Search results

Search for "amidines" in Full Text gives 39 result(s) in Beilstein Journal of Organic Chemistry.

Formaldehyde surrogates in multicomponent reactions

  • Cecilia I. Attorresi,
  • Javier A. Ramírez and
  • Bernhard Westermann

Beilstein J. Org. Chem. 2025, 21, 564–595, doi:10.3762/bjoc.21.45

Graphical Abstract
  • multicomponent reactions where formaldehyde per se cannot react. For example, in the Groebke–Blackburn–Bienaymé (GBB) multicomponent reaction, a three-component reaction of heterocyclic amidines 39, aldehydes 40 and isocyanides 41 under acidic catalysis generates heterobicyclic products 42 through a [4 + 1
  • acetic acid) and with a wide variety of isocyanides, aldehydes, and amidines. However, strikingly, the use of formaldehyde as the C1 building block is not always successful. In the few cases where the reaction proceeded as expected, low yields were obtained accompanied with several byproducts that are
  • catalysis, respectively [86][93]. They extended the scope of the reaction to a wider range of amidines and isocyanides using glyoxylic acid in 50% aqueous solution, with HClO4 as acid catalyst (Scheme 35) [86]. Under these conditions, the yield, the scope, and the regioselectivity of the reaction increased
PDF
Album
Review
Published 13 Mar 2025

Dioxazolones as electrophilic amide sources in copper-catalyzed and -mediated transformations

  • Seungmin Lee,
  • Minsuk Kim,
  • Hyewon Han and
  • Jongwoo Son

Beilstein J. Org. Chem. 2025, 21, 200–216, doi:10.3762/bjoc.21.12

Graphical Abstract
  • ) nitrenoid intermediate INT-7. Subsequent nitrene insertion, protodemetalation, and intramolecular cyclization furnish the desired 1,2,4-triazole. 1.3 Three-component formation of N-acyl amidines In 2019, N-acyl amidines were prepared from dioxazolones using a copper catalyst with terminal alkynes and
  • secondary amines via an N-acyl nitrene intermediate [77]. Amidines, found in biologically active compounds, have been widely investigated in medicinal chemistry due to their potent antiviral, antibacterial, anticancer, and other therapeutic properties [78][79][80][81]. As shown in Scheme 4, dioxazolones
  • bearing linear alkyl groups were transformed into N-acyl amidines 10a–c by copper catalysis. Moreover, good functional group tolerance was observed with a terminal alkene motif (10d). The cyclohexyl-substituted dioxazolone successfully provided the corresponding N-acyl amidine 10e. However, the
PDF
Album
Review
Published 22 Jan 2025

Harnessing the versatility of hydrazones through electrosynthetic oxidative transformations

  • Aurélie Claraz

Beilstein J. Org. Chem. 2024, 20, 1988–2004, doi:10.3762/bjoc.20.175

Graphical Abstract
  • employed ferrocene as electrocatalyst instead of iodide salts. Additionally, Tang et al. demonstrated that amidines could react with preformed aldehydes-derived hydrazones to produce similar 1,3,5-trisubstituted 1,2,4-triazoles [54]. The last example of electrochemical synthesis of trisubstituted 1,2,4
PDF
Album
Review
Published 14 Aug 2024

The Groebke–Blackburn–Bienaymé reaction in its maturity: innovation and improvements since its 21st birthday (2019–2023)

  • Cristina Martini,
  • Muhammad Idham Darussalam Mardjan and
  • Andrea Basso

Beilstein J. Org. Chem. 2024, 20, 1839–1879, doi:10.3762/bjoc.20.162

Graphical Abstract
  • /bjoc.20.162 Abstract The Groebke–Blackburn–Bienaymé (GBB) three-component reaction, discovered in 1998, is a very efficient strategy to assemble imidazo[1,2-a]-heterocycles starting from amidines, aldehydes and isocyanides. This review aims to exhaustively describe innovative aspects of this reaction
  • (Scheme 13). Glycal aldehydes 32 were synthetized starting from ᴅ-glucose and ᴅ-galactose, following an established procedure [40]. The scope of the reaction was evaluated using differently substituted amidines, and 9 different 2-(β-ᴅ-glycal-1-yl-)-3-N-alkylamino-1-azaindolizines 33 were synthesized in
  • -3CR with different isocyanides and amidines was exploited to synthesize PCP-based imidazo[1,2-a]pyridyl-substituted ligands 38 (Scheme 15). During the study of the scope, it was observed that 2-aminopyrazines afforded lower yields (12–48%) than 2-aminopyridines (42–87%), and this was attributed to
PDF
Album
Review
Published 01 Aug 2024

Manganese-catalyzed C–C and C–N bond formation with alcohols via borrowing hydrogen or hydrogen auto-transfer

  • Mohd Farhan Ansari,
  • Atul Kumar Maurya,
  • Abhishek Kumar and
  • Saravanakumar Elangovan

Beilstein J. Org. Chem. 2024, 20, 1111–1166, doi:10.3762/bjoc.20.98

Graphical Abstract
  • the corresponding indole (98% yield) at 100 °C for 48 h [34]. One year later, Kempe and co-workers showed the multicomponent synthesis of pyrimidines from amidines and alcohols using Mn4 via C–C and C–N bond formations [94]. Various amidines were selectively coupled with different alcohols using 2 mol
PDF
Album
Review
Published 21 May 2024

HPW-Catalyzed environmentally benign approach to imidazo[1,2-a]pyridines

  • Luan A. Martinho and
  • Carlos Kleber Z. Andrade

Beilstein J. Org. Chem. 2024, 20, 628–637, doi:10.3762/bjoc.20.55

Graphical Abstract
  • conditions and the employment of relatively complex starting materials [19]. A more efficient way of obtaining this nucleus is through the Groebke–Blackburn–Bienaymé three-component reaction (GBB-3CR) between amidines (aminoazoles), aldehydes, and isocyanides under both Lewis and Brønsted acid catalysis [20
PDF
Album
Supp Info
Full Research Paper
Published 19 Mar 2024

Cycloaddition reactions of heterocyclic azides with 2-cyanoacetamidines as a new route to C,N-diheteroarylcarbamidines

  • Pavel S. Silaichev,
  • Tetyana V. Beryozkina,
  • Vsevolod V. Melekhin,
  • Valeriy O. Filimonov,
  • Andrey N. Maslivets,
  • Vladimir G. Ilkin,
  • Wim Dehaen and
  • Vasiliy A. Bakulev

Beilstein J. Org. Chem. 2024, 20, 17–24, doi:10.3762/bjoc.20.3

Graphical Abstract
  • -triazole-4-carbimidamides with alkyl, allyl, propargyl, benzyl, cycloalkyl, and indolyl substituents at the N1 position . Keywords: Cornforth rearrangement; cycloaddition reactions; 3,3-diaminoacrylonitriles; heterocyclic azides; 1,2,3-triazole; Introduction Heteroaryl amidines are widely used in the
  • properties of the triazoles thus obtained [9][10][11][12]. It should be noted that the synthesis of amidines containing other heterocycles in addition to 1,2,3-triazole in the molecule has not been described in the literature. In this regard, it is of interest to develop an effective method for the synthesis
  • of hybrids of 1,2,3-triazole with other heterocycles and to identify biologically active compounds among the synthesized compounds. It is known that the cycloaddition reaction of azidopyrimidinediones with enamines [13] represents an effective method for the synthesis of pyrimidinyl amidines [14
PDF
Album
Supp Info
Full Research Paper
Published 05 Jan 2024
Graphical Abstract
  • ], amidines [11], isothioureas [12][13], whereas thioureas [14][15], ureas [16], phosphoric acids [17][18], and squaramides [19][20] fall into the second category. The Friedel–Crafts reaction, discovered by Charles Friedel and James Crafts in 1877 allows the aromatic C–H bond functionalization through the
PDF
Album
Review
Published 28 Jun 2023

Recent advances and perspectives in ruthenium-catalyzed cyanation reactions

  • Thaipparambil Aneeja,
  • Cheriya Mukkolakkal Abdulla Afsina,
  • Padinjare Veetil Saranya and
  • Gopinathan Anilkumar

Beilstein J. Org. Chem. 2022, 18, 37–52, doi:10.3762/bjoc.18.4

Graphical Abstract
  • , carboxylic acids, tetrazoles, aldehydes, amidines, and amides [7][8][9][10][11]. This has been suitably transformed into structurally diverse and complex molecules. In 1927, Pongratz reported a method towards cyanation reactions [12]. From then, onwards, cyanation gained prime focus and achieved much
PDF
Album
Review
Published 04 Jan 2022

Me3Al-mediated domino nucleophilic addition/intramolecular cyclisation of 2-(2-oxo-2-phenylethyl)benzonitriles with amines; a convenient approach for the synthesis of substituted 1-aminoisoquinolines

  • Krishna M. S. Adusumalli,
  • Lakshmi N. S. Konidena,
  • Hima B. Gandham,
  • Krishnaiah Kumari,
  • Krishna R. Valluru,
  • Satya K. R. Nidasanametla,
  • Venkateswara R. Battula and
  • Hari K. Namballa

Beilstein J. Org. Chem. 2021, 17, 2765–2772, doi:10.3762/bjoc.17.186

Graphical Abstract
  • amidines with alkynes catalyzed by either rhodium or ruthenium [55][56][57], or a metal-catalyzed aminative cyclization of 2-alkynylbenzonitriles with secondary amines [58]. Despite the advantages associated with the aforementioned protocols such as the functional group tolerance and huge substrate scope
PDF
Album
Supp Info
Letter
Published 16 Nov 2021

Microwave-assisted multicomponent reactions in heterocyclic chemistry and mechanistic aspects

  • Shivani Gulati,
  • Stephy Elza John and
  • Nagula Shankaraiah

Beilstein J. Org. Chem. 2021, 17, 819–865, doi:10.3762/bjoc.17.71

Graphical Abstract
  • desired product 97. 6.2.3 Thiopyrano-, pyrano[4,3-d]pyrimidines: Jiang and co-workers [86] proposed a three-component reaction involving aldehydes 5, tetrahydrothiopyran-4-ones 100 and amidines 75 under microwave irradiation using t-BuOH as solvent and t-BuOK as a base. This reaction provided easy access
PDF
Album
Review
Published 19 Apr 2021

Synthetic reactions driven by electron-donor–acceptor (EDA) complexes

  • Zhonglie Yang,
  • Yutong Liu,
  • Kun Cao,
  • Xiaobin Zhang,
  • Hezhong Jiang and
  • Jiahong Li

Beilstein J. Org. Chem. 2021, 17, 771–799, doi:10.3762/bjoc.17.67

Graphical Abstract
  • -bond adduct. The first light-promoted three-component reaction has been realized by a halogen-bond adduct, forming perfluoroalkylated pyrimidines 26 (Scheme 8). A variety of perfluorinated chains were assembled with methylene compounds and guanidines or amidines, giving the corresponding
PDF
Album
Review
Published 06 Apr 2021

β-Lactamase inhibition profile of new amidine-substituted diazabicyclooctanes

  • Zafar Iqbal,
  • Lijuan Zhai,
  • Yuanyu Gao,
  • Dong Tang,
  • Xueqin Ma,
  • Jinbo Ji,
  • Jian Sun,
  • Jingwen Ji,
  • Yuanbai Liu,
  • Rui Jiang,
  • Yangxiu Mu,
  • Lili He,
  • Haikang Yang and
  • Zhixiang Yang

Beilstein J. Org. Chem. 2021, 17, 711–718, doi:10.3762/bjoc.17.60

Graphical Abstract
  • amidines at the C2 position of DBO in moderate to good overall yields. In vitro antibacterial testing of the compounds was performed against ten bacterial strains containing different β-lactamase enzymes. The compounds were tested alone and in combination with the existing antibiotic, meropenem. All
PDF
Album
Supp Info
Full Research Paper
Published 12 Mar 2021

Facile preparation and conversion of 4,4,4-trifluorobut-2-yn-1-ones to aromatic and heteroaromatic compounds

  • Takashi Yamazaki,
  • Yoh Nakajima,
  • Minato Iida and
  • Tomoko Kawasaki-Takasuka

Beilstein J. Org. Chem. 2021, 17, 132–138, doi:10.3762/bjoc.17.14

Graphical Abstract
  • a variety of pyrimidine derivatives, 6, using amidines including guanidine [34]. First of all, various bases were employed for the reaction of the model substrate 2a. During initial testing, guanidine hydrochloride at 25 °C for 4 h in acetonitrile (Table 5, entries 1–7) as well as sodium carbonate
  • notable features of this method, which is worthy of attention. Furthermore, the high electrophilicity of ynones 2 obtained was nicely demonstrated through two representative reactions, namely 1) Michael additions of β-keto carbonyl compounds and 2) amidines and guanidine for the construction of aromatic
PDF
Album
Supp Info
Full Research Paper
Published 15 Jan 2021

Regioselective synthesis of heterocyclic N-sulfonyl amidines from heteroaromatic thioamides and sulfonyl azides

  • Vladimir Ilkin,
  • Vera Berseneva,
  • Tetyana Beryozkina,
  • Tatiana Glukhareva,
  • Lidia Dianova,
  • Wim Dehaen,
  • Eugenia Seliverstova and
  • Vasiliy Bakulev

Beilstein J. Org. Chem. 2020, 16, 2937–2947, doi:10.3762/bjoc.16.243

Graphical Abstract
  • , Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium 10.3762/bjoc.16.243 Abstract N-Sulfonyl amidines bearing 1,2,3-triazole, isoxazole, thiazole and pyridine substituents were successfully prepared for the first time by reactions of primary, secondary and tertiary heterocyclic
  • thioamides with alkyl- and arylsulfonyl azides. For each type of thioamides a reliable procedure to prepare N-sulfonyl amidines in good yields was found. Reactions of 1-aryl-1,2,3-triazole-4-carbothioamides with azides were shown to be accompanied with a Dimroth rearrangement to form 1-unsubstituted 5
  • -arylamino-1,2,3-triazole-4-N-sulfonylcarbimidamides. 2,5-Dithiocarbamoylpyridine reacts with sulfonyl azides to form a pyridine bearing two sulfonyl amidine groups. Keywords: amidines; Dimroth rearrangement; isoxazoles; sulfonyl thiazoles; thioamides; 1,2,3-triazoles; Introduction The biological activity
PDF
Album
Supp Info
Full Research Paper
Published 01 Dec 2020

Microwave-assisted efficient one-pot synthesis of N2-(tetrazol-5-yl)-6-aryl/heteroaryl-5,6-dihydro-1,3,5-triazine-2,4-diamines

  • Moustafa Sherief Moustafa,
  • Ramadan Ahmed Mekheimer,
  • Saleh Mohammed Al-Mousawi,
  • Mohamed Abd-Elmonem,
  • Hesham El-Zorba,
  • Afaf Mohamed Abdel Hameed,
  • Tahany Mahmoud Mohamed and
  • Kamal Usef Sadek

Beilstein J. Org. Chem. 2020, 16, 1706–1712, doi:10.3762/bjoc.16.142

Graphical Abstract
  • -triazine-2,4-diamines in 44–72% yields that employed the reaction of isothiocyanates with sodium hydrogen cyanamide and amidines in the presence of 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride and heating at 75 °C for 3 h. Recently, Ma et al. [33] described a one-pot two step procedure for
PDF
Album
Supp Info
Full Research Paper
Published 16 Jul 2020

Aerobic synthesis of N-sulfonylamidines mediated by N-heterocyclic carbene copper(I) catalysts

  • Faïma Lazreg,
  • Marie Vasseur,
  • Alexandra M. Z. Slawin and
  • Catherine S. J. Cazin

Beilstein J. Org. Chem. 2020, 16, 482–491, doi:10.3762/bjoc.16.43

Graphical Abstract
  • , the presence of an N-atom in the amidine structure leads to opportunities as ligands and organocatalysts [6][7][8]. N-Sulfonylamidines and N-sulfonylimidates are members of a specific class of these amidines. One initial methodology developed for the formation of sulfonylamidines was based on the
PDF
Album
Supp Info
Full Research Paper
Published 24 Mar 2020

Synthesis of 4-amino-5-fluoropyrimidines and 5-amino-4-fluoropyrazoles from a β-fluoroenolate salt

  • Tobias Lucas,
  • Jule-Philipp Dietz and
  • Till Opatz

Beilstein J. Org. Chem. 2020, 16, 445–450, doi:10.3762/bjoc.16.41

Graphical Abstract
  • . Results and Discussion Synthesis of fluorinated pyrimidines To synthesize 2-alkyl- and 2-aryl-substituted 5-fluoro-4-aminopyrimidines, the reaction of 8 with various amidines was investigated. Different formamidinium and guanidinium salts were tested (Table 1) to evaluate the effect of the counter ion
  • producing alkyl-substituted pyrimidine derivatives was investigated (Scheme 2). Starting from formamidine hydrochloride, compound 10a was synthesized in 85% yield. A variety of amidines with different steric hindrance such as methyl, cyclopropyl and tert-butyl substitution was used, and all substituents
  • obtained in excellent yields of 93% and 97%, respectively, and represent potential substrates for subsequent cross-coupling reactions, which would provide structurally more complex products. Amidines with heterocyclic substituents were also evaluated. While the pyridine-substituted derivative 10o furnished
PDF
Album
Supp Info
Full Research Paper
Published 20 Mar 2020

Synthesis of ([1,2,4]triazolo[4,3-a]pyridin-3-ylmethyl)phosphonates and their benzo derivatives via 5-exo-dig cyclization

  • Aleksandr S. Krylov,
  • Artem A. Petrosian,
  • Julia L. Piterskaya,
  • Nataly I. Svintsitskaya and
  • Albina V. Dogadina

Beilstein J. Org. Chem. 2019, 15, 1563–1568, doi:10.3762/bjoc.15.159

Graphical Abstract
  • amidines and amides was observed [4]. Moreover, the formazan-type products, the formation of which was observed in reactions of chloroethynylphosphonates with arylhydrazines, were not detected [16]. The structures of [1,2,4]triazolo[4,3-a]pyridines 3–8 were confirmed by IR, 1Н, 13C and 31P NMR spectroscopy
PDF
Album
Supp Info
Letter
Published 12 Jul 2019

Synthesis of dihydroquinazolines from 2-aminobenzylamine: N3-aryl derivatives with electron-withdrawing groups

  • Nadia Gruber,
  • Jimena E. Díaz and
  • Liliana R. Orelli

Beilstein J. Org. Chem. 2018, 14, 2510–2519, doi:10.3762/bjoc.14.227

Graphical Abstract
  • conditions that are incompatible with nitro or cyano groups. In this context, and as part of our ongoing research on heterocyclic amidines (vide infra) and amidine N-oxides we report herein the first method for the synthesis of 2-alkyl/aryl-N-aryl-3,4-DHQs 1 bearing electron-withdrawing groups in the aryl
  • -arylations of unprotected primary diamines have not been systematically investigated yet. Regarding the last step of the sequence leading to compounds 1, our group has worked extensively on ring-closure reactions leading to nitrogen-containing heterocycles such as 5–8-membered cyclic amidines [81][82][83], N
  • have also been reported [91]. These transient intermediates have been characterized spectroscopically and, in some cases, were isolated from the reaction medium [94][95][96][97]. In relation to our research, nitrilium ions are also known to mediate the synthesis of acyclic amidines by reaction with
PDF
Album
Supp Info
Full Research Paper
Published 26 Sep 2018

Selective formation of a zwitterion adduct and bicarbonate salt in the efficient CO2 fixation by N-benzyl cyclic guanidine under dry and wet conditions

  • Yoshiaki Yoshida,
  • Naoto Aoyagi and
  • Takeshi Endo

Beilstein J. Org. Chem. 2018, 14, 2204–2211, doi:10.3762/bjoc.14.194

Graphical Abstract
  • ambient temperature and pressure [19][20][21][22]. Furthermore, cyclic amidines and guanidines, such as 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) and 1,5,7-triazabicyclo[4.4.0]dec-5-ene (TBD), exhibited an excellent efficiency of CO2 capture and release [23][24][25][26][27][28][29][30][31][32][33]. In
  • a low magnetic field, because the electrons on bicarbonate and guanidinium carbons were delocalized on oxygen and nitrogen atoms by their resonance effect, respectively. Previously, some researchers have reported similar assignments for zwitterion adducts of amidines and guanidines [29][30][31]. The
PDF
Album
Supp Info
Full Research Paper
Published 23 Aug 2018

Hypervalent organoiodine compounds: from reagents to valuable building blocks in synthesis

  • Gwendal Grelier,
  • Benjamin Darses and
  • Philippe Dauban

Beilstein J. Org. Chem. 2018, 14, 1508–1528, doi:10.3762/bjoc.14.128

Graphical Abstract
  • Namitharan has very recently demonstrated that a one-pot palladium-catalyzed Heck coupling allows for transferring the aryl group of (diacetoxyiodo)arenes released after a metal-free methylenation reaction (Scheme 45) [110]. The latter that is performed by reacting PhI(OAc)2 with DMSO, applies to amidines 97
PDF
Album
Review
Published 21 Jun 2018

Atom-economical group-transfer reactions with hypervalent iodine compounds

  • Andreas Boelke,
  • Peter Finkbeiner and
  • Boris J. Nachtsheim

Beilstein J. Org. Chem. 2018, 14, 1263–1280, doi:10.3762/bjoc.14.108

Graphical Abstract
  • values (66% for 33b) are obtained. In another tandem procedure, a metal-free C(sp3)–H olefination of amidines 34 with DMSO and PIDA derivatives 20b was developed by Namitharan and co-workers [49]. A Pd(II)-catalysed Heck reaction of the formed exocyclic double bond with the emerging iodoarene yields
PDF
Album
Review
Published 30 May 2018

An overview of recent advances in duplex DNA recognition by small molecules

  • Sayantan Bhaduri,
  • Nihar Ranjan and
  • Dev P. Arya

Beilstein J. Org. Chem. 2018, 14, 1051–1086, doi:10.3762/bjoc.14.93

Graphical Abstract
PDF
Album
Review
Published 16 May 2018

5-Aminopyrazole as precursor in design and synthesis of fused pyrazoloazines

  • Ranjana Aggarwal and
  • Suresh Kumar

Beilstein J. Org. Chem. 2018, 14, 203–242, doi:10.3762/bjoc.14.15

Graphical Abstract
  • the presence of EDCl, DMAP and HOBt in N,N-dimethylformamide at room temperature for the synthesis of the corresponding amide derivatives 218 (Scheme 58). Song et al. [134] explored the synthesis of pyrazolo[3,4-d]pyrimidine derivatives 221 through the intermediacy of amidines 219 obtained by reaction
  • of 5-amino-4-cyanopyrazole 208 with N,N-dimethylformamide dimethyl acetal (DMFDMA) in acetonitrile at reflux temperature. Amidines 219 were condensed with appropriate 2-amino-5-subsitituted-1,3,4-thiadiazoles 220 under microwave irradiation in acetic acid for the generation of the desired pyrazolo
PDF
Album
Review
Published 25 Jan 2018
Other Beilstein-Institut Open Science Activities