Search results

Search for "hydrogen atom transfer" in Full Text gives 74 result(s) in Beilstein Journal of Organic Chemistry.

Recent advances in amidyl radical-mediated photocatalytic direct intermolecular hydrogen atom transfer

  • Hao-Sen Wang,
  • Lin Li,
  • Xin Chen,
  • Jian-Li Wu,
  • Kai Sun,
  • Xiao-Lan Chen,
  • Ling-Bo Qu and
  • Bing Yu

Beilstein J. Org. Chem. 2025, 21, 1306–1323, doi:10.3762/bjoc.21.100

Graphical Abstract
  • substrates. Keywords: amidyl radicals; C–H; HAT reagents; hydrogen-atom-transfer; late-stage functionalization; Introduction C–H bonds are the predominant chemical bonds in organic compounds, and their direct conversion can rapidly and efficiently increase the complexity and functionality of organic
  • and operational scalability [9][10]. Moreover, a high temperature and additive oxidants are generally required, which would limit the substrate scope. The hydrogen atom transfer (HAT) process has emerged as a powerful avenue for addressing these challenges, leveraging the HAT reagents to selectively
  • insight in the development of novel methods for amidyl radical-mediated photocatalytic direct intermolecular hydrogen atom transfer. Although, amidyl radicals employed in many reactions as HAT reagents via heating conditions have been summarized in several studies [52][53][54][55][56][57][58]. To advance
PDF
Album
Review
Published 27 Jun 2025

Recent advances in oxidative radical difunctionalization of N-arylacrylamides enabled by carbon radical reagents

  • Jiangfei Chen,
  • Yi-Lin Qu,
  • Ming Yuan,
  • Xiang-Mei Wu,
  • Heng-Pei Jiang,
  • Ying Fu and
  • Shengrong Guo

Beilstein J. Org. Chem. 2025, 21, 1207–1271, doi:10.3762/bjoc.21.98

Graphical Abstract
PDF
Album
Review
Published 24 Jun 2025

Enhancing chemical synthesis planning: automated quantum mechanics-based regioselectivity prediction for C–H activation with directing groups

  • Julius Seumer,
  • Nicolai Ree and
  • Jan H. Jensen

Beilstein J. Org. Chem. 2025, 21, 1171–1182, doi:10.3762/bjoc.21.94

Graphical Abstract
  • atom transfer and cycloaddition reactions have reported correlation coefficients (R2) of around 0.7 at best, indicating significant deviations from ideal behaviour [12][13]. This means that even when intermediate energies are accurately computed, the predicted regioselectivity may still carry a degree
  • meaningful correlation between thermodynamic stability and kinetic accessibility, as expressed by the BEP principle. Although this principle has been successfully applied in many cases, the correlation between reaction energies and activation barriers is often imperfect. For instance, studies on hydrogen
PDF
Album
Supp Info
Full Research Paper
Published 16 Jun 2025

Recent total synthesis of natural products leveraging a strategy of enamide cyclization

  • Chun-Yu Mi,
  • Jia-Yuan Zhai and
  • Xiao-Ming Zhang

Beilstein J. Org. Chem. 2025, 21, 999–1009, doi:10.3762/bjoc.21.81

Graphical Abstract
  • bridge cycle [36][37]. The excellent diastereoselectivity in this radical cyclization was further rationalized by DFT calculations, which suggests an energy discrepancy of the hydrogen atom transfer process from different faces of the resulting α-hydroxyl radical. Final reduction of the ketone and amide
PDF
Album
Review
Published 22 May 2025

Recent advances in controllable/divergent synthesis

  • Jilei Cao,
  • Leiyang Bai and
  • Xuefeng Jiang

Beilstein J. Org. Chem. 2025, 21, 890–914, doi:10.3762/bjoc.21.73

Graphical Abstract
  • hydrogen atom transfer (HAT)/chiral copper dual catalytic system that achieved regiodivergent and enantioselective C(sp3)–C(sp3) and C(sp3)–N oxidative cross-couplings between N-arylglycine ester/amide derivatives and abundant hydrocarbon C(sp3)–H feedstocks (Scheme 6) [24]. This methodology also
PDF
Album
Review
Published 07 May 2025

Photomechanochemistry: harnessing mechanical forces to enhance photochemical reactions

  • Francesco Mele,
  • Ana M. Constantin,
  • Andrea Porcheddu,
  • Raimondo Maggi,
  • Giovanni Maestri,
  • Nicola Della Ca’ and
  • Luca Capaldo

Beilstein J. Org. Chem. 2025, 21, 458–472, doi:10.3762/bjoc.21.33

Graphical Abstract
  • hydrogen-atom transfer or solvolysis are often observed. A technological solution to cope with the Beer–Lambert law was offered by flow chemistry [19][20][21] by employing microreactors with reduced optical paths to enhance irradiation efficiency [22][23][24]. Photon-limited reactions, whose efficiency is
  • transform molecules. Intriguingly, photocatalysts typically absorb harmless visible light and can be chosen ad hoc to trigger the desired chemistry. Indeed, the photocatalyst–substrate interaction can occur via energy transfer [4][5][6][7][8], single-electron transfer [9][10][11][12], or hydrogen-atom
  • transfer [13][14][15]. Regardless of the mechanistic details of the activation manifold, all photochemical reactions obey two laws: the Grotthuss–Draper and the Einstein–Stark laws [16]. The Grotthuss–Draper law dictates that only absorbed light can induce photochemical transformations within a system. In
PDF
Album
Perspective
Published 03 Mar 2025

Red light excitation: illuminating photocatalysis in a new spectrum

  • Lucas Fortier,
  • Corentin Lefebvre and
  • Norbert Hoffmann

Beilstein J. Org. Chem. 2025, 21, 296–326, doi:10.3762/bjoc.21.22

Graphical Abstract
  • hydrogen-atom-transfer mechanisms with a Hantzsch ester 34 as presented in Scheme 12. Moreover, the study has explored the impact of substrate steric hindrance and halogen bond strength on catalytic efficiency, revealing that bromo- and iodo-substrates react more efficiently, while chloro-substrates
  • involving π–π-stacking [75]. The resulting radical anion releases NO also yielding the anion 63. Electron transfer to the radical cation of the photocatalyst regenerates it. In this step, the neutral radical 64 is also formed. Hydrogen abstraction (hydrogen atom transfer, HAT) yields compound 65. NO and the
PDF
Album
Review
Published 07 Feb 2025

Dioxazolones as electrophilic amide sources in copper-catalyzed and -mediated transformations

  • Seungmin Lee,
  • Minsuk Kim,
  • Hyewon Han and
  • Jongwoo Son

Beilstein J. Org. Chem. 2025, 21, 200–216, doi:10.3762/bjoc.21.12

Graphical Abstract
  • amidation process of dioxazolones. Dioxazolone 1 binds to the chiral copper complex 3, generating the adduct INT-1. Decarboxylation then occurs, forming the copper nitrenoid intermediate INT-2, subsequently undergoing hydrogen atom transfer in a regioselective manner to afford INT-3. The related acyl
  • –N, P–N, and N–H bond-forming reactions. Several studies have proposed copper nitrenoid intermediates originating from dioxazolones, involving an N-acyl nitrene transfer or hydrogen atom transfer process, representing creative synthetic solutions that were previously unachievable using conventional
PDF
Album
Review
Published 22 Jan 2025

Recent advances in electrochemical copper catalysis for modern organic synthesis

  • Yemin Kim and
  • Won Jun Jang

Beilstein J. Org. Chem. 2025, 21, 155–178, doi:10.3762/bjoc.21.9

Graphical Abstract
  • products with high enantioselectivity. The catalytic cycle is depicted in Figure 7. The photoexcited photocatalyst anthraquinone (AQ*) acts as a hydrogen-atom transfer (HAT) acceptor and transforms the alkylarene 20 into benzylic radical intermediate 23 together with reduced [AQ–H]•. The benzylic radical
PDF
Album
Review
Published 16 Jan 2025

Cu(OTf)2-catalyzed multicomponent reactions

  • Sara Colombo,
  • Camilla Loro,
  • Egle M. Beccalli,
  • Gianluigi Broggini and
  • Marta Papis

Beilstein J. Org. Chem. 2025, 21, 122–145, doi:10.3762/bjoc.21.7

Graphical Abstract
  • -difunctionalization of alkenes carried out with carbazates (N-aminocarbamates) and (hetero)arene nucleophiles or amines exploiting N-(tert-butyl)-N-fluoro-3,5-bis(trifluoromethyl)benzenesulfonamide (NFBS) as intermolecular hydrogen-atom-transfer reagent results in alkylarylation processes (Scheme 5) [19]. The
  • reaction proceeds through an initial single-electron transfer from NFBS assisted by the active copper species, followed by intermolecular hydrogen-atom transfer from the carbazate. The nitrogen radical intermediate I thus formed is decomposed into the acyl or alkyl radical intermediates II and III
PDF
Album
Review
Published 14 Jan 2025

Giese-type alkylation of dehydroalanine derivatives via silane-mediated alkyl bromide activation

  • Perry van der Heide,
  • Michele Retini,
  • Fabiola Fanini,
  • Giovanni Piersanti,
  • Francesco Secci,
  • Daniele Mazzarella,
  • Timothy Noël and
  • Alberto Luridiana

Beilstein J. Org. Chem. 2024, 20, 3274–3280, doi:10.3762/bjoc.20.271

Graphical Abstract
  • pathway for the functionalization of an electron-deficient olefin is the Giese reaction (Figure 1) [6][7]. This reaction involves the hydroalkylation of the olefin via radical addition (RA), followed by either hydrogen-atom transfer (HAT) or single-electron transfer (SET) and protonation. Traditionally
  • concerning benzophenone hydrogen-atom transfer and silane-mediated activation of alkyl bromides to perform a photochemical Giese reaction, methyl 2-(1,3-dioxoisoindolin-2-yl)acrylate (1) and bromocyclohexane (2) were dissolved in CH3CN (0.1 M) together with a stoichiometric amount of tris(trimethylsilyl
PDF
Album
Supp Info
Letter
Published 17 Dec 2024

Advances in radical peroxidation with hydroperoxides

  • Oleg V. Bityukov,
  • Pavel Yu. Serdyuchenko,
  • Andrey S. Kirillov,
  • Gennady I. Nikishin,
  • Vera A. Vil’ and
  • Alexander O. Terent’ev

Beilstein J. Org. Chem. 2024, 20, 2959–3006, doi:10.3762/bjoc.20.249

Graphical Abstract
  • tendency to recombine with C-centered radicals and add to unsaturated bonds with the formation of new carbon–oxygen bonds. However, alkoxy radicals, which are always present in such systems, are involved not only in the formation of ROO radicals but also in hydrogen atom transfer (HAT) processes and β
  • 22 (steps F, G). The third possible pathway involves the abstraction of a hydrogen atom from 4-hydroxy-2(5H)-furanone 21 by the tert-butoxy radical formed in step A to give the alkoxy radical III (step H). Intermolecular hydrogen atom transfer results in the C-centered radical IV (step I). Further
  • further hydrogen atom transfer from aldehyde 153 to tert-butoxy radical A leads to the formation of the acyl radical C, which adds to the double bond of alkene 152 to form the radical intermediate D. Recombination of radical D with tert-butylperoxy radical B affords the target product 154. The acylation
PDF
Album
Review
Published 18 Nov 2024

Recent advances in transition-metal-free arylation reactions involving hypervalent iodine salts

  • Ritu Mamgain,
  • Kokila Sakthivel and
  • Fateh V. Singh

Beilstein J. Org. Chem. 2024, 20, 2891–2920, doi:10.3762/bjoc.20.243

Graphical Abstract
  • homolytic fragmentation in solution, producing tetramethylpiperidinyl radical and the TEMPO radical. The tetramethylpiperidinyl radical interacts with 2-naphthol derivatives 58, leading to the generation of an oxygen-centered radical through hydrogen atom transfer, which resonates with its respective carbon
PDF
Album
Review
Published 13 Nov 2024

A review of recent advances in electrochemical and photoelectrochemical late-stage functionalization classified by anodic oxidation, cathodic reduction, and paired electrolysis

  • Nian Li,
  • Ruzal Sitdikov,
  • Ajit Prabhakar Kale,
  • Joost Steverlynck,
  • Bo Li and
  • Magnus Rueping

Beilstein J. Org. Chem. 2024, 20, 2500–2566, doi:10.3762/bjoc.20.214

Graphical Abstract
  • method for the hydrolysis of hydrosilanes to silanols using N-hydroxyphthalimide (NHPI) as the hydrogen-atom-transfer (HAT) mediator [38]. To demonstrate the potential of their approach, they showcased the LSF of natural products such as (−)-borneol and (+)-fenchol, as well as pharmaceutical drugs
  • authors, the reaction proceeds via hydrogen-atom transfer (HAT) at the benzylic position, mediated by DDQ (2,3-dichloro-5,6-dicyano-1,4-benzoquinone). The proposed mechanism includes two possible pathways: In path A, the benzylic position undergoes HAT to form a benzyl radical, which is then oxidized by
  • undergoes hydrogen-atom transfer (HAT) leading to alkyl radical formation. The manganese-catalyzed azide radical transfer then delivers the product. Unactivated secondary and tertiary C–H bonds, as well as benzylic C–H bonds, were prone to azidation, with the reactivity order being: benzylic > tertiary
PDF
Album
Review
Published 09 Oct 2024

Photoredox-catalyzed intramolecular nucleophilic amidation of alkenes with β-lactams

  • Valentina Giraldi,
  • Giandomenico Magagnano,
  • Daria Giacomini,
  • Pier Giorgio Cozzi and
  • Andrea Gualandi

Beilstein J. Org. Chem. 2024, 20, 2461–2468, doi:10.3762/bjoc.20.210

Graphical Abstract
  • the linked alkene moiety, followed by hydrogen transfer from the hydrogen atom transfer (HAT) catalyst. This process was used to successfully prepare 2-alkylated clavam derivatives. Keywords: β-lactam; acridinium photocatalyst; alkenes; amides; intramolecular radical reaction; photoredox catalysis
  • -amidyl radicals uses activated N–O amide derivatives capable of generating amidyl radicals through fragmentation [18][19]. The direct formation of amidyl radicals in the presence of a carbon alkyl chain could lead to a competitive 1,5-hydrogen atom transfer (1,5-HAT) [20][21][22], limiting the direct
PDF
Album
Supp Info
Full Research Paper
Published 01 Oct 2024

Asymmetric organocatalytic synthesis of chiral homoallylic amines

  • Nikolay S. Kondratyev and
  • Andrei V. Malkov

Beilstein J. Org. Chem. 2024, 20, 2349–2377, doi:10.3762/bjoc.20.201

Graphical Abstract
  • deracemisation of an unsaturated amine 144 was reported by Li Dang and Xin-Yuan Liu (Scheme 30) [45]. They used CF3-radical-induced remote CH-activation, combined with Brønsted acid-catalysed chiral hydrogen atom transfer (HAT). In this reaction, triphenylphosphine first mediated the addition of the CF3-radical
  • generated from Togni’s reagent (145) to a double bond of the δ-alkenylamine, followed by intramolecular hydrogen atom transfer and a single-electron oxidation of the intermediate alkyl radical to form an imine that is then reduced by hydrogen donor 147 catalysed by CPA (R)-VAPOL (148). The
  • -catalysed hydrogen atom transfer deracemisation [45]. Chiral PA-catalysed [1,3]-rearrangement of ene-aldimines [46].
PDF
Album
Review
Published 16 Sep 2024

Efficacy of radical reactions of isocyanides with heteroatom radicals in organic synthesis

  • Akiya Ogawa and
  • Yuki Yamamoto

Beilstein J. Org. Chem. 2024, 20, 2114–2128, doi:10.3762/bjoc.20.182

Graphical Abstract
  • reaction into B–H or B–B bonds has been reported, but the reactions by a radical mechanism are largely unknown. Very recently, Turlik and Schuppe reported a novel generation of nucleophilic boryl radicals using hydrogen atom transfer (HAT) and photoredox catalysis. Furthermore, its reaction with
PDF
Album
Perspective
Published 26 Aug 2024

Benzylic C(sp3)–H fluorination

  • Alexander P. Atkins,
  • Alice C. Dean and
  • Alastair J. J. Lennox

Beilstein J. Org. Chem. 2024, 20, 1527–1547, doi:10.3762/bjoc.20.137

Graphical Abstract
  • functionalisation of benzylic C–H bonds to benzylic radicals can be envisaged to occur through three different pathways (Figure 22). Upon excitation by light, photoredox reagents can induce a number of changes in benzylic substrate I, either directly or via mediated processes. Hydrogen-atom-transfer (HAT) results
PDF
Album
Review
Published 10 Jul 2024

Generation of alkyl and acyl radicals by visible-light photoredox catalysis: direct activation of C–O bonds in organic transformations

  • Mithu Roy,
  • Bitan Sardar,
  • Itu Mallick and
  • Dipankar Srimani

Beilstein J. Org. Chem. 2024, 20, 1348–1375, doi:10.3762/bjoc.20.119

Graphical Abstract
  • phosphoranyl radical intermediate then undergoes β-cleavage, giving rise to a benzylic radical and triphenylphosphine oxide. A terminal hydrogen atom transfer (HAT), facilitated by an aryl thiol, results in the formation of the desired product with concurrent formation of the thiyl radical. The reduction of
PDF
Album
Review
Published 14 Jun 2024

Advancements in hydrochlorination of alkenes

  • Daniel S. Müller

Beilstein J. Org. Chem. 2024, 20, 787–814, doi:10.3762/bjoc.20.72

Graphical Abstract
  • the homobenzylic position, engaging in an anti-Markovnikov manner with a formal chloride nucleophile. The ultimate step involves hydrogen atom transfer (HAT) with thiol 148, culminating in the formation of the desired product 147. Therefore, the generation of the vinyl radical cation plays a pivotal
  • combination with a chloride anion, regenerates the initial acridinium catalyst 161. The thiyl radical is formed through hydrogen atom transfer (HAT) with thiol 150, thus completing the second catalytic cycle. Hence, the key distinction from Nicewicz's work is that in the Ritter protocol, chloride undergoes
  • yield). Metal hydride hydrogen atom transfer reactions vs cationic reactions; BDE (bond-dissociation energy). Mechanism for the cobalt hydride hydrogen atom transfer reaction reported by Carreira. Proposed mechanism for anti-Markovnikov hydrochlorination by Nicewicz. Mechanism for anti-Markovnikov
PDF
Album
Review
Published 15 Apr 2024

Mechanisms for radical reactions initiating from N-hydroxyphthalimide esters

  • Carlos R. Azpilcueta-Nicolas and
  • Jean-Philip Lumb

Beilstein J. Org. Chem. 2024, 20, 346–378, doi:10.3762/bjoc.20.35

Graphical Abstract
  • hydrogen atom transfer (HAT) or sequential electron transfer and proton transfer (ET/PT) steps. Alternatively, redox-neutral transformations can be envisioned using catalytic reductants, which can enable a complementary scope of downstream functionalizations (Scheme 2B). In this perspective, we present an
  • CO2. Radical 12 undergoes intermolecular addition to the olefin acceptor 13 to form radical intermediate 14. Finally, under reductive conditions radical 14 can undergo hydrogen atom transfer (HAT) or sequential electron transfer and proton transfer (ET/PT) to form the conjugate addition product 15
PDF
Album
Perspective
Published 21 Feb 2024

Additive-controlled chemoselective inter-/intramolecular hydroamination via electrochemical PCET process

  • Kazuhiro Okamoto,
  • Naoki Shida and
  • Mahito Atobe

Beilstein J. Org. Chem. 2024, 20, 264–271, doi:10.3762/bjoc.20.27

Graphical Abstract
  • electron-transfer to give the corresponding radical species through oxidative X–H bond cleavage. One such species is the amidyl radical, which is broadly synthetically useful as a nitrogen source in hydroamination reactions and as a hydrogen atom transfer (HAT) reagent for remote C–H activation [2][3][4][5
PDF
Album
Supp Info
Full Research Paper
Published 12 Feb 2024

Recent advancements in iodide/phosphine-mediated photoredox radical reactions

  • Tinglan Liu,
  • Yu Zhou,
  • Junhong Tang and
  • Chengming Wang

Beilstein J. Org. Chem. 2023, 19, 1785–1803, doi:10.3762/bjoc.19.131

Graphical Abstract
  • radical and I· played a pivotal as an intermediate step in the production of alkyl iodides B. Compound B could undergo a further elimination reaction to yield various olefins 11. Regarding benzyl substrates, the radical I· demonstrated its efficacy as a reagent for hydrogen atom transfer (HAT
PDF
Album
Review
Published 22 Nov 2023

Visible-light-induced nickel-catalyzed α-hydroxytrifluoroethylation of alkyl carboxylic acids: Access to trifluoromethyl alkyl acyloins

  • Feng Chen,
  • Xiu-Hua Xu,
  • Zeng-Hao Chen,
  • Yue Chen and
  • Feng-Ling Qing

Beilstein J. Org. Chem. 2023, 19, 1372–1378, doi:10.3762/bjoc.19.98

Graphical Abstract
  • light-induced charge transfer event to give trifluoroethoxyl radical B, followed by a 1,2-hydrogen atom transfer (HAT), producing the stable radical C. For the nickel cycle, it is initiated by oxidative addition of Ni(0) catalyst E to acyl electrophile D formed in situ from carboxylic acid 1 with
PDF
Album
Supp Info
Full Research Paper
Published 11 Sep 2023

Non-noble metal-catalyzed cross-dehydrogenation coupling (CDC) involving ether α-C(sp3)–H to construct C–C bonds

  • Hui Yu and
  • Feng Xu

Beilstein J. Org. Chem. 2023, 19, 1259–1288, doi:10.3762/bjoc.19.94

Graphical Abstract
  • coupling process. Initially, ether 64 interacts with tert-butoxyl radicals via hydrogen atom transfer reaction to generate radical A with release of tert-butyl alcohol. Subsequently, the radical A adds to the C=C bond of α-oxo ketene dithioacetal 107 to form radical B, which further reacts with Fe(III) to
  • ) from the DHP substrates to DDQ, a hydrogen atom transfer (HAT), and counter anion exchange of In(OTf)3 might happen to generate ion pair A. In(OTf)3 coordinates with the carbonyl oxygen atoms in dimethyl malonate 188 to provide activated complex B for subsequent addition to A furnishing product 189
  • this type of CDC reaction (Scheme 43b–e). Efficient CDC reactions could be achieved with 1 mol % of eosin Y in the absence of additional base or oxidizing agents. In this transformation, eosin Y may act as a direct hydrogen atom transfer photocatalyst (Scheme 43b) [124]. The CDC reaction between
PDF
Album
Review
Published 06 Sep 2023
Other Beilstein-Institut Open Science Activities