Search results

Search for "hydrazone" in Full Text gives 86 result(s) in Beilstein Journal of Organic Chemistry.

Effect of substitution position of aryl groups on the thermal back reactivity of aza-diarylethene photoswitches and prediction by density functional theory

  • Misato Suganuma,
  • Daichi Kitagawa,
  • Shota Hamatani and
  • Seiya Kobatake

Beilstein J. Org. Chem. 2025, 21, 242–252, doi:10.3762/bjoc.21.16

Graphical Abstract
  • replacing the rotor pyridyl group of a hydrazone switch with a phenyl group afforded long-lived negative photochromic compounds [49]. In addition, Hecht and co-workers reported that the thermal stability of indigos can be tuned by N-functionalization [50][51]. They revealed that the introduction of electron
PDF
Album
Supp Info
Full Research Paper
Published 31 Jan 2025

Cu(OTf)2-catalyzed multicomponent reactions

  • Sara Colombo,
  • Camilla Loro,
  • Egle M. Beccalli,
  • Gianluigi Broggini and
  • Marta Papis

Beilstein J. Org. Chem. 2025, 21, 122–145, doi:10.3762/bjoc.21.7

Graphical Abstract
  • begins with a nucleophilic attack of hydrazine on the aldehyde, activated by the copper salt, to give the corresponding hydrazone XXVIII. Subsequently, the formation of a Mannich-type intermediate XXIX was hypothesized by interaction between the hydrazone and the alkene mediated by Cu(OTf)2 coordination
PDF
Album
Review
Published 14 Jan 2025

Non-covalent organocatalyzed enantioselective cyclization reactions of α,β-unsaturated imines

  • Sergio Torres-Oya and
  • Mercedes Zurro

Beilstein J. Org. Chem. 2024, 20, 3221–3255, doi:10.3762/bjoc.20.268

Graphical Abstract
  • hydrazone intermediate A is formed, which tautomerizes to the enamine B. Finally, this intermediate undergoes an intramolecular cyclization to yield the desired product. Besides, to show the synthetic applicability of the pyrroloindoline derivatives, various transformations were performed (Scheme 21
PDF
Album
Review
Published 10 Dec 2024

C–H Trifluoromethylthiolation of aldehyde hydrazones

  • Victor Levet,
  • Balu Ramesh,
  • Congyang Wang and
  • Tatiana Besset

Beilstein J. Org. Chem. 2024, 20, 2883–2890, doi:10.3762/bjoc.20.242

Graphical Abstract
  • towards trifluoromethylthiolated hydrazones will be the direct C–H functionalization of the corresponding aldehyde hydrazone, an uncharted transformation to date. Forging a C–S bond by the direct C–H-bond functionalization of hydrazones is still underdeveloped. Except for transformations leading to the
  • . developed a method to access thiocyanated derivatives including an aldehyde hydrazone (a unique example) in 70% yield thanks to the in situ generation of SCN-succinimide from NCS and NH4SCN (Scheme 1) [67]. In the same vein, the group of Monteiro [68], then Hajra [69], independently, reported the synthesis
  • this context, a unique example of the thiocyanation of a hydrazone was depicted [71]. A key feature of the approach is to circumvent the need for external oxidants. In the same vein, the group of Hajra [72] and Yang [73], independently, investigated the electrochemical C–H sulfonylation of a library of
PDF
Album
Supp Info
Full Research Paper
Published 12 Nov 2024

Asymmetric organocatalytic synthesis of chiral homoallylic amines

  • Nikolay S. Kondratyev and
  • Andrei V. Malkov

Beilstein J. Org. Chem. 2024, 20, 2349–2377, doi:10.3762/bjoc.20.201

Graphical Abstract
  • -diaminonaphthalene derivatives 42, which after hydrolysis and extraction into toluene, were reacted with indole, 3-methylindole, 3,4-dihydroisoquinoline, and benzoyl hydrazone ethyl glyoxylate ester to afford terminal (E)-trifluoromethyl homoallylic amines 44 with up to 3 adjacent stereocentres with high to
PDF
Album
Review
Published 16 Sep 2024

Multicomponent syntheses of pyrazoles via (3 + 2)-cyclocondensation and (3 + 2)-cycloaddition key steps

  • Ignaz Betcke,
  • Alissa C. Götzinger,
  • Maryna M. Kornet and
  • Thomas J. J. Müller

Beilstein J. Org. Chem. 2024, 20, 2024–2077, doi:10.3762/bjoc.20.178

Graphical Abstract
  • formate (Scheme 8) [58]. Upon reaction with β-ketoesters, hydrazone 30 is formed, which reacts via intramolecular Knoevenagel condensation to give the corresponding pyrazoles 27. The method tolerates β-ketoesters with alkyl substituents and various ketoamides. In addition, an example could be synthesized
  • intermediary ketenimine 162. The latter undergoes cyclization with elimination to form the corresponding pyrazoles 160 in a one-pot fashion (Scheme 54) [160]. The reaction can be extended by synthesizing hydrazone carboxamides in situ from hydrazine and isocyanates [161]. An unusual modification of alkynones
PDF
Album
Review
Published 16 Aug 2024

Harnessing the versatility of hydrazones through electrosynthetic oxidative transformations

  • Aurélie Claraz

Beilstein J. Org. Chem. 2024, 20, 1988–2004, doi:10.3762/bjoc.20.175

Graphical Abstract
  • access to diazo compounds as either synthetic intermediates or products. A special attention is paid to the reaction mechanism with the aim to encourage further development in this field. Keywords: C–H functionalization; diazo compound; electrosynthesis; hydrazone; nitrogen-containing heterocycle
  • hydrazones initiated with the SET anodic oxidation of the hydrazone and deprotonation to form the N-centered radical 10. After aza-cyclization on the aromatic ring, a second SET oxidation and deprotonation delivered the heterocycle 9. This mechanism was supported by cyclic voltammetry analysis of a model
  • one, which is consistent with the finding of ketone side-product. In 2018, the group of Zhang established an intramolecular C(sp2)–H functionalization of aldehyde-derived N-(2-pyridinyl)hydrazones 15 to produce 1,2,4-triazolo[4,3-a]pyridines 16 (Scheme 4) [39]. Interestingly, the hydrazone was in situ
PDF
Album
Review
Published 14 Aug 2024

Syntheses and medicinal chemistry of spiro heterocyclic steroids

  • Laura L. Romero-Hernández,
  • Ana Isabel Ahuja-Casarín,
  • Penélope Merino-Montiel,
  • Sara Montiel-Smith,
  • José Luis Vega-Báez and
  • Jesús Sandoval-Ramírez

Beilstein J. Org. Chem. 2024, 20, 1713–1745, doi:10.3762/bjoc.20.152

Graphical Abstract
  • reaction on 16β,17β-epoxypregnenolone (156), synthesized via a four-step process from 16-dehydropregnenolone acetate (155) [65]. Initially, the nucleophilic ring opening of the oxirane with substituted oxamic acid thiohydrazides led to a non-isolated intermediate hydrazone ii. Since both NH and SH are
PDF
Album
Review
Published 24 Jul 2024

Challenge N- versus O-six-membered annulation: FeCl3-catalyzed synthesis of heterocyclic N,O-aminals

  • Giacomo Mari,
  • Lucia De Crescentini,
  • Gianfranco Favi,
  • Fabio Mantellini,
  • Diego Olivieri and
  • Stefania Santeusanio

Beilstein J. Org. Chem. 2024, 20, 1412–1420, doi:10.3762/bjoc.20.123

Graphical Abstract
  • keto function of the hydrazone moiety and the open-chain hemiacetal or aldehyde hydrate in Brønsted acid medium to access 1H-imidazo[5,1-c][1,4]oxazine derivatives (Scheme 1) [21]. Considering that the hydrazone function at C-4 of 4a–r may exist in a tautomeric equilibrium with the corresponding ene
  • , promoting, via hydrazone–enamine tautomerization [17][24][25], the nucleophilic addition which concludes with the construction of the heterocyclic N,O-aminal 5 through the intramolecular N–C bond formation. The FeCl3 can also interact with the newly formed N,O-aminals 5, giving rise to the second parallel
PDF
Album
Supp Info
Full Research Paper
Published 26 Jun 2024

Synthesis of 1,2,3-triazoles containing an allomaltol moiety from substituted pyrano[2,3-d]isoxazolones via base-promoted Boulton–Katritzky rearrangement

  • Constantine V. Milyutin,
  • Andrey N. Komogortsev and
  • Boris V. Lichitsky

Beilstein J. Org. Chem. 2024, 20, 1334–1340, doi:10.3762/bjoc.20.117

Graphical Abstract
  • to the considered rearrangement of isoxazoles containing an hydrazone unit. In this case the studied process results in formation of corresponding 1,2,3-triazoles with carbonyl moiety (Scheme 1a) [16][17][18][19]. Despite the wide variety of described recyclizations of this type for diverse
  • obtained in three steps from allomaltol by a previously described method [27][28] Earlier, we have shown that hydrazone 3a can be synthesized by reaction of compound 1a with phenylhydrazine (5) in ethanol using a catalytic amount of p-TsOH (Scheme 2). Next, we supposed that hydrochlorides of arylhydrazines
  • can be used as starting materials in the studied condensation. We tested this hypothesis using the interaction of ketone 1b and phenylhydrazine hydrochloride (2a). It was shown that reflux of the starting compounds in ethanol for 1 h leads to the target hydrazone 3b in 64% yield (Scheme 3). It should
PDF
Album
Supp Info
Full Research Paper
Published 11 Jun 2024

Mild and efficient synthesis and base-promoted rearrangement of novel isoxazolo[4,5-b]pyridines

  • Vladislav V. Nikol’skiy,
  • Mikhail E. Minyaev,
  • Maxim A. Bastrakov and
  • Alexey M. Starosotnikov

Beilstein J. Org. Chem. 2024, 20, 1069–1075, doi:10.3762/bjoc.20.94

Graphical Abstract
  • isoxazolo[4,5-b]pyridines 12 were obtained in pure form, however, cyclization of hydrazone 11a provided an inseparable mixture of two compounds which could be attributed to the target isoxazolo[4,5-b]pyridine 12a and triazole 13a formed as a result of Boulton–Katritzky rearrangement (Scheme 5). When this
  • similar rearrangement of the other arylhydrazones 12b–h strongly depends on the aryl substituent. Indeed, the 2,4-dinitrophenylhydrazones 12b,e, and h did not undergo recyclization even under drastic conditions, apparently due to a low nucleophilicity of the hydrazone anion (Table 1, entries 2, 5, and 8
PDF
Album
Supp Info
Full Research Paper
Published 14 May 2024

Confirmation of the stereochemistry of spiroviolene

  • Yao Kong,
  • Yuanning Liu,
  • Kaibiao Wang,
  • Tao Wang,
  • Chen Wang,
  • Ben Ai,
  • Hongli Jia,
  • Guohui Pan,
  • Min Yin and
  • Zhengren Xu

Beilstein J. Org. Chem. 2024, 20, 852–858, doi:10.3762/bjoc.20.77

Graphical Abstract
  • Abstract We confirm the previously revised stereochemistry of spiroviolene by X-ray crystallographically characterizing a hydrazone derivative of 9-oxospiroviolane, which is synthesized by hydroboration/oxidation of spiroviolene followed by oxidation of the resultant hydroxy group. An unexpected thermal
  • stereochemistry by X-ray crystallography using a hydrazone derivative of 1. Results and Discussion Our work commenced with the heterologous production of spiroviolene by E. coli using a recently developed isopentenol utilization pathway for the efficient supply of two C5 precursors for terpene biosynthesis
  • organoborane intermediate, which was formed by elimination of BH3 from IM-16 followed by re-addition of BH3 from the opposite β-face to the proposed C8–C9 double bond intermediate, would also be possible. To further advance the intermediate to crystalline hydrazone product (Scheme 2B), we have found that both
PDF
Album
Supp Info
Letter
Published 18 Apr 2024

Switchable molecular tweezers: design and applications

  • Pablo Msellem,
  • Maksym Dekthiarenko,
  • Nihal Hadj Seyd and
  • Guillaume Vives

Beilstein J. Org. Chem. 2024, 20, 504–539, doi:10.3762/bjoc.20.45

Graphical Abstract
  • that binds to the OH groups instead of the pyrimidine nitrogen atoms. The group of Aprahamian has developed hydrazone-based molecular switches that can be controlled by photochemical or chemical stimuli such as pH [27]. They reported mesogenic tweezers-like compound 5 composed of a hydrazone switch
  • substituted by two mesogenic cholesteryl groups (Figure 6) [28]. Due to strong hydrogen bonding between the pyridyl moiety and the N–H of the hydrazone, tweezers 5 predominantly exist in the closed E-form in a CD2Cl2 solution (E/Z-isomer ratio of 91:9). Upon protonation of the pyridyl group, a complete
  • host–guest complexation, it can also only bind to coordinating guests (terpyridine, bipyridine) due to the proximity of the coordination sphere with the binding pocket. Tweezers 11 with NDI arms and an extended pyridine-hydrazone-pyridine-hydrazone-pyridine switchable unit have thus been developed
PDF
Album
Review
Published 01 Mar 2024

(E,Z)-1,1,1,4,4,4-Hexafluorobut-2-enes: hydrofluoroolefins halogenation/dehydrohalogenation cascade to reach new fluorinated allene

  • Nataliia V. Kirij,
  • Andrey A. Filatov,
  • Yurii L. Yagupolskii,
  • Sheng Peng and
  • Lee Sprague

Beilstein J. Org. Chem. 2024, 20, 452–459, doi:10.3762/bjoc.20.40

Graphical Abstract
  • -hexafluorobut-2-ene and an oxalamide hydrazone [17]. In the present study, we investigated the reactions of commercially available butenes 1a,b with halogens, as well as subsequent transformations of the resulting compounds. Results and Discussion In 1952 Haszeldine found that the reaction of bromine with (E
PDF
Album
Supp Info
Full Research Paper
Published 27 Feb 2024

Synthesis of spiropyridazine-benzosultams by the [4 + 2] annulation reaction of 3-substituted benzoisothiazole 1,1-dioxides with 1,2-diaza-1,3-dienes

  • Wenqing Hao,
  • Long Wang,
  • Jinlei Zhang,
  • Dawei Teng and
  • Guorui Cao

Beilstein J. Org. Chem. 2024, 20, 280–286, doi:10.3762/bjoc.20.29

Graphical Abstract
  • benzoisothiazole 1,1-dioxides with 1,2-diaza-1,3-dienes (Scheme 1). Results and Discussion To initiate our studies, 3-ethylbenzo[d]isothiazole 1,1-dioxide (1a) and α-halogeno hydrazone 2a were selected as the model substrates. Our aim was to explore the possibility of enamine–iminium tautomerism of N-sulfonyl
  • reaction of 3-ethylbenzo[d]isothiazole 1,1-dioxide (1a, 1.0 g) and α-halogeno hydrazone 2a (2.1 g) afforded 3aa (2.0 g) in 91% yield (Scheme 3) [34]. Finally, we focused on the transformation of 3aa. When 3aa was treated with KOH and H2O in methanol at 60 °C, the 3,3-disubsitituted-1,2-benzothiazin-4-one
PDF
Album
Supp Info
Full Research Paper
Published 14 Feb 2024

Unprecedented synthesis of a 14-membered hexaazamacrocycle

  • Anastasia A. Fesenko and
  • Anatoly D. Shutalev

Beilstein J. Org. Chem. 2023, 19, 1728–1740, doi:10.3762/bjoc.19.126

Graphical Abstract
  • the starting material. This compound was prepared according to the described regioselective method [42] based on the reaction of malononitrile with triethyl orthoformate followed by subsequent treatment of the obtained dinitrile 2 with benzaldehyde methyl hydrazone in benzene, conc. aqueous HCl in
PDF
Album
Supp Info
Full Research Paper
Published 15 Nov 2023

Effects of the aldehyde-derived ring substituent on the properties of two new bioinspired trimethoxybenzoylhydrazones: methyl vs nitro groups

  • Dayanne Martins,
  • Roberta Lamosa,
  • Talis Uelisson da Silva,
  • Carolina B. P. Ligiero,
  • Sérgio de Paula Machado,
  • Daphne S. Cukierman and
  • Nicolás A. Rey

Beilstein J. Org. Chem. 2023, 19, 1713–1727, doi:10.3762/bjoc.19.125

Graphical Abstract
  • studied and reported biological properties of this class [2][18][19][20]. Angelova and co-workers, for example, reported the ability of sulfonyl hydrazones and 4-methyl-1,2,3-thiadiazole-based hydrazone derivatives to inhibit the growth of several bacterial strains by interfering with their metabolism or
  • ][35][36]. Our lead compound INHHQ (or 8-hydroxyquinoline-2-carboxaldehyde isonicotinoyl hydrazone) has been successfully tested in the prevention of short- and long-term memory deficits in a mice model of sporadic AD [33]. Additionally, INHHQ decreases copper-mediated production of reactive oxygen
  • proved the promising anti-PD and metallophoric effect, especially towards intracellularly relevant copper(I) ions, of X1INH (1-methyl-1H-imidazole-2-carboxaldehyde isonicotinoyl hydrazone) [32]. This year, we evaluated the effects of the presence of three methoxy substituents in an N-acylhydrazone
PDF
Album
Supp Info
Full Research Paper
Published 10 Nov 2023

Light-responsive rotaxane-based materials: inducing motion in the solid state

  • Adrian Saura-Sanmartin

Beilstein J. Org. Chem. 2023, 19, 873–880, doi:10.3762/bjoc.19.64

Graphical Abstract
  • of different templates [64][65][66][67][68][69]. The use of pyridyl-acyl hydrazone rotaxanes in the construction of light-responsive interlocked materials is envisioned as a promising approach to circumvent both issues, since these interlocked molecules are obtained in high yields (over 80%) and show
PDF
Album
Perspective
Published 14 Jun 2023

Pyridine C(sp2)–H bond functionalization under transition-metal and rare earth metal catalysis

  • Haritha Sindhe,
  • Malladi Mounika Reddy,
  • Karthikeyan Rajkumar,
  • Akshay Kamble,
  • Amardeep Singh,
  • Anand Kumar and
  • Satyasheel Sharma

Beilstein J. Org. Chem. 2023, 19, 820–863, doi:10.3762/bjoc.19.62

Graphical Abstract
  • and the base the initial direct C–H activation of the ylide 12 gives the copper pyridinium ylide 15. The latter reacts with the diazo compound formed through reaction of hydrazone 13 with the base to give the copper–carbene species 16. Then, the intermediate 16 undergoes a Cu–carbene migratory
PDF
Album
Review
Published 12 Jun 2023

Computational studies of Brønsted acid-catalyzed transannular cycloadditions of cycloalkenone hydrazones

  • Manuel Pedrón,
  • Jana Sendra,
  • Irene Ginés,
  • Tomás Tejero,
  • Jose L. Vicario and
  • Pedro Merino

Beilstein J. Org. Chem. 2023, 19, 477–486, doi:10.3762/bjoc.19.37

Graphical Abstract
  • experimentally. In this work, we present our results on the computational study of the transannular reaction illustrated in Scheme 1 for several nonsymmetric tether combinations between the hydrazone and double bond moieties leading to a sort of condensed cyclohexanes (series a–f) and other bicyclic systems
  • common reaction conditions. The reaction has been defined by Houk and Rueping as a (3+ + 2) monopolar cycloaddition [33] pointing out the protonated state of the imino nitrogen of the hydrazone in contrast to the well-known 1,3-dipolar cycloaddition of azomethine imines in which the terminal nitrogen has
  • a negative charge. While both reacting C–N–N systems fulfil the requirements to give a cycloaddition with an alkene; which are (i) electron density default on the carbon atom and (ii) an electron density excess on the nitrogen atom; the overall positive charge of the hydrazone moiety forces a role
PDF
Album
Supp Info
Full Research Paper
Published 20 Apr 2023

Practical synthesis of isocoumarins via Rh(III)-catalyzed C–H activation/annulation cascade

  • Qian-Ci Gao,
  • Yi-Fei Li,
  • Jun Xuan and
  • Xiao-Qiang Hu

Beilstein J. Org. Chem. 2023, 19, 100–106, doi:10.3762/bjoc.19.10

Graphical Abstract
  • , the reaction of the isocoumarin 3ia with p-toluenesulfonyl hydrazide proceeded smoothly to deliver hydrazone 5 in 66% yield (Scheme 4b, right). Of note, oxime and hydrazone compounds are versatile synthetic building blocks, which have been widely applied in transition-metal-catalyzed cross-coupling
PDF
Album
Supp Info
Letter
Published 30 Jan 2023

1,4,6,10-Tetraazaadamantanes (TAADs) with N-amino groups: synthesis and formation of boron chelates and host–guest complexes

  • Artem N. Semakin,
  • Ivan S. Golovanov,
  • Yulia V. Nelyubina and
  • Alexey Yu. Sukhorukov

Beilstein J. Org. Chem. 2022, 18, 1424–1434, doi:10.3762/bjoc.18.148

Graphical Abstract
  • hydrazone groups. The use of N-TAAD derivatives as potential ligands and receptors was showcased through forming boron chelates and host–guest complexes with water and simple alcohols. Keywords: azaadamantanes; cyclotrimerization; hydrazones; inclusion complexes; molecular recognition; Introduction
  • cyclization of the corresponding tris-hydrazones, as well as the assembly of unsymmetrically substituted TAADs having both amino(amido) and hydroxy groups at bridge nitrogen atoms (2N,1O-TAADs and 1N,2O-TAADs) via a hitherto unknown co-trimerization of oxime and hydrazone units [35]. Also, structural studies
  • -oxime form 1). Previous experimental and computational data evidence that cyclotrimerization of hydrazone groups proceeds more readily compared to oximes [18]. Hence, hydrazones 3 were expected to cyclize to corresponding TAADs 4 with high efficiency. On the other hand, cyclization of mixed oxime
PDF
Album
Supp Info
Full Research Paper
Published 11 Oct 2022

Polymer and small molecule mechanochemistry: closer than ever

  • José G. Hernández

Beilstein J. Org. Chem. 2022, 18, 1225–1235, doi:10.3762/bjoc.18.128

Graphical Abstract
  • for the fullerenes to pass through. However, the capsule 5 is sensitive to mechanochemical stress due to the porosity, conformational rigidity, and due to the presence of hydrazone and/or disulfide moieties that act as mechanophores. Therefore, during ball milling, 5 gets partially disintegrated at
PDF
Album
Perspective
Published 14 Sep 2022

Synthesis of N-phenyl- and N-thiazolyl-1H-indazoles by copper-catalyzed intramolecular N-arylation of ortho-chlorinated arylhydrazones

  • Yara Cristina Marchioro Barbosa,
  • Guilherme Caneppele Paveglio,
  • Claudio Martin Pereira de Pereira,
  • Sidnei Moura,
  • Cristiane Storck Schwalm,
  • Gleison Antonio Casagrande and
  • Lucas Pizzuti

Beilstein J. Org. Chem. 2022, 18, 1079–1087, doi:10.3762/bjoc.18.110

Graphical Abstract
  • show the presence of the product 2a, but it showed the presence of 91% of the starting hydrazone (Table 1, entry 8). To evaluate the effect of the base, K3PO4 or Cs2CO3 was used, but the yield was lower than 60% (Table 1, entries 9 and 10). The influence of the catalyst/ligand molar ratio (Table 1
  • (Scheme 1). In the 1H NMR spectrum of the crude reaction mixture, only 3% of the desired product 2a was detected, together with an undefined amount of the intermediate hydrazone 1a (Figures S5 and S6, Supporting Information File 1). Next, the most effective conditions as determined from the optimization
  • signal at 8.21 ppm and the hydrazone triplet at 6.89 ppm, respectively, vs the integral value of the calibration compound singlet at 6.46 ppm (see Supporting Information File 1). HRMS spectra were acquired on a hybrid high-resolution and high-accuracy microTof (Q-TOF, Bruker Scientific) spectrometer with
PDF
Album
Supp Info
Full Research Paper
Published 23 Aug 2022

Synthesis of odorants in flow and their applications in perfumery

  • Merlin Kleoff,
  • Paul Kiler and
  • Philipp Heretsch

Beilstein J. Org. Chem. 2022, 18, 754–768, doi:10.3762/bjoc.18.76

Graphical Abstract
  • formation of hydrazone 28. As one equivalent of water is formed in this condensation process, which is detrimental for the subsequent Shapiro reaction, water is continuously removed by in-line separation of the reaction mixture using a PTFE-membrane separator. The organic layer is then mixed with a solution
  • of n-butyllithium in hexanes to initiate the Shapiro reaction of hydrazone 28 proceeding supposedly via dilithiated intermediate 29. As the nitrogen produced in the reaction increases the volume of the reaction mixture and therefore is drastically shortening the residence time, a cooled glass column
  • ) via selective hydrogenation to enone 27, condensation to hydrazone 28 and subsequent Shapiro reaction. DMPS = dimethylpolysilane-modified platinum catalyst; Ts = tosyl. Selective hydrogenation of alkyne 31 to “leaf alcohol” 32 employing a solid-supported palladium catalyst. A) Synthesis of jasmonal
PDF
Album
Review
Published 27 Jun 2022
Other Beilstein-Institut Open Science Activities