cations, reactions were also possible with the dianisylmethylium cation. Interestingly, tritylium cations reacted only in the para-position of a phenyl
PDF
Album
Review
Published 04 May 2023

A new oxidatively stable ligand for the chiral functionalization of amino acids in Ni(II)–Schiff base complexes

  • Alena V. Dmitrieva,
  • Oleg A. Levitskiy,
  • Yuri K. Grishin and
  • Tatiana V. Magdesieva

Beilstein J. Org. Chem. 2023, 19, 566–574, doi:10.3762/bjoc.19.41

Graphical Abstract
  • dimerization of the Schiff base complex and the radical cation formed under one-electron electrochemical oxidation will be sufficiently stable, opening a route to further oxidative modification of the amino acid side chain under appropriate conditions. Additionally, this bulky group may significantly alter the
PDF
Album
Supp Info
Full Research Paper
Published 27 Apr 2023

Phenanthridine–pyrene conjugates as fluorescent probes for DNA/RNA and an inactive mutant of dipeptidyl peptidase enzyme

  • Josipa Matić,
  • Tana Tandarić,
  • Marijana Radić Stojković,
  • Filip Šupljika,
  • Zrinka Karačić,
  • Ana Tomašić Paić,
  • Lucija Horvat,
  • Robert Vianello and
  • Lidija-Marija Tumir

Beilstein J. Org. Chem. 2023, 19, 550–565, doi:10.3762/bjoc.19.40

Graphical Abstract
  • signalize complex formation (interaction with a biomolecule, cyclodextrine, metal cation, etc.) or change of receptor conformation [5][6]. Employment of pyrene as a biosensor is complicated due to its large aromatic surface's hydrophobicity and fluorescence sensitivity to oxygen. Therefore, modifications of
  • further promoted by favorable cation–π interactions. In other words, in Phen-Py-1+ and Phen-Py-2+, stacked structures account for around 96% and 98% of population, respectively, while in unionized Phen-Py-1 and Phen-Py-2 these cluster around 84% in both cases (Figure 2). This is further supported by
  • that a higher degree of aromatic surfaces overlapping and cation–π interactions also yield excimer fluorescence quenching [30][32][33]. This conclusion is strongly in line with experimental insight reported here and helps in explaining the observed excimer fluorescence quenching with a decrease in the
PDF
Album
Supp Info
Full Research Paper
Published 26 Apr 2023

Transition-metal-catalyzed domino reactions of strained bicyclic alkenes

  • Austin Pounder,
  • Eric Neufeld,
  • Peter Myler and
  • William Tam

Beilstein J. Org. Chem. 2023, 19, 487–540, doi:10.3762/bjoc.19.38

Graphical Abstract
  • photoexcitation of the photosensitizer 43 to form 44 which can oxidize aniline 36a to give radical cation 46 (Scheme 7). Deprotonation by DBU produces the radical 40. The radical anion photosensitizer 45 can reduce Ni(I) to Ni(0), closing the first catalytic cycle. The Ni(0) complex can undergo oxidative addition
PDF
Album
Review
Published 24 Apr 2023

Strategies to access the [5-8] bicyclic core encountered in the sesquiterpene, diterpene and sesterterpene series

  • Cécile Alleman,
  • Charlène Gadais,
  • Laurent Legentil and
  • François-Hugues Porée

Beilstein J. Org. Chem. 2023, 19, 245–281, doi:10.3762/bjoc.19.23

Graphical Abstract
PDF
Album
Review
Published 03 Mar 2023

Germacrene B – a central intermediate in sesquiterpene biosynthesis

  • Houchao Xu and
  • Jeroen S. Dickschat

Beilstein J. Org. Chem. 2023, 19, 186–203, doi:10.3762/bjoc.19.18

Graphical Abstract
  • this multistep process is initiated by the abstraction of diphosphate to produce an allyl cation that subsequently undergoes typical cation reactions such as cyclisations by intramolecular attack of an olefin to the cationic centre, Wagner–Meerwein rearrangements, hydride or proton shifts. The process
  • cation (B) or a 1,11-cyclisation to the (E,E)-humulyl cation (C) is possible. Reattack of diphosphate at C-3 results in nerolidyl diphosphate (NPP) that can undergo a conformational change by rotation around the C-2/C-3 single bond, which allows reionisation to D. This intermediate can react in a 1,10
  • -cyclisation to the (Z,E)-germacradienyl cation (E) or a 1,11-cyclisation to the (Z,E)-humulyl cation (F), the E/Z stereoisomers of B and C. Furthermore, a 1,6-cyclisation to the bisabolyl cation (G) or a 1,7-cyclisation to H may follow, which is not possible from A because of its 2E configuration (a
PDF
Album
Review
Published 20 Feb 2023

Total synthesis of insect sex pheromones: recent improvements based on iron-mediated cross-coupling chemistry

  • Eric Gayon,
  • Guillaume Lefèvre,
  • Olivier Guerret,
  • Adrien Tintar and
  • Pablo Chourreu

Beilstein J. Org. Chem. 2023, 19, 158–166, doi:10.3762/bjoc.19.15

Graphical Abstract
  • ]. The exact nature of the interaction between the active ate-ferrous complex and the NMP-ligated magnesium cation is so far unknown. Although often neglected in the mechanistic analysis of a cross-coupling system, the importance of the coordination sphere of the main-group cation brought by the
  • nucleophilic partner R[M] in a cross-coupling has been reported in the recent literature. It was indeed shown that some ligands (such as diphosphines) used in Fe-catalyzed Negishi cross-coupling reactions (R[M] = RZnX) were actually involved in the coordination of the ZnII cation in a key on-cycle
PDF
Album
Perspective
Published 14 Feb 2023

1,4-Dithianes: attractive C2-building blocks for the synthesis of complex molecular architectures

  • Bram Ryckaert,
  • Ellen Demeyere,
  • Frederick Degroote,
  • Hilde Janssens and
  • Johan M. Winne

Beilstein J. Org. Chem. 2023, 19, 115–132, doi:10.3762/bjoc.19.12

Graphical Abstract
  • cation in (3 + 2) cycloadditions: 5,6-dihydro-1,4-dithiin-2-methanol as a stabilized allyl cation Allyl cations are versatile electrophiles for the allylation of various nucleophiles, but can also act as C3-π-systems in a range of cycloaddition reactions (Scheme 13) [84][85][86][87][88]. When combined
  • products related to different competing reaction pathways. However, when suitable cation-stabilizing substituents are present, especially on the central carbon atom, very useful transformations can result for the rapid assembly of cycloheptanoid scaffolds [91]. Oxyallyl cations (when Z is an oxygen-based
  • reported far less commonly than their use in (4 + 3) cycloadditions [94]. Simple hydrocarbon allyl cations can also undergo (3 + 2) cycloadditions through a purely stepwise cation olefin cyclization-type pathway, but these generally give complex mixtures and low yields and show unpredictable substrate
PDF
Album
Review
Published 02 Feb 2023

Revisiting the bromination of 3β-hydroxycholest-5-ene with CBr4/PPh3 and the subsequent azidolysis of the resulting bromide, disparity in stereochemical behavior

  • Christian Schumacher,
  • Jas S. Ward,
  • Kari Rissanen,
  • Carsten Bolm and
  • Mohamed Ramadan El Sayed Aly

Beilstein J. Org. Chem. 2023, 19, 91–99, doi:10.3762/bjoc.19.9

Graphical Abstract
  • C3 hydroxy of 1 is activated. Deprotonation of 10 at C2 with bromide as base provides diene 9 as the minor product. Bromide 4 is formed via cyclopropyl cation 11, which is generated from 10 by loss of triphenylphosphine oxide being supported by involvement of the Δ5 π-bond electrons from the α-face
PDF
Album
Supp Info
Full Research Paper
Published 27 Jan 2023

Catalytic aza-Nazarov cyclization reactions to access α-methylene-γ-lactam heterocycles

  • Bilge Banu Yagci,
  • Selin Ezgi Donmez,
  • Onur Şahin and
  • Yunus Emre Türkmen

Beilstein J. Org. Chem. 2023, 19, 66–77, doi:10.3762/bjoc.19.6

Graphical Abstract
  • (trifluoromethanesulfonic acid), and the N-acyliminium cation was proposed to be protonated with the super acidic TfOH to form a dicationic species, which was shown by computational studies to be crucial for the success of this transformation. In a later study, the same research group showed that benzamides 2 bearing an
PDF
Album
Supp Info
Full Research Paper
Published 17 Jan 2023

Improving the accuracy of 31P NMR chemical shift calculations by use of scaling methods

  • William H. Hersh and
  • Tsz-Yeung Chan

Beilstein J. Org. Chem. 2023, 19, 36–56, doi:10.3762/bjoc.19.4

Graphical Abstract
  • to be included in the NMR calculations. Unusual structures such as phosphenium cation 20, having a chemical shift upfield of the trivalent chloride 19, contrary to expectation where the cation is typically 100 ppm downfield of the corresponding chloride [77][84][85][86], were confirmed by each of the
PDF
Album
Supp Info
Full Research Paper
Published 10 Jan 2023

Combining the best of both worlds: radical-based divergent total synthesis

  • Kyriaki Gennaiou,
  • Antonios Kelesidis,
  • Maria Kourgiantaki and
  • Alexandros L. Zografos

Beilstein J. Org. Chem. 2023, 19, 1–26, doi:10.3762/bjoc.19.1

Graphical Abstract
  • the erythrinadienone intermediate 182. On contrary, common scaffold 180 should hydrolyze to sebiferine-type scaffolds in the presence of water. Taking these results into account, the group exploited the ability of HFIP to stabilize the radical cation formed by PIFA and BF3·EtO2 [95][96] to selectively
  • further oxidized, and thus producing the respective benzylic cation. Intramolecular cyclization in the cationic position under participation of the methyl ester function provided the core for (+)-grandilodine C (191) and (+)-lapidilectine B (192), while allylation of the benzylic position allowed
  • ). Thus, upon irradiation, iridium polypyridyl photocatalyst allowed the oxidation of the phosphate complex 207 to radical cation 206, which can be readily trapped by TEMPO, and hence stabilizing the imine and allowing cyclization with the pendant amine to form the pyrroloindoline core 210 in 81% yield
PDF
Album
Review
Published 02 Jan 2023

Redox-active molecules as organocatalysts for selective oxidative transformations – an unperceived organocatalysis field

  • Elena R. Lopat’eva,
  • Igor B. Krylov,
  • Dmitry A. Lapshin and
  • Alexander O. Terent’ev

Beilstein J. Org. Chem. 2022, 18, 1672–1695, doi:10.3762/bjoc.18.179

Graphical Abstract
  • classified according to the catalytically active species or key intermediates: N-oxyl radicals, oxoammonium cations, amine cation radicals, thiyl radicals, quinones, dioxiranes and oxaziridines, hypervalent iodine compounds, etc. However, some examples of organocatalyzed oxidative processes, in which an
  • (Scheme 2). In the enamine type of catalysis (Scheme 2A) the key enamine intermediate can undergo one-electron oxidation (route 1), electrophilic radical attack (route 2), or electrophile attack (route 3). The one-electron oxidation leads to the electrophilic cation radical which can further undergo
  • addition to the electron-rich C=C bond [58] or proton loss followed by β-functionalization [59][60][61]. The iminium cation catalysis is used in the activation of electrophilic properties of enones for the nucleophilic epoxidation by hydroperoxides (Scheme 2B). N-Heterocyclic carbene (NHC) organocatalysis
PDF
Album
Perspective
Published 09 Dec 2022
Other Beilstein-Institut Open Science Activities