Search results

Search for "PhIO" in Full Text gives 11 result(s) in Beilstein Journal of Organic Chemistry.

Harnessing tethered nitreniums for diastereoselective amino-sulfonoxylation of alkenes

  • Shyam Sathyamoorthi,
  • Appasaheb K. Nirpal,
  • Dnyaneshwar A. Gorve and
  • Steven P. Kelley

Beilstein J. Org. Chem. 2025, 21, 947–954, doi:10.3762/bjoc.21.78

Graphical Abstract
  • single regioisomer and diastereomer of B was formed (within the limits of 1H NMR detection), attesting to very selective reactivity. Here and in related projects, we found that many I(III) sources could generate a nitrenium ion, including iodosobenzene (PhIO) and iodomesitylene diacetate. However, unless
PDF
Album
Supp Info
Full Research Paper
Published 19 May 2025

Hydrogen-bond activation enables aziridination of unactivated olefins with simple iminoiodinanes

  • Phong Thai,
  • Lauv Patel,
  • Diyasha Manna and
  • David C. Powers

Beilstein J. Org. Chem. 2024, 20, 2305–2312, doi:10.3762/bjoc.20.197

Graphical Abstract
  • (Table 1, entry 9). Attempts to generate 2a in situ using 1 equivalent of TsNH2 (4) in combination with 1 or 2 equivalents of PhIO (5) resulted in aziridination yields of 19% and 27%, respectively (Table 1, entries 10 and 11). Finally, exclusion of ambient light had no impact of the aziridination of 1a
  • alcohol solvent to afford ArI(OR)2 and TsNH2 (Supporting Information File 1, Figure S3); similar solvolysis of PhIO in HFIP has been reported [10]. Reaction between cyclohexene and PhIO (2 equiv) in HFIP delivered <10% of cyclohexene oxide; meanwhile, both cyclohexene and cyclohexene oxide were shown to
  • ), 0.40 mmol iminoiodinane 2, 1.0 mL HFIP, N2 atmosphere. Conditions using in situ-generated iminoiodinane: 0.20 mmol cyclopentene (1b), 0.20 mmol sulfonamide, 0.40 mmol iodosylbenzene (PhIO), 1.0 mL HFIP, N2 atmosphere. a) 20 °C for 16 h, b) 40 °C for 16 h. a) The broadening of the hydroxide proton
PDF
Album
Supp Info
Full Research Paper
Published 11 Sep 2024

Solvent-dependent chemoselective synthesis of different isoquinolinones mediated by the hypervalent iodine(III) reagent PISA

  • Ze-Nan Hu,
  • Yan-Hui Wang,
  • Jia-Bing Wu,
  • Ze Chen,
  • Dou Hong and
  • Chi Zhang

Beilstein J. Org. Chem. 2024, 20, 1914–1921, doi:10.3762/bjoc.20.167

Graphical Abstract
  • ) diacetate (PIDA) [22][23]. And more recently, Du and our group have developed a method for the chemoselective cycloisomerization of o-alkenylbenzamides to 3-arylisoquinolinones, using PhIO as oxidant in combination with a catalytic amount of trimethylsilyl trifluoromethanesulfonate [24]. Although
  • Na2SO4 (Table 1, entries 3 and 4). Next, different commercially available iodanes were employed as oxidants, such as PIDA, phenyliodine(III) bis(trifluoroacetate) (PIFA), N-tosyliminobenzyliodinane (PhINTs), iodosylbenzene (PhIO), and Koser’s reagent (HTIB) (Table 1, entries 5–9). Of the reagents tested
PDF
Album
Supp Info
Full Research Paper
Published 07 Aug 2024

Oxidation of benzylic alcohols to carbonyls using N-heterocyclic stabilized λ3-iodanes

  • Thomas J. Kuczmera,
  • Pim Puylaert and
  • Boris J. Nachtsheim

Beilstein J. Org. Chem. 2024, 20, 1677–1683, doi:10.3762/bjoc.20.149

Graphical Abstract
  • -iodanes have drawbacks, in particular low solubility and moisture sensitivity [11]. Hypervalent iodine compounds in a lower oxidation state (λ3-iodanes), such as iodosobenzene (PhIO)n or phenyliodine(III) diacetate (PIDA) have been reported in alcohol oxidations but they often result in overoxidation to
PDF
Album
Supp Info
Full Research Paper
Published 19 Jul 2024

Benzylic C(sp3)–H fluorination

  • Alexander P. Atkins,
  • Alice C. Dean and
  • Alastair J. J. Lennox

Beilstein J. Org. Chem. 2024, 20, 1527–1547, doi:10.3762/bjoc.20.137

Graphical Abstract
  • is subsequently oxidised to Mn(V)-oxo species II by hypervalent iodine oxidant PhIO. This can perform a HAT from the benzylic substrate, in turn generating a benzylic radical and Mn(IV)-hydroxy species III. Ligand exchange with the fluoride source affords complex IV, which performs FAT with the
PDF
Album
Review
Published 10 Jul 2024

Synthesis of 4-functionalized pyrazoles via oxidative thio- or selenocyanation mediated by PhICl2 and NH4SCN/KSeCN

  • Jialiang Wu,
  • Haofeng Shi,
  • Xuemin Li,
  • Jiaxin He,
  • Chen Zhang,
  • Fengxia Sun and
  • Yunfei Du

Beilstein J. Org. Chem. 2024, 20, 1453–1461, doi:10.3762/bjoc.20.128

Graphical Abstract
  • NH4SCN (Table 1, entries 4–6). Next, other oxidants including phenyliodine(III) diacetate (PIDA), phenyliodine(III) bis(trifluoroacetate) (PIFA), iodosobenzene (PhIO), and NCS were applied, and the results indicated that PhICl2 was the most effective oxidant (Table 1, entries 7–10). Later on, when the
PDF
Album
Supp Info
Letter
Published 28 Jun 2024

Construction of trisubstituted chromone skeletons carrying electron-withdrawing groups via PhIO-mediated dehydrogenation and its application to the synthesis of frutinone A

  • Qiao Li,
  • Chen Zhuang,
  • Donghua Wang,
  • Wei Zhang,
  • Rongxuan Jia,
  • Fengxia Sun,
  • Yilin Zhang and
  • Yunfei Du

Beilstein J. Org. Chem. 2019, 15, 2958–2965, doi:10.3762/bjoc.15.291

Graphical Abstract
  • biologically interesting chromone skeleton was realized by PhIO-mediated dehydrogenation of chromanones under mild conditions. Interestingly, this method also found application in the synthesis of the naturally occurring frutinone A. Keywords: chromanone; chromone; dehydrogenation; frutinone A; PhIO
  • reagents have emerged as a class of efficient and environmentally benign nonmetal “green” oxidants [66][67][68][69][70][71][72][73]. For instance, iodosobenzene (PhIO) [74] has been widely used in many synthetic transformations. It was found that PhIO is efficient in realizing epoxidation of olefins [75
  • , PhIO has never been utilized for the dehydrogenative oxidation reaction. In this letter, we report a facile PhIO-mediated dehydrogenation of chromanones, resulting in the efficient synthesis of biologically interesting chromone compounds under metal-free conditions. Results and Discussion We initially
PDF
Album
Supp Info
Letter
Published 12 Dec 2019

Recent advances in transition-metal-catalyzed incorporation of fluorine-containing groups

  • Xiaowei Li,
  • Xiaolin Shi,
  • Xiangqian Li and
  • Dayong Shi

Beilstein J. Org. Chem. 2019, 15, 2213–2270, doi:10.3762/bjoc.15.218

Graphical Abstract
  • Groves [82] developed two manganese catalysts for the fluorination of C(sp3)–H bonds (Scheme 38). On the one hand, they employed a manganese porphyrin to catalyze the oxidative aliphatic C–H fluorination with iodosylbenzene (PhIO) as a stoichiometric oxidant. A variety of substrates, including simple
PDF
Album
Review
Published 23 Sep 2019

Metal-free mechanochemical oxidations in Ertalyte® jars

  • Andrea Porcheddu,
  • Francesco Delogu,
  • Lidia De Luca,
  • Claudia Fattuoni and
  • Evelina Colacino

Beilstein J. Org. Chem. 2019, 15, 1786–1794, doi:10.3762/bjoc.15.172

Graphical Abstract
  • compounds under very mild conditions [6][7]. Initially used in a stoichiometric amount [8], over the last 20 years it has been exploited successfully in catalytic quantities in combination with other oxidants [9]. A diverse range of co-oxidant agents (N-chlorosuccinimide, NaOCl, Oxone®, PhIO, PhICl2, PhI
PDF
Album
Supp Info
Full Research Paper
Published 25 Jul 2019

Synthesis of trifluoromethylated 2H-azirines through Togni reagent-mediated trifluoromethylation followed by PhIO-mediated azirination

  • Jiyun Sun,
  • Xiaohua Zhen,
  • Huaibin Ge,
  • Guangtao Zhang,
  • Xuechan An and
  • Yunfei Du

Beilstein J. Org. Chem. 2018, 14, 1452–1458, doi:10.3762/bjoc.14.123

Graphical Abstract
  • (PhIO)-mediated intramolecular azirination in a one-pot process. Keywords: azirination; 2H-azirine; iodosobenzene; Togni reagent; β-trifluoromethylation; Introduction The trifluoromethyl group is a striking structural motif, which can be widely found in the fields of pharmaceutical and agrochemical
  • , R2 = H) with PhIO in 2,2,2-trifluoroethanol (TFE) afforded 2-trifluoroethoxy-2H-azirines 4 [57]. The latter process involves an intermolecular oxidative trifluoroethoxylation and the subsequent oxidative intramolecular azirination. In continuation of our interest in the construction of the 2H-azirine
  • skeleton bearing versatile substituents, we herein report that the biologically interesting CF3 group can be incorporated into the privileged 2H-azirine framework through the Togni reagent 1-mediated trifluoromethylation followed by PhIO-mediated azirination in a one-pot process. Results and Discussion It
PDF
Album
Supp Info
Full Research Paper
Published 15 Jun 2018

Hypervalent iodine-guided electrophilic substitution: para-selective substitution across aryl iodonium compounds with benzyl groups

  • Cyrus Mowdawalla,
  • Faiz Ahmed,
  • Tian Li,
  • Kiet Pham,
  • Loma Dave,
  • Grace Kim and
  • I. F. Dempsey Hyatt

Beilstein J. Org. Chem. 2018, 14, 1039–1045, doi:10.3762/bjoc.14.91

Graphical Abstract
  • not cause a substantial difference in yield, but at −50 °C the solubility of the activated hypervalent iodine species seemed poor upon visual inspection. It should be noted that the only other major products in the resultant reaction mixture were the decomposition of PhI(OAc)2 (1a) or PhIO to PhI, and
PDF
Album
Supp Info
Full Research Paper
Published 14 May 2018
Other Beilstein-Institut Open Science Activities