Search for "heteroatom containing" in Full Text gives 33 result(s) in Beilstein Journal of Organic Chemistry.
Beilstein J. Org. Chem. 2025, 21, 1422–1453, doi:10.3762/bjoc.21.106
Beilstein J. Org. Chem. 2025, 21, 1272–1305, doi:10.3762/bjoc.21.99
Graphical Abstract
Figure 1: a) Stone–Wales (red) and azulene (blue) defects in graphene; b) azulene and its selected resonance ...
Figure 2: Examples of azulene-embedded 2D allotropic forms of carbon: a) phagraphene and b) TPH-graphene.
Scheme 1: Synthesis of non-alternant isomers of pyrene (2 and 6) using dehydrogenation.
Scheme 2: Synthesis of non-alternant isomer 9 of benzo[a]pyrene and 14 of benzo[a]perylene using dehydrogenat...
Scheme 3: Synthesis of azulene-embedded isomers of benzo[a]pyrene (18 and 22) inspired by Ziegler–Hafner azul...
Figure 3: General strategies leading to azulene-embedded nanographenes: a) construction of azulene moiety in ...
Scheme 4: Synthesis of biradical PAHs possessing significant biradical character using oxidation of partially...
Scheme 5: Synthesis of dicyclohepta[ijkl,uvwx]rubicene (29) and its further modifications.
Scheme 6: Synthesis of warped PAHs with one embedded azulene subunit using Scholl-type oxidation.
Scheme 7: Synthesis of warped PAHs with two embedded azulene subunits using Scholl oxidation.
Scheme 8: Synthesis of azulene-embedded PAHs using [3 + 2] annulation accompanied by ring expansion.
Scheme 9: Synthesis of azulene-embedded isomers of linear acenes using [3 + 2] annulation accompanied by ring...
Scheme 10: Synthesis of azulene-embedded PAHs using intramolecular C–H arylation.
Scheme 11: Synthesis of azulene-embedded isomers of acenes using intramolecular C–H arylation.
Scheme 12: Synthesis of azulene-embedded PAHs using intramolecular condensations.
Scheme 13: Synthesis of azulene-embedded PAH 89 using palladium-catalysed [5 + 2] annulation.
Scheme 14: Synthesis of azulene-embedded PAHs using oxidation of substituents around the azulene core.
Scheme 15: Synthesis of azulene-embedded PAHs using the oxidation of reactive positions 1 and 3 of azulene sub...
Scheme 16: Synthesis of azulene-embedded PAHs using intramolecular C–H arylation.
Scheme 17: Synthesis of an azulene-embedded isomer of terylenebisimide using tandem Suzuki coupling and C–H ar...
Scheme 18: Synthesis of azulene embedded PAHs using a bismuth-catalyzed cyclization of alkenes.
Scheme 19: Synthesis of azulene-embedded nanographenes using intramolecular cyclization of alkynes.
Scheme 20: Synthesis of azulene-embedded graphene nanoribbons and azulene-embedded helicenes using annulation ...
Scheme 21: Synthesis of azulene-fused acenes.
Scheme 22: Synthesis of non-alternant isomer of perylene 172 using Yamamoto-type homocoupling.
Scheme 23: Synthesis of N- and BN-nanographenes with embedded azulene unit(s).
Scheme 24: On-surface synthesis of azulene-embedded nanographenes from benzenoid precursors via dehydrogenatio...
Scheme 25: On-surface synthesis of azulene-embedded nanographenes from benzenoid precursors.
Scheme 26: On-surface synthesis of azulene-embedded nanoribbons.
Beilstein J. Org. Chem. 2025, 21, 807–816, doi:10.3762/bjoc.21.64
Graphical Abstract
Figure 1: Basic principle of the NBD to QC conversion and vice versa. The bridge-atom at position 7 was varie...
Scheme 1: Synthetic procedure towards new X-NBD derivatives C-NBD1, O-NBD1 and N-NBD1. 1-((Bromoethynyl)sulfo...
Figure 2: Conversion of O-NBD1 to O-QC1 using a 275 nm LED. The UV–vis spectrum was recorded in MeCN; b) the ...
Figure 3: Rearrangement of O-NBD2 to O-QC2 using a 385 nm LED. The UV–vis measurement in the middle were cond...
Figure 4: Rearrangement of N-NBD2 using a 385 nm LED. The UV–vis measurement in the middle were conducted in ...
Beilstein J. Org. Chem. 2025, 21, 680–716, doi:10.3762/bjoc.21.54
Graphical Abstract
Figure 1: Fundamental characteristics of the C–F bond.
Figure 2: Incorporation of fluorine at the end of an alkyl chain.
Figure 3: Incorporation of fluorine into the middle of a linear alkyl chain.
Figure 4: Incorporation of fluorine across much, or all, of a linear alkyl chain.
Figure 5: Incorporation of fluorine into cycloalkanes.
Figure 6: Conformational effects of introducing fluorine into an ether (geminal to oxygen).
Figure 7: Conformational effects of introducing fluorine into an ether (vicinal to oxygen).
Figure 8: Effects of introducing fluorine into alcohols (and their derivatives).
Figure 9: Controlling the ring pucker of sugars through fluorination.
Figure 10: Controlling bond rotations outside the sugar ring through fluorination.
Figure 11: Effects of incorporating fluorine into amines.
Figure 12: Effects of incorporating fluorine into amine derivatives, such as amides and sulfonamides.
Figure 13: Effects of incorporating fluorine into organocatalysts.
Figure 14: Effects of incorporating fluorine into carbonyl compounds, focusing on the “carbon side.”
Figure 15: Fluoroproline-containing peptides and proteins.
Figure 16: Further examples of fluorinated linear peptides (besides fluoroprolines). For clarity, sidechains a...
Figure 17: Fluorinated cyclic peptides.
Figure 18: Fluorine-derived conformational control in sulfur-containing compounds.
Beilstein J. Org. Chem. 2025, 21, 189–199, doi:10.3762/bjoc.21.11
Graphical Abstract
Figure 1: Examples of solid state structures exhibiting CF2H group-mediated hydrogen bond interactions [16,18,21]. Hydr...
Figure 2: Hydrogen bond donors investigated in this study. For all cationic species, the counteranion is BF4−...
Figure 3: Hydrogen bond donation ability determined by UV–vis spectroscopy titration. A) Formation of HB comp...
Figure 4: A) HB complex formation between a donor and tri-n-butylphosphine oxide. B) 1H NMR spectra of 2b (5....
Figure 5: Hydrogen bond donation ability of various donors as quantified by the dissociation constant (Kd) of...
Figure 6: A) Linear correlation between ΔGexp and ΔGcalc. ΔGexp and ΔGcalc values are shown in Figure 5. B) Linear co...
Beilstein J. Org. Chem. 2024, 20, 3085–3112, doi:10.3762/bjoc.20.257
Graphical Abstract
Figure 1: Chemical structures of the main tetrapyrrolic macrocycles studied in this review for their role as ...
Figure 2: Calix[4]pyrroles 3 and 4 and an their acyclic analogue 5 used for the transformation of Danishefsky...
Figure 3: Calixpyrrole-based organocatalysts 11 and 12 for the diastereoselective addition reaction of TMSOF ...
Figure 4: (a) Chemical structures of macrocyclic organocatalysts used for the synthesis of cyclic carbonates ...
Figure 5: Cuprous chloride-catalyzed aziridination of styrene (22) by chloramine-T (23) providing 1-tosyl-2-p...
Figure 6: Chemical structures of the various porphyrin macrocycles (18, 25–41) screened as potential catalyst...
Figure 7: Organocatalytic activity of distorted porphyrins explored by Senge and co-workers. Planar macrocycl...
Figure 8: Chemical structures of H2EtxTPP (x = 0, 2, 4, 6, 8) compounds with incrementally increasing nonplan...
Figure 9: Chemical structures of OxP macrocycles tested as potential organocatalysts for the conjugate additi...
Figure 10: a) Fundamental structure of the J-aggregates of diprotonated TPPS3 53 and b) its use as a catalyst ...
Figure 11: Chemical structures of amphiphilic porphyrin macrocycles used as pH-switchable catalysts based on i...
Figure 12: a) Chemical structures of porphyrin macrocycles for the cycloaddition of CO2 to N-alkyl/arylaziridi...
Figure 13: Electron and energy-transfer processes typical for excited porphyrin molecules (Por = porphyrin mac...
Figure 14: Proposed mechanism for the light-induced α-alkylation of aldehydes with EDA in the presence of H2TP...
Figure 15: a) Chemical structures of porphyrins screened as photoredox catalysts, b) model reaction of furan (...
Figure 16: Porphyrin macrocycles H2TPP (18) and PPIX 78 as photoreductants for the red light-induced C–H aryla...
Figure 17: Porphyrin macrocycles H2TPP (18) and PPIX 78 as photoredox catalyst for (a) α-alkylation of an alde...
Figure 18: Corrole macrocycles 98–100 as photoredox catalysts for C–H arylation and borylation reactions. Adap...
Figure 19: Proposed catalytic cycle of electrocatalytic generation of H2 evolution using tetrapyrrolic macrocy...
Figure 20: a) Chemical structures of tetrapyrrolic macrocycles 109, 73, and 110 used for oxygen reductions in ...
Figure 21: a) Absorption spectra (left) of the air-saturated DCE solutions containing: 5 × 10−5 M H2TPP (black...
Figure 22: Chemical structures of N,N’-dimethylated saddle-distorted porphyrin isomers, syn-Me2P 111 and anti-...
Figure 23: Reaction mechanisms for the two-electron reduction of O2 by a) syn-Me2Iph 113 and b) anti-Me2Iph 114...
Figure 24: O2/H2O2 interconversion using methylated saddle-distorted porphyrin and isophlorin (reduced porphyr...
Figure 25: Chemical structures of distorted dodecaphenylporphyrin macrocycle 117 and its diprotonated form 118...
Beilstein J. Org. Chem. 2024, 20, 287–305, doi:10.3762/bjoc.20.30
Graphical Abstract
Scheme 1: “Precursor approach” for the synthesis of π-conjugated polycyclic compounds, with the thermally- or...
Scheme 2: Valence isomerization of chalcogen heteropines and subsequent cheletropic extrusion in the case of ...
Scheme 3: Early example of phenanthrene synthesis via a chemically-induced S-extrusion (and concomitant decar...
Scheme 4: Top: Conversion of dinaphthothiepine bisimides 3a,b and their sulfoxide analogues 4a,b into PBIs 6a,...
Figure 1: Top view (a) and side view (b) of the X-ray crystal structure of thiepine 3b showing its bent confo...
Scheme 5: Modular synthetic route towards dinaphthothiepines 3a–f and the corresponding S-oxides 4a–d, incorp...
Scheme 6: Top: Conversion of dithienobenzothiepine monomeric units into dithienonaphthalenes, upon S-extrusio...
Scheme 7: Synthesis of S-doped extended triphenylene derivative 22 from 3-bromothiophene (17) with the therma...
Scheme 8: Top: Synthesis of thermally-stable O-doped HBC 26a. Bottom: Synthesis of S- and Se-based soluble pr...
Scheme 9: Synthesis of dinaphthooxepine bisimide 33 and conversion into PBI 6f by O-extrusion triggered by el...
Figure 2: Cyclic voltammogram of dinaphthooxepine 33, evidencing the irreversibility of the reduction process...
Scheme 10: Top: Early example of 6-membered ring contraction with concomitant S-extrusion leading to dinaphtho...
Scheme 11: Examples of S-extrusion from annelated 1,2-dithiins under photoactivation (top) or thermal activati...
Scheme 12: Synthesis of dibenzo[1,4]dithiapentalene upon photoextrusion of SO2 [78].
Scheme 13: Extrusion of SO in naphthotrithiin-2-oxides for the synthesis of 2,5-dihydrothiophene 1-oxides [79].
Scheme 14: SO-extrusion as a key step in the synthesis of fullerenes (C60 and C70) encapsulating H2 molecules [80,82]....
Scheme 15: Synthesis of diepoxytetracene precursor 56 and its on-surface conversion into tetracene upon O-extr...
Scheme 16: Soluble precursors of hexacene, decacene and dodecacene incorporating 1,4-epoxides in their hydroca...
Scheme 17: Synthesis of tetraepoxide 59 as soluble precursor of decacene [85].
Figure 3: Constant-height STM measurement of decacene on Au(111) using a CO-functionalized tip (sample voltag...
Beilstein J. Org. Chem. 2024, 20, 32–40, doi:10.3762/bjoc.20.5
Graphical Abstract
Figure 1: a) Previous methods for the water-solubilization and modification of nanocarbons (NCs). b) Bent aro...
Figure 2: a) Synthetic route toward prePA and PA-CH3, including the optimized structure (DFT) of PA-CH3. b) S...
Figure 3: 1H NMR spectra (500 MHz, rt, 0.5 mM and 1.0 mM based on PA-CH3 and PA-OCH3, respectively, TMS in CD...
Figure 4: a) General protocol for the noncovalent encircling of C60 and s-CNT by PA-R. b) UV–visible spectra ...
Figure 5: 1H NMR spectra (500 MHz, D2O, rt, 0.5 mM based on PA-Im) of (PA-Im)n·(C60)m a) before and b) after ...
Figure 6: a) Protocol for the noncovalent encircling of g-C3N4 by PA-OCH3 and subsequent deposit of g-C3N4 on...
Beilstein J. Org. Chem. 2023, 19, 1785–1803, doi:10.3762/bjoc.19.131
Graphical Abstract
Scheme 1: Photocatalytic decarboxylative transformations mediated by the NaI/PPh3 catalyst system.
Scheme 2: Proposed catalytic cycle of NaI/PPh3 photoredox catalysis.
Scheme 3: Decarboxylative alkenylation of redox-active esters by NaI/PPh3 catalysis.
Scheme 4: Decarboxylative alkenylation mediated by NaI/PPh3 catalysis.
Scheme 5: NaI-mediated photoinduced α-alkenylation of Katritzky salts 7.
Scheme 6: n-Bu4NI-mediated photoinduced decarboxylative olefination.
Scheme 7: Proposed mechanism of the n-Bu4NI-mediated photoinduced decarboxylative olefination.
Scheme 8: Photodecarboxylative alkylation of redox-active esters with diazirines.
Scheme 9: Photoinduced iodine-anion-catalyzed decarboxylative/deaminative C–H alkylation of enamides.
Scheme 10: Photocatalytic C–H alkylation of coumarins mediated by NaI/PPh3 catalysis.
Scheme 11: Photoredox alkylation of aldimines by NaI/PPh3 catalysis.
Scheme 12: Photoredox C–H alkylation employing ammonium iodide.
Scheme 13: NaI/PPh3/CuBr cooperative catalysis for photocatalytic C(sp3)–O/N cross-coupling reactions.
Scheme 14: Proposed mechanism of NaI/PPh3/CuBr cooperative catalysis for photocatalytic C(sp3)–O/N cross-coupl...
Scheme 15: Photocatalytic decarboxylative [3 + 2]/[4 + 2] annulation between enynals and γ,σ-unsaturated N-(ac...
Scheme 16: Proposed mechanism for the decarboxylative [3 + 2]/[4 + 2] annulation.
Scheme 17: Decarboxylative cascade annulation of alkenes/1,6-enynes with N-hydroxyphthalimide esters.
Scheme 18: Decarboxylative radical cascade cyclization of N-arylacrylamides.
Scheme 19: NaI/PPh3-driven photocatalytic decarboxylative radical cascade alkylarylation.
Scheme 20: Proposed mechanism of the NaI/PPh3-driven photocatalytic decarboxylative radical cascade cyclizatio...
Scheme 21: Visible-light-promoted decarboxylative cyclization of vinylcycloalkanes.
Scheme 22: NaI/PPh3-mediated photochemical reduction and amination of nitroarenes.
Scheme 23: PPh3-catalyzed alkylative iododecarboxylation with LiI.
Scheme 24: Visible-light-triggered iodination facilitated by N-heterocyclic carbenes.
Scheme 25: Visible-light-induced photolysis of phosphonium iodide salts for monofluoromethylation.
Beilstein J. Org. Chem. 2023, 19, 1259–1288, doi:10.3762/bjoc.19.94
Graphical Abstract
Scheme 1: Research progress of coupling reactions and active compounds containing α-C(sp3)-functionalized eth...
Scheme 2: Transition-metal-catalyzed CDC pathways.
Scheme 3: CDC of active methylene compounds in the α-C(sp3) position of ethers.
Scheme 4: InCl3/Cu(OTf)2/NHPI co-catalyzed CDC reaction.
Scheme 5: CDC of cyclic benzyl ethers with aldehydes.
Scheme 6: Cu-catalyzed CDC of (a) unactivated C(sp3)–H ethers with simple ketones and (b) double C(sp3)−H fun...
Scheme 7: Cu-catalyzed CDC of C(sp3)–H/C(sp3)–H bonds.
Scheme 8: Cu-catalyzed synthesis of chiral 2-substituted tetrahydropyrans.
Scheme 9: CDC of thiazole with cyclic ethers.
Scheme 10: Cu(I)-catalyzed oxidative alkenylation of simple ethers.
Scheme 11: Cross-dehydrogenation coupling of isochroman C(sp3)–H bonds with anisole C(sp2)–H bonds.
Scheme 12: Pd(OAc)2/Cu(OTf)2-catalyzed arylation of α-C(sp3)–H bonds of ethers.
Scheme 13: Cu-catalyzed C(sp3)–H/C(sp2)–H activation strategies to construct C(sp3)–C(sp2) bonds.
Scheme 14: Cu(I)-catalyzed C(sp2)–H alkylation.
Scheme 15: Cu-catalyzed C(sp3)–H/C(sp)–H activation to construct C(sp3)–C(sp) bonds (H2BIP: 2,6-bis(benzimidaz...
Scheme 16: Fe-catalyzed CDC reaction pathways.
Scheme 17: Fe2(CO)9-catalyzed functionalization of C–H bonds.
Scheme 18: Ligand-promoted Fe-catalyzed CDC reaction of N-methylaniline with ethers.
Scheme 19: Fe-catalyzed CDC of C(sp3)–H/C(sp3)–H bonds.
Scheme 20: Fe-catalyzed hydroalkylation of α,β-unsaturated ketones with ethers.
Scheme 21: Solvent-free Fe(NO3)3-catalyzed CDC of C(sp3)–H/C(sp2)–H bonds.
Scheme 22: Alkylation of disulfide compounds to afford tetrasubstituted alkenes.
Scheme 23: Fe-catalyzed formation of 1,1-bis-indolylmethane derivatives.
Scheme 24: Alkylation of coumarins and flavonoids.
Scheme 25: Direct CDC α-arylation of azoles with ethers.
Scheme 26: CDC of terminal alkynes with C(sp3)–H bonds adjacent to oxygen, sulfur or nitrogen atoms.
Scheme 27: Alkylation of terminal alkynes.
Scheme 28: Co-catalyzed functionalization of glycine esters.
Scheme 29: Co-catalyzed construction of C(sp2)–C(sp3) bonds.
Scheme 30: Co-catalyzed CDC of imidazo[1,2-a]pyridines with isochroman.
Scheme 31: Co-catalyzed C–H alkylation of (benz)oxazoles with ethers.
Scheme 32: Cobalt-catalyzed CDC between unactivated C(sp2)–H and C(sp3)–H bonds.
Scheme 33: MnO2-catalyzed CDC of the inactive C(sp3)-H.
Scheme 34: Oxidative cross-coupling of ethers with enamides.
Scheme 35: Ni(II)-catalyzed CDC of indoles with 1,4-dioxane.
Scheme 36: Chemo- and regioselective ortho- or para-alkylation of pyridines.
Scheme 37: Asymmetric CDC of 3,6-dihydro-2H-pyrans with aldehydes.
Scheme 38: CDC of heterocyclic aromatics with ethers.
Scheme 39: Indium-catalyzed alkylation of DHPs with 1,3-dicarbonyl compounds.
Scheme 40: Rare earth-metal-catalyzed CDC reaction.
Scheme 41: Visible-light-driven CDC of cycloalkanes with benzazoles.
Scheme 42: Photoinduced alkylation of quinoline with cyclic ethers.
Scheme 43: Photocatalyzed CDC reactions between α-C(sp3)–H bonds of ethers and C(sp2)–H bonds of aromatics.
Beilstein J. Org. Chem. 2022, 18, 1256–1263, doi:10.3762/bjoc.18.131
Graphical Abstract
Scheme 1: C3–Si bond functionalization of biomass-derived 3-silylated furfural platforms.
Scheme 2: Preparation of 3-silylated 2-furyl carbinols.
Scheme 3: C–Si bond functionalization of 2,3-disubstituted furyl carbinols by 1,4-silyl migration.
Scheme 4: Attempts of C3–Si bond functionalization promoted by intramolecular activation via alkoxide.
Scheme 5: Alkoxide-promoted cyclic siloxane formation from 2-[(3-benzyldimethylsilyl)furyl] carbinol 4c.
Scheme 6: TBAF-promoted cyclic siloxane formation from 2-[(3-benzyldimethylsilyl)furyl] carbinol 4c.
Scheme 7: Pd-catalyzed arylation of 2-[(3-benzyldimethylsilyl)furyl] carbinol 4c.
Scheme 8: Cu-catalyzed allylation and methylation of 2-[(3-benzyldimethylsilyl)furyl] carbinols. aCuI⋅PPh3 (1...
Beilstein J. Org. Chem. 2022, 18, 1203–1209, doi:10.3762/bjoc.18.125
Graphical Abstract
Scheme 1: a) Mechanochemical synthesis of g-PCN from sodium phosphide and trichlorotriazine (previous work [38]) ...
Figure 1: PXRD patterns of g-h-PCN (green) and g-h-PCN300 (teal).
Figure 2: XPS scans of a) C 1s, b) N 1s and c) P 2p for the pre-annealed g-h-PCN and d) C 1s, e) N 1s and f) ...
Figure 3: 31P MAS NMR of a) g-h-PCN and b) g-h-PCN300. Asterisks denote spinning sidebands.
Figure 4: Calculated structures for a) corrugated (edge facing), b) corrugated (single layer), c) layered g-h...
Beilstein J. Org. Chem. 2022, 18, 1188–1194, doi:10.3762/bjoc.18.123
Graphical Abstract
Scheme 1: Different strategies for phospha-Brook reactions.
Scheme 2: Scope of 1 (secondary phosphine oxides and phosphonate). Reaction conditions: 1 (0.2 mmol), 2-pyrid...
Scheme 3: Scope of 2 (α-pyridinealdehydes and α-pyridones). Reaction conditions: diphenylphosphine oxide (1a,...
Scheme 4: Control experiments.
Scheme 5: Proposed mechanism.
Beilstein J. Org. Chem. 2022, 18, 1177–1187, doi:10.3762/bjoc.18.122
Graphical Abstract
Scheme 1: Synthetic schemes of BPy-pTC and BPy-p3C.
Figure 1: (a) Normalized absorption spectra of BPy-pTC and BPy-p3C in toluene at room temperature; (b) normal...
Figure 2: Transient photoluminescence decay (λex = 375 nm) of (a) BPy-pTC and (b) BPy-p3C in degassed THF (10...
Figure 3: AIEE studies: Emission spectra (λex = 375 nm, 10 µM) of (a) BPy-pTC and (d) BPy-p3C in THF with inc...
Figure 4: Normalized fluorescence at room temperature and phosphorescence spectra at 77 K (λex = 375 nm, 10 µ...
Figure 5: Transient photoluminescence decay (λex = 375 nm, 20 µM) of (a) BPy-pTC and (b) BPy-p3C aggregates i...
Figure 6: Fluorescence switching by acid and base fumes exposure: Emission spectra (λex = 375 nm) of (a) BPy-p...
Figure 7: Fluorescence intensity vs number of exposures for (a) BPy-p3C and (b) BPy-pTC thin films upon expos...
Beilstein J. Org. Chem. 2020, 16, 1163–1187, doi:10.3762/bjoc.16.103
Graphical Abstract
Figure 1: Selected examples of organic dyes. Mes-Acr+: 9-mesityl-10-methylacridinium, DCA: 9,10-dicyanoanthra...
Scheme 1: Activation modes in photocatalysis.
Scheme 2: Main strategies for the formation of C(sp3) radicals used in organophotocatalysis.
Scheme 3: Illustrative example for the photocatalytic oxidative generation of radicals from carboxylic acids:...
Scheme 4: Illustrative example for the photocatalytic reductive generation of C(sp3) radicals from redoxactiv...
Figure 2: Common substrates for the photocatalytic oxidative generation of C(sp3) radicals.
Scheme 5: Illustrative example for the photocatalytic oxidative generation of radicals from dihydropyridines ...
Scheme 6: Illustrative example for the photocatalytic oxidative generation of C(sp3) radicals from trifluorob...
Scheme 7: Illustrative example for the photocatalytic reductive generation of C(sp3) radicals from benzylic h...
Scheme 8: Illustrative example for the photocatalytic generation of C(sp3) radicals via direct HAT: the cross...
Scheme 9: Illustrative example for the photocatalytic generation of C(sp3) radicals via indirect HAT: the deu...
Scheme 10: Selected precursors for the generation of aryl radicals using organophotocatalysis.
Scheme 11: Illustrative example for the photocatalytic reductive generation of aryl radicals from aryl diazoni...
Scheme 12: Illustrative examples for the photocatalytic reductive generation of aryl radicals from haloarenes:...
Scheme 13: Illustrative example for the photocatalytic reductive generation of aryl radicals from aryl halides...
Scheme 14: Illustrative example for the photocatalytic reductive generation of aryl radicals from arylsulfonyl...
Scheme 15: Illustrative example for the reductive photocatalytic generation of aryl radicals from triaryl sulf...
Scheme 16: Main strategies towards acyl radicals used in organophotocatalysis.
Scheme 17: Illustrative example for the decarboxylative photocatalytic generation of acyl radicals from α-keto...
Scheme 18: Illustrative example for the oxidative photocatalytic generation of acyl radicals from acyl silanes...
Scheme 19: Illustrative example for the oxidative photocatalytic generation of carbamoyl radicals from 4-carba...
Scheme 20: Illustrative example of the photocatalytic HAT approach for the generation of acyl radicals from al...
Scheme 21: General reactivity of a) radical cations; b) radical anions; c) the main strategies towards aryl an...
Scheme 22: Illustrative example for the oxidative photocatalytic generation of alkene radical cations from alk...
Scheme 23: Illustrative example for the reductive photocatalytic generation of an alkene radical anion from al...
Figure 3: Structure of C–X radical anions and their neutral derivatives.
Scheme 24: Illustrative example for the photocatalytic reduction of imines and the generation of an α-amino C(...
Scheme 25: Illustrative example for the oxidative photocatalytic generation of aryl radical cations from arene...
Scheme 26: NCR classifications and generation.
Scheme 27: Illustrative example for the photocatalytic reductive generation of iminyl radicals from O-aryl oxi...
Scheme 28: Illustrative example for the photocatalytic oxidative generation of iminyl radicals from α-N-oxy ac...
Scheme 29: Illustrative example for the photocatalytic oxidative generation of iminyl radicals via an N–H bond...
Scheme 30: Illustrative example for the photocatalytic oxidative generation of amidyl radicals from Weinreb am...
Scheme 31: Illustrative example for the photocatalytic reductive generation of amidyl radicals from hydroxylam...
Scheme 32: Illustrative example for the photocatalytic reductive generation of amidyl radicals from N-aminopyr...
Scheme 33: Illustrative example for the photocatalytic oxidative generation of amidyl radicals from α-amido-ox...
Scheme 34: Illustrative example for the photocatalytic oxidative generation of aminium radicals: the N-aryltet...
Scheme 35: Illustrative example for the photocatalytic oxidative generation of nitrogen-centered radical catio...
Scheme 36: Illustrative example for the photocatalytic oxidative generation of nitrogen-centered radical catio...
Scheme 37: Illustrative example for the photocatalytic oxidative generation of hydrazonyl radical from hydrazo...
Scheme 38: Generation of O-radicals.
Scheme 39: Illustrative examples for the photocatalytic generation of O-radicals from N-alkoxypyridinium salts...
Scheme 40: Illustrative examples for the photocatalytic generation of O-radicals from alkyl hydroperoxides: th...
Scheme 41: Illustrative example for the oxidative photocatalytic generation of thiyl radicals from thiols: the...
Scheme 42: Main strategies and reagents for the generation of sulfonyl radicals used in organophotocatalysis.
Scheme 43: Illustrative example for the reductive photocatalytic generation of sulfonyl radicals from arylsulf...
Scheme 44: Illustrative example of a Cl atom abstraction strategy for the photocatalytic generation of sulfamo...
Scheme 45: Illustrative example for the oxidative photocatalytic generation of sulfonyl radicals from sulfinic...
Scheme 46: Illustrative example for the photocatalytic generation of electronically excited triplet states: th...
Scheme 47: Illustrative example for the photocatalytic generation of electronically excited triplet states: th...
Beilstein J. Org. Chem. 2019, 15, 2213–2270, doi:10.3762/bjoc.15.218
Graphical Abstract
Scheme 1: The main three strategies of fluorination: nucleophilic, electrophilic and radical fluorination.
Scheme 2: Doyle’s Pd-catalyzed fluorination of allylic chlorides.
Scheme 3: Allylic fluorination of 2- and 3-substituted propenyl esters.
Scheme 4: Regioselective allylic fluorination of cinnamyl phosphorothioate esters.
Scheme 5: Palladium-catalyzed aliphatic C–H fluorination reported by Doyle.
Scheme 6: Pd-catalyzed enantioselective fluorination of α-ketoesters followed by stereoselective reduction to...
Scheme 7: Pd-catalyzed C(sp3)–H fluorination of oxindoles.
Scheme 8: C–H fluorination of 8-methylquinoline derivatives with F− reagents.
Scheme 9: Fluorination of α-cyano acetates reported by van Leeuwen.
Scheme 10: The catalytic enantioselective electrophilic C–H fluorination of α-chloro-β-keto phosphonates.
Scheme 11: Fluorination of unactivated C(sp3)–H bonds directed by the bidentate PIP auxiliary.
Scheme 12: Fluorination of C(sp3)–H bonds at the β-position of carboxylic acids.
Scheme 13: Enantioselective benzylic C–H fluorination with a chiral transient directing group.
Scheme 14: Microwave-heated Pd-catalyzed fluorination of aryl alcohols.
Scheme 15: Fluorination of aryl potassium trifluoroborates.
Scheme 16: C(sp2)–F bond formation using precatalyst [L·Pd]2(cod).
Scheme 17: Pd-catalyzed fluorination of (hetero)aryl triflates and bromides.
Scheme 18: The Pd-catalyzed C–H fluorination of arenes with Selectfluor/NFSI.
Scheme 19: Pd(II)-catalyzed ortho-monofluorination protocol for benzoic acids.
Scheme 20: Pd-catalyzed C(sp2)–H bond fluorination of 2-arylbenzothiazoles.
Scheme 21: Nitrate-promoted fluorination of aromatic and olefinic C(sp2)–H bonds and proposed mechanism.
Scheme 22: Fluorination of oxalyl amide-protected benzylamine derivatives.
Scheme 23: C–H fluorination of benzaldehydes with orthanilic acids as transient directing group.
Scheme 24: Pd(II)-catalyzed aryl C–H fluorination with various directing groups.
Scheme 25: Cu-catalyzed aliphatic, allylic, and benzylic fluorination.
Scheme 26: Cu-catalyzed SN2 fluorination of primary and secondary alkyl bromides.
Scheme 27: Copper-catalyzed fluorination of alkyl triflates.
Scheme 28: Cu-catalyzed fluorination of allylic bromides and chlorides.
Scheme 29: Synthetic strategy for the fluorination of active methylene compounds.
Scheme 30: Fluorination of β-ketoesters using a tartrate-derived bidentate bisoxazoline-Cu(II) complex.
Scheme 31: Highly enantioselective fluorination of β-ketoesters and N-Boc-oxindoles.
Scheme 32: Amide group-assisted site-selective fluorination of α-bromocarbonyl compounds.
Scheme 33: Cu-mediated aryl fluorination reported by Sanford [77].
Scheme 34: Mono- or difluorination reactions of benzoic acid derivatives.
Scheme 35: Cu-catalyzed fluorination of diaryliodonium salts with KF.
Scheme 36: Copper(I)-catalyzed cross-coupling of 2-pyridylaryl bromides.
Scheme 37: AgNO3-catalyzed decarboxylative fluorination of aliphatic carboxylic acids.
Scheme 38: The Mn-catalyzed aliphatic and benzylic C–H fluorination.
Scheme 39: Iron(II)-promoted C–H fluorination of benzylic substrates.
Scheme 40: Ag-catalyzed fluorodecarboxylation of carboxylic acids.
Scheme 41: Vanadium-catalyzed C(sp3)–H fluorination.
Scheme 42: AgNO3-catalyzed radical deboronofluorination of alkylboronates and boronic acids.
Scheme 43: Selective heterobenzylic C–H fluorination with Selectfluor reported by Van Humbeck.
Scheme 44: Fe(II)-catalyzed site-selective fluorination guided by an alkoxyl radical.
Scheme 45: Fluorination of allylic trichloroacetimidates reported by Nguyen et al.
Scheme 46: Iridium-catalyzed fluorination of allylic carbonates with TBAF(t-BuOH)4.
Scheme 47: Iridium-catalyzed asymmetric fluorination of allylic trichloroacetimidates.
Scheme 48: Cobalt-catalyzed α-fluorination of β-ketoesters.
Scheme 49: Nickel-catalyzed α-fluorination of various α-chloro-β-ketoesters.
Scheme 50: Ni(II)-catalyzed enantioselective fluorination of oxindoles and β-ketoesters.
Scheme 51: Scandium(III)-catalyzed asymmetric C–H fluorination of unprotected 3-substituted oxindoles.
Scheme 52: Iron-catalyzed directed C–H fluorination.
Scheme 53: Electrophilic silver-catalyzed Ar–F bond-forming reaction from arylstannanes.
Figure 1: Nucleophilic, electrophilic and radical CF3 sources.
Scheme 54: Cu(I)-catalyzed allylic trifluoromethylation of unactivated terminal olefins.
Scheme 55: Direct copper-catalyzed trifluoromethylation of allylsilanes.
Scheme 56: Cupper-catalyzed enantioselective trifluoromethylation of five and six-membered ring β-ketoesters.
Scheme 57: Cu-catalyzed highly stereoselective trifluoromethylation of secondary propargyl sulfonates.
Scheme 58: Remote C(sp3)–H trifluoromethylation of carboxamides and sulfonamides.
Scheme 59: Trifluoromethylation of allylsilanes with photoredox catalysis.
Scheme 60: Ag-catalyzed decarboxylative trifluoromethylation of aliphatic carboxylic acids in aqueous CH3CN.
Scheme 61: Decarboxylative trifluoromethylation of aliphatic carboxylic acids via combined photoredox and copp...
Scheme 62: Palladium-catalyzed Ar–CF3 bond-forming reaction.
Scheme 63: Palladium-catalyzed trifluoromethylation of arenes with diverse heterocyclic directing groups.
Scheme 64: Pd-catalyzed trifluoromethylation of indoles as reported by Liu.
Scheme 65: Pd-catalyzed trifluoromethylation of vinyl triflates and vinyl nonaflates.
Scheme 66: Pd(II)-catalyzed ortho-trifluoromethylation of aromatic C–H bonds.
Scheme 67: Visible-light-induced Pd(OAc)2-catalyzed ortho-trifluoromethylation of acetanilides with CF3SO2Na.
Scheme 68: CuI-catalyzed trifluoromethylation of aryl- and alkenylboronic acids.
Scheme 69: Cu-catalyzed trifluoromethylation of aryl- and vinylboronic acids.
Scheme 70: Copper-catalyzed trifluoromethylation of α,β-unsaturated carboxylic acids.
Scheme 71: Formation of C(sp2)–CF3 bond catalyzed by copper(I) complex.
Scheme 72: Loh’s Cu(I)-catalyzed trifluoromethylation of enamides and electron-deficient alkenes.
Scheme 73: Copper and iron-catalyzed decarboxylative tri- and difluoromethylation.
Scheme 74: Cu-catalyzed trifluoromethylation of hydrazones developed by Bouyssi.
Scheme 75: Cu(I)-catalyzed trifluoromethylation of terminal alkenes.
Scheme 76: Cu/Ag-catalyzed decarboxylative trifluoromethylation of cinnamic acids.
Scheme 77: Copper-catalyzed direct alkenyl C–H trifluoromethylation.
Scheme 78: Copper(I/II)-catalyzed direct trifluoromethylation of styrene derivatives.
Scheme 79: Regioselective trifluoromethylation of pivalamido arenes and heteroarenes.
Scheme 80: Synthesis of trifluoromethylquinones in the presence of copper(I).
Scheme 81: Oxidative trifluoromethylation of imidazoheterocycles in ionic liquid/water.
Scheme 82: A mild and fast continuous-flow trifluoromethylation of coumarins using a CuI/CF3SO2Na/TBHP system.
Scheme 83: Copper-catalyzed oxidative trifluoromethylation of various 8-aminoquinolines.
Scheme 84: PA-directed copper-catalyzed trifluoromethylation of anilines.
Scheme 85: Trifluoromethylation of potassium vinyltrifluoroborates catalyzed by Fe(II).
Scheme 86: Alkenyl trifluoromethylation catalyzed by Ru(phen)3Cl2 as photocatalyst.
Scheme 87: Ru-catalyzed trifluoromethylation of alkenes by Akita’s group.
Scheme 88: Ir-catalyzed Cvinyl–CF3 bond formation of α,β-unsaturated carboxylic acids.
Scheme 89: Ag(I)-catalyzed denitrative trifluoromethylation of β-nitrostyrenes.
Scheme 90: Photocatalyzed direct trifluoromethylation of aryl and heteroaryl C–H bonds.
Scheme 91: Rhenium (MTO)-catalyzed direct trifluoromethylation of aromatic substrates.
Scheme 92: Trifluoromethylation of unprotected anilines under [Ir(ppy)3] catalyst.
Scheme 93: Oxidative trifluoromethylation of imidazopyridines and imidazoheterocycles.
Scheme 94: Ruthenium-catalyzed trifluoromethylation of (hetero)arenes with trifluoroacetic anhydride.
Scheme 95: Phosphovanadomolybdic acid-catalyzed direct C–H trifluoromethylation.
Scheme 96: Picolinamide-assisted ortho-trifluoromethylation of arylamines.
Scheme 97: A nickel-catalyzed C–H trifluoromethylation of free anilines.
Scheme 98: Cu-mediated trifluoromethylation of terminal alkynes reported by Qing.
Scheme 99: Huang’s C(sp)–H trifluoromethylation using Togni’s reagent.
Scheme 100: Cu-catalyzed methods for trifluoromethylation with Umemoto’s reagent.
Scheme 101: The synthesis of alkynyl-CF3 compounds in the presence of fac-[Ir(ppy)3] under visible-light irradi...
Scheme 102: Pd-catalyzed Heck reaction reported by Reutrakul.
Scheme 103: Difluoromethylation of enamides and ene-carbamates.
Scheme 104: Difluoromethylation of α,β-unsaturated carboxylic acids.
Scheme 105: Copper-catalyzed direct C(sp2)–H difluoroacetylation reported by Pannecoucke and co-workers.
Scheme 106: Difluoroalkylation of aldehyde-derived hydrazones with functionalized difluoromethyl bromides.
Scheme 107: Photoredox-catalyzed C–H difluoroalkylation of aldehyde-derived hydrazones.
Scheme 108: Synergistic ruthenium(II)-catalyzed C–H difluoromethylation reported by Ackermann.
Scheme 109: Visible-light photocatalytic decarboxylation of α,β-unsaturated carboxylic acids.
Scheme 110: Synthesis of difluorinated ketones via S-alkyl dithiocarbamates obtained from acyl chlorides and po...
Scheme 111: Synthesis of aryl and heteroaryl difluoromethylated phosphonates.
Scheme 112: Difluoroalkylation of secondary propargyl sulfonates using Cu as the catalyst.
Scheme 113: Ru(II)-mediated para-selective difluoromethylation of anilides and their derivatives.
Scheme 114: Bulky diamine ligand promoted cross-coupling of difluoroalkyl bromides.
Scheme 115: Copper-catalyzed C3–H difluoroacetylation of quinoxalinones.
Scheme 116: Copper(I) chloride-catalyzed trifluoromethylthiolation of enamines, indoles and β-ketoesters.
Scheme 117: Copper-boxmi-catalyzed asymmetric trifluoromethylthiolation of β-ketoesters.
Scheme 118: Direct Cu-catalyzed trifluoromethylthiolation of boronic acids and alkynes.
Scheme 119: Cu-catalyzed synthesis of α-trifluoromethylthio-substituted ketones.
Scheme 120: Trifluoromethylthiolation reactions promoted by diazotriflone and copper.
Scheme 121: Halide activation of N-(trifluoromethylthio)phthalimide.
Scheme 122: The visible light-promoted trifluoromethylthiolation reported by Glorius.
Scheme 123: Synthesis of α-trifluoromethylthioesters via Goossen’s approach.
Scheme 124: Photoinduced trifluoromethylthiolation of diazonium salts.
Scheme 125: Ag-mediated trifluoromethoxylation of aryl stannanes and arylboronic acids.
Scheme 126: Catalytic (hetero)aryl C–H trifluoromethoxylation under visible light.
Scheme 127: Photoinduced C–H-bond trifluromethoxylation of (hetero)arenes.
Beilstein J. Org. Chem. 2018, 14, 1813–1825, doi:10.3762/bjoc.14.154
Graphical Abstract
Figure 1: The structures of hypervalent iodine (III) reagents [8].
Scheme 1: Hypervalent iodine(III)-catalyzed functionalization of alkenes.
Scheme 2: Catalytic sulfonyloxylactonization of alkenoic acids [43].
Scheme 3: Catalytic diacetoxylation of alkenes [46].
Scheme 4: Intramolecular asymmetric dioxygenation of alkenes [48,50].
Scheme 5: Intermolecular asymmetric diacetoxylation of styrenes [52].
Scheme 6: Diacetoxylation of alkenes with ester groups containing catalysts 17 [55].
Scheme 7: Intramolecular diamination of alkenes [56].
Scheme 8: Intramolecular asymmetric diamination of alkenes [57].
Scheme 9: Intermolecular asymmetric diamination of alkenes [58].
Scheme 10: Iodoarene-catalyzed aminofluorination of alkenes [60,61].
Scheme 11: Iodoarene-catalyzed aminofluorination of alkenes [62].
Scheme 12: Catalytic difluorination of alkenes with Selectfluor [63].
Scheme 13: Iodoarene-catalyzed 1,2-difluorination of alkenes [64].
Scheme 14: Iodoarene-catalyzed asymmetric fluorination of styrenes [64,65].
Scheme 15: Gem-difluorination of styrenes [67].
Scheme 16: Asymmetric gem-difluorination of cinnamic acid derivatives [68].
Scheme 17: Oxyarylation of alkenes [71].
Scheme 18: Asymmetric oxidative rearrangements of alkenes [72].
Scheme 19: Bromolactonization of alkenes [75].
Scheme 20: Bromination of alkenes [77,78].
Scheme 21: Cooperative strategy for the carbonylation of alkenes [79].
Beilstein J. Org. Chem. 2018, 14, 1413–1420, doi:10.3762/bjoc.14.118
Graphical Abstract
Scheme 1: Nucleophilic and π-electrophilic characters of organometallics depending on the central metals.
Scheme 2: Ni/Cr or Co/Cr-catalyzed NHK reaction.
Scheme 3: Functionalization of alkynes via carbocobaltation.
Scheme 4: Cyclization/borylation of alkynyl iodoarenes using the Co/Cr catalyst.
Scheme 5: Three-component coupling of aryl iodides, arenes, and aldehydes using Co/Cr catalyst (this work).
Scheme 6: Screening of aldehydes in the Co/Cr-catalyzed three-component coupling reaction. All yields are det...
Scheme 7: Screening of aryl iodides in the Co/Cr-catalyzed three-component coupling reaction. All yields are ...
Scheme 8: Screening of allenes in the Co/Cr-catalyzed three-component coupling reaction. All yields are deter...
Scheme 9: Reversed diastereoselectivity using allenyl ethers 5 and 6. a4-chlorobenzaldehyde was used instead ...
Scheme 10: Stoichiometric reaction of phenylchromium(II or III) reagents (reaction 1) and the three-component ...
Scheme 11: The origin of the diastereoselectivity in the present three-component coupling.
Scheme 12: Plausible reaction mechanism of the three-component coupling.
Beilstein J. Org. Chem. 2018, 14, 389–396, doi:10.3762/bjoc.14.27
Graphical Abstract
Figure 1: Cyclic voltammograms of 0.1 M Bu4NBF4/MeCN with a Pt disk working electrode in the absence (brown l...
Figure 2: Calculated HOMO diagram of 1a.
Figure 3: Calculated HOMO diagrams of 1h, 1i and 1j.
Scheme 1: Plausible reaction paths of the anodic oxidation of 1i in Et4NF·4HF/CH2Cl2.
Scheme 2: Anodic fluorination of 1k.
Scheme 3: Anodic fluorination of cyclic derivative 1l.
Scheme 4: Anodic oxidation of 1m and 1n in Et4NF·4HF/CH2Cl2.
Scheme 5: General reaction mechanism for the anodic fluorination of 1.
Scheme 6: Reaction mechanism for the anodic oxidation of carboxylic acids 1m and 1n in the presence of a fluo...
Beilstein J. Org. Chem. 2017, 13, 589–611, doi:10.3762/bjoc.13.58
Graphical Abstract
Figure 1: Examples of drugs bearing phenol or aryl thiol as central structural motifs.
Scheme 1: Hydroxylation of aryl halides using biphenylphosphine as ligand.
Scheme 2: Hydroxylation of aryl halides using tert-butylphosphine as ligand.
Scheme 3: Hydroxylation of aryl halides using imidazole typed phosphine ligands.
Scheme 4: [Pd(cod)(CH2SiMe3)2] catalyzed hydroxylation of aryl halides.
Scheme 5: Pd/PANI catalyzed hydroxylation of hydroxylation of aryl halides.
Scheme 6: MCM-41-dzt-Pd catalyzed hydroxylation of aryl halides.
Scheme 7: Hydroxylation of aryl halides using dibenzoylmethane as ligand.
Scheme 8: Hydroxylation of aryl halides using 2,2’-bipyridine as ligand.
Scheme 9: Hydroxylation of aryl bromides using imidazolyl pyridine as ligand.
Scheme 10: Hydroxylation of aryl halides using DMEDA as ligand.
Scheme 11: Hydroxylation of aryl halides using PAO as ligand.
Scheme 12: Hydroxylation of aryl halides using D-glucose as ligand.
Scheme 13: Hydroxylation of aryl halides using INDION-770 as ligand.
Scheme 14: PEG-400 mediated hydroxylation of aryl halides.
Scheme 15: Hydroxylation of aryl halides using glycolic acid as ligand.
Scheme 16: Hydroxylation of aryl halides using L-sodium ascorbate as ligand.
Scheme 17: Difunctionalized ethanes mediated hydroxylation of aryl iodides.
Scheme 18: Hydroxylation of aryl halides using 2-methyl-8-hydroxylquinoline as ligand.
Scheme 19: Hydroxylation of aryl halides using 8-hydroxyquinolin-N-oxide as ligand.
Scheme 20: Hydroxylation of aryl halides using lithium pipecolinate as ligand.
Scheme 21: Hydroxylation of aryl halides using L-lithium prolinate.
Scheme 22: Hydroxylation of aryl halides using triethanolamine as ligand.
Scheme 23: CuI-nanoparticle-catalyzed hydroxylation of aryl halides.
Scheme 24: Cu-g-C3N4-catalyzed hydroxylation of aryl bromides.
Scheme 25: Cu(OAc)2-mediated hydroxylation of (2-pyridyl)arenes.
Scheme 26: Removable pyridine moiety directed hydroxylation of arenes.
Scheme 27: Removable quinoline moiety directed hydroxylation of arenes.
Scheme 28: CuCl2 catalyzed hydroxylation of benzimidazoles and benzoxazoles.
Scheme 29: Disulfide-directed C–H hydroxylation.
Scheme 30: Pd(OAc)2-catalyzed hydroxylation of diarylpyridines.
Scheme 31: PdCl2-catalyzed hydroxylation of 2-arylpyridines.
Scheme 32: PdCl2-catalyzed hydroxylation of 2-arylpyridines.
Scheme 33: Pd(OAc)2-catalyzed hydroxylation of 2-arylpyridines.
Scheme 34: Pd(CH3CN)2Cl2-catalyzed hydroxylation of 2-arylpyridines.
Scheme 35: Pd(OAc)2-catalyzed hydroxylation of benzothiazolylarenes.
Scheme 36: Pd(OAc)2 catalyzed hydroxylation of benzimidazolylarenes.
Scheme 37: Dioxane mediated hydroxylation of 2-heteroarylarenes.
Scheme 38: Hydroxylation of oxime methyl ester.
Scheme 39: CN-directed meta-hydroxylation.
Scheme 40: Pd(OAc)2-catalyzed hydroxylation of benzoic acids.
Scheme 41: Pd(OAc)2-catalyzed hydroxylation of biaryl or aryl alkyl ketones.
Scheme 42: Pd(OAc)2 and Pd(TFA)2 catalyzed hydroxylation of aryl ketones.
Scheme 43: Pd(OAc)2 catalyzed hydroxylation of aryl ketones.
Scheme 44: Pd(TFA)2-catalyzed hydroxylation of aryl phosphonates.
Scheme 45: Hydroxy group directed hydroxylation.
Scheme 46: [Ru(O2CMes)2(p-cymene)] catalyzed hydroxylation of benzamides and aryl ketones.
Scheme 47: [RuCl2(p-cymene)]2-catalyzed hydroxylation of benzamides and carbamates.
Scheme 48: [RuCl2(p-cymene)]2 catalyzed hydroxylation of benzaldehydes.
Scheme 49: [RuCl2(p-cymene)]2 catalyzed hydroxylation of ethyl benzoates, benzamides and carbamates.
Scheme 50: Different regioselective ortho-hydroxylation.
Scheme 51: Ruthenium-complex-catalyzed hydroxylation of flavones.
Scheme 52: Vanadium-catalyzed hydroxylation of arenes.
Scheme 53: VOSiW-catalyzed hydroxylation of arenes.
Scheme 54: Synthesis of aryl thiols using thiourea as thiol source.
Scheme 55: Synthesis of aryl thiols using alkyl thiol as thiol source.
Scheme 56: Synthesis of 1-thionaphthol using HS-TIPS as thiol source.
Scheme 57: Synthesis of aryl thiols using sodium thiosulfate as thiol source.
Scheme 58: Synthesis of thiophenol using thiobenzoic acid as thiol source.
Scheme 59: Synthesis of aryl thiols using sulfur powder as thiol source.
Scheme 60: CuI-nanoparticles catalyzed synthesis of aryl thiols.
Scheme 61: Synthesis of aryl thiols using Na2S·5H2O as thiol source.
Scheme 62: Synthesis of aryl thiols using 1,2-ethanedithiol as thiol source.
Beilstein J. Org. Chem. 2015, 11, 2600–2615, doi:10.3762/bjoc.11.280
Graphical Abstract
Scheme 1: Copper-catalyzed asymmetric preparation of biaryl diacids by Ullmann coupling.
Scheme 2: Intramolecular biaryl coupling of bis(iodotrimethoxybenzoyl)hexopyranose derivatives.
Scheme 3: Preparation of 3,3’-disubstituted MeO-BIPHEP derivatives.
Scheme 4: Enantioselective synthesis of trans-4,5,9,10-tetrahydroxy-9,10-dihydrophenanthrene.
Scheme 5: Copper-catalyzed coupling of oxazoline-substituted aromatics to afford biaryl products with high di...
Scheme 6: Total synthesis of O-permethyl-tellimagrandin I.
Scheme 7: Total synthesis of (+)-gossypol.
Scheme 8: Total synthesis of (−)-mastigophorene A.
Scheme 9: Total synthesis of isokotanin.
Scheme 10: Synthesis of dimethyl[7]thiaheterohelicenes.
Scheme 11: Intramolecular coupling with chiral ortho-substituents.
Scheme 12: Chiral 1,3-diol-derived tethers in the diastereoselective synthesis of biaryl compounds.
Scheme 13: Synthesis of chiral unsymmetrically substituted biaryl compounds.
Scheme 14: Atroposelective synthesis of biaryl ligands and natural products by using a chiral diether linker.
Scheme 15: Enantioselective arylation reactions of 2-methylacetoacetates.
Scheme 16: Asymmetric aryl C–N coupling reactions following a desymmetrization strategy.
Scheme 17: Construction of cyano-bearing all-carbon quaternary stereocenters.
Scheme 18: An unexpected inversion of the enantioselectivity in the asymmetric C–N coupling reactions using ch...
Scheme 19: Differentiation of two nucleophilic amide groups.
Scheme 20: Synthesis of spirobilactams through a double N-arylation reaction.
Scheme 21: Asymmetric N-arylation through kinetic resolution.
Scheme 22: Formation of cyano-substituted quaternary stereocenters through kinetic resolution.
Scheme 23: Copper-catalyzed intramolecular desymmetric aryl C–O coupling.
Scheme 24: Transition metal-catalyzed allylic substitutions.
Scheme 25: Copper-catalyzed asymmetric allylic substitution of allyl phosphates.
Scheme 26: Allylic substitution of allyl phosphates with allenylboronates.
Scheme 27: Allylic substitution of allyl phosphates with vinylboron.
Scheme 28: Allylic substitution of allyl phosphates with vinylboron.
Scheme 29: Construction of quaternary stereogenic carbon centers through enantioselective allylic cross-coupli...
Scheme 30: Cu-catalyzed enantioselective allyl–allyl cross-coupling.
Scheme 31: Cu-catalyzed enantioselective allylic substitutions with silylboronates.
Scheme 32: Asymmetric allylic substitution of allyl phosphates with silylboronates.
Scheme 33: Stereoconvergent synthesis of chiral allylboronates.
Scheme 34: Enantioselective allylic substitutions with diboronates.
Scheme 35: Enantioselective allylic alkylations of terminal alkynes.
Beilstein J. Org. Chem. 2015, 11, 1767–1780, doi:10.3762/bjoc.11.192
Graphical Abstract
Scheme 1: Mechanism of the olefin metathesis.
Scheme 2: Possible side or bottom mechanism of the insertion of the olefin.
Scheme 3: Ruthenium catalysts, bottom-bound (a) or side-bound (b and c).
Scheme 4: Studied systems.
Figure 1: a) Naked 14e species for system 9 (distance in Å). b) trans (T); c) cis(S) (C(S)); and d) cis(O) (C...
Figure 2: Coordinated species for species a) 13a and b) 13b.
Figure 3: Naked 14e species for system 14 with the O atom of the substrate coordinated to the Ru center (dist...
Figure 4: System 9 with a Ru…F interaction in the cis and trans geometries, parts a and b, respectively (dist...
Figure 5: Representative geometries of the metallacycles 7 and 15, parts a and b, respectively (distance in Å...
Figure 6: Energy profiles for systems 1 and 14.
Figure 7: Energy profiles for systems 7 and 16.
Figure 8: Metallocycle and cyclopropane formation energy profile (energies in kcal/mol).
Beilstein J. Org. Chem. 2015, 11, 1475–1485, doi:10.3762/bjoc.11.160
Graphical Abstract
Figure 1: Substrates involved in deproto-metallation reaction.
Figure 2: ORTEP diagram (30% probability) of 2e.
Scheme 1: Synthesis of the azole substrates 1f and 2f.
Scheme 2: Deproto-metallation of 1c followed by iodolysis [33].
Scheme 3: Deproto-metallation of 1a and 2a followed by iodolysis.
Scheme 4: Deproto-metallation of 1b and 2b followed by iodolysis.
Scheme 5: Deproto-metallation of 1c and 2c followed by iodolysis.
Figure 3: ORTEP diagrams (30% probability) of 4c, 3d and 3e.
Scheme 6: Deproto-metallation of 1d and 2d followed by iodolysis.
Scheme 7: Deproto-metallation of 1e and 2e followed by iodolysis.
Scheme 8: N-arylation of the iodides 3b, 3d and 4d.
Figure 4: ORTEP diagram (30% probability) of 5d.
Figure 5: Calculated values of pKa(THF) of the compounds 1 and 2, and bromobenzene.
Figure 6: Antiproliferative activity (growth inhibition) of the tested compounds 1a,b,e,f, 2a,b and 5d at con...
Figure 7: Iodides previously formed as major products from the corresponding N-(4-methoxyphenyl)azoles using ...
Beilstein J. Org. Chem. 2015, 11, 85–91, doi:10.3762/bjoc.11.12
Graphical Abstract
Scheme 1: Anodic fluorination of sulfides having an electron-withdrawing group.
Scheme 2: Anodic fluorination of dithioacetals.
Figure 1: Dependency of fluorinated product selectivity on a series of fluoride salts (a) Et3N·nHF (n = 3–5) ...
Scheme 3: Plausible reaction mechanism for anodic fluorination of 1b, 1d, and 1f.
Scheme 4: Mechanism for suppression of the elimination of HF (deprotonation) and preferable desulfurization o...
Beilstein J. Org. Chem. 2014, 10, 1462–1470, doi:10.3762/bjoc.10.150
Graphical Abstract
Figure 1: Bioactive molecules I [19], II [26], III & IV [21,22] with 3(2H)-furanone moiety.
Scheme 1: Pd-catalyzed synthesis of 3(2H)-furanones from activated alkenes [40].
Scheme 2: Pd-catalyzed synthesis of 3(2H)-furanone from tosylimine 1a.
Figure 2: Generalisation with aromatic and aliphatic imines (reaction conditions: 1 (1.0 equiv), 2 (1.1 equiv...
Figure 3: Thermal ellipsoid diagrams (50% probability levels) of 4-substituted-3(2H)-furanones 7 (above) and ...
Scheme 3: Mechanism of formation of the 3(2H)-furanone derivative from an imine.
Scheme 4: Pd-catalyzed synthesis of 3(2H)-furanone from diazoester 19a.
Figure 4: Generalisation with diazo esters (reaction conditions: 19 (1.0 equiv), 2 (1.1 equiv), Pd(PPh3)4 (5 ...
Scheme 5: Synthesis of aza-prostaglandin analogue.