Search results

Search for "kinetic isotope effect" in Full Text gives 26 result(s) in Beilstein Journal of Organic Chemistry.

Deuterated reagents in multicomponent reactions to afford deuterium-labeled products

  • Kevin Schofield,
  • Shayna Maddern,
  • Yueteng Zhang,
  • Grace E. Mastin,
  • Rachel Knight,
  • Wei Wang,
  • James Galligan and
  • Christopher Hulme

Beilstein J. Org. Chem. 2024, 20, 2270–2279, doi:10.3762/bjoc.20.195

Graphical Abstract
  • significantly enhanced metabolic stability, a key parameter for property-based design efforts. Keywords: deuterated aldehydes; deuterated formamides; deuterated isocyanides; DHPs; kinetic isotope effect; Leuckart–Wallach; microsomal stability; multicomponent reactions; Introduction Multicomponent reactions
  • drug-like compounds with synthetic ease [5][6]. In recent years use of deuterium in drug discovery has expanded beyond mechanistic and tracer studies to deuterium incorporation in small molecules in attempts to hijack the deuterium kinetic isotope effect to induce longer drug t1/2 and greater systemic
  • this position was thought a reasonable approach to extend drug t1/2 through exploitation of the kinetic isotope effect underpinned by the C–D bond being slightly shorter and stronger than a C–H bond. Such site-specific labeling was hypothesized to slow CYP3A4 metabolism. To evaluate the hypothesis
PDF
Album
Supp Info
Full Research Paper
Published 06 Sep 2024

Ligand effects, solvent cooperation, and large kinetic solvent deuterium isotope effects in gold(I)-catalyzed intramolecular alkene hydroamination

  • Ruichen Lan,
  • Brock Yager,
  • Yoonsun Jee,
  • Cynthia S. Day and
  • Amanda C. Jones

Beilstein J. Org. Chem. 2024, 20, 479–496, doi:10.3762/bjoc.20.43

Graphical Abstract
  • -order dependence on alkene, first-order dependence on catalyst, and second-order dependence on the imidazolidinone nucleophile [22]. They observed a primary kinetic isotope effect (k(H/D) = 3.14) when deuterated amine was used. The second order dependence is rationalized by a mechanism where a second
  • . • At low incorporation of deuterium, there appears to be a balance between the influence on rate from N–H/N–D exchange and any release of H/DOR which also participates in the reaction. Partially deuterium-labeled urea 1a exhibits no primary kinetic isotope effect, however, trace amounts of protic water
PDF
Album
Supp Info
Full Research Paper
Published 29 Feb 2024

Exploring the role of halogen bonding in iodonium ylides: insights into unexpected reactivity and reaction control

  • Carlee A. Montgomery and
  • Graham K. Murphy

Beilstein J. Org. Chem. 2023, 19, 1171–1190, doi:10.3762/bjoc.19.86

Graphical Abstract
  • formation of 33 and 35, implying that single electron-transfer processes were occurring. Also, a competition experiment between 32 and [D6]-32 gave a competitive intermolecular kinetic isotope effect of 9.5 that suggested an N-Me proton abstraction was the rate determining step. Given this, the authors
  • ]. The authors discounted a free carbene-based C–H insertion because conducting the reaction in the presence of the radical trap phenyl N-tert-butyl nitrone (PBN) and the radical scavenger TEMPO resulted in decreased yields and isolation of their iodonium ylide adducts. Additional kinetic isotope effect
PDF
Album
Review
Published 07 Aug 2023

Photoredox catalysis harvesting multiple photon or electrochemical energies

  • Mattia Lepori,
  • Simon Schmid and
  • Joshua P. Barham

Beilstein J. Org. Chem. 2023, 19, 1055–1145, doi:10.3762/bjoc.19.81

Graphical Abstract
PDF
Album
Review
Published 28 Jul 2023

Iron-catalyzed domino coupling reactions of π-systems

  • Austin Pounder and
  • William Tam

Beilstein J. Org. Chem. 2021, 17, 2848–2893, doi:10.3762/bjoc.17.196

Graphical Abstract
  • radical cyclization with the activated alkene 127. Ring closing with the ortho-carbon of the aryl ring generates aryl radical 128 which was confirmed not to be the rate-determining step by kinetic isotope effect studies. Subsequently, 128 is oxidized by S2O82− and deprotonated to form the desired product
PDF
Album
Review
Published 07 Dec 2021

α-Ketol and α-iminol rearrangements in synthetic organic and biosynthetic reactions

  • Scott Benz and
  • Andrew S. Murkin

Beilstein J. Org. Chem. 2021, 17, 2570–2584, doi:10.3762/bjoc.17.172

Graphical Abstract
  • -xylulose-5-phosphate reductoisomerase (DXR), uses a different mechanism to accomplish the carbon-skeleton rearrangement of its substrate 63 [19]; kinetic isotope effect experiments have excluded an α-ketol rearrangement and instead support a stepwise retro-aldol/aldol sequence for formation of intermediate
PDF
Album
Review
Published 15 Oct 2021

Copper-catalyzed monoselective C–H amination of ferrocenes with alkylamines

  • Zhen-Sheng Jia,
  • Qiang Yue,
  • Ya Li,
  • Xue-Tao Xu,
  • Kun Zhang and
  • Bing-Feng Shi

Beilstein J. Org. Chem. 2021, 17, 2488–2495, doi:10.3762/bjoc.17.165

Graphical Abstract
  • exchange was observed at the ortho-position of 1a with 3.0 equivalents of CD3CO2D under standard conditions (Scheme 5a). Furthermore, a larger value of kinetic isotope effect (KIE = 2.4) was detected (Scheme 5b). These results indicated that the cleavage of C–H bond was most likely involved in the rate
PDF
Album
Supp Info
Letter
Published 28 Sep 2021

Copper-mediated oxidative C−H/N−H activations with alkynes by removable hydrazides

  • Feng Xiong,
  • Bo Li,
  • Chenrui Yang,
  • Liang Zou,
  • Wenbo Ma,
  • Linghui Gu,
  • Ruhuai Mei and
  • Lutz Ackermann

Beilstein J. Org. Chem. 2021, 17, 1591–1599, doi:10.3762/bjoc.17.113

Graphical Abstract
  • -position of the reisolated benzhydrazide 1c and product 3ca when the reaction was conducted with the isotopically labeled D2O as cosolvent (Scheme 4c). This observation indicated that the C−H cleavage is irreversible. In accordance with this finding, a kinetic isotope effect (KIE) of kH/kD ≈ 6.1 was
PDF
Album
Supp Info
Full Research Paper
Published 08 Jul 2021

Methodologies for the synthesis of quaternary carbon centers via hydroalkylation of unactivated olefins: twenty years of advances

  • Thiago S. Silva and
  • Fernando Coelho

Beilstein J. Org. Chem. 2021, 17, 1565–1590, doi:10.3762/bjoc.17.112

Graphical Abstract
  • methylcycloalkanes (94a and 94b) and the terminal olefin 93 (Scheme 37A). Both examples showed perfect regioselectivity for the functionalization of the tertiary C(sp3)–H bond. Mechanistic studies carried out by the authors revealed a strong kinetic isotope effect (KIE = 11.5:1) when a competitive reaction was
PDF
Album
Review
Published 07 Jul 2021

CF3-substituted carbocations: underexploited intermediates with great potential in modern synthetic chemistry

  • Anthony J. Fernandes,
  • Armen Panossian,
  • Bastien Michelet,
  • Agnès Martin-Mingot,
  • Frédéric R. Leroux and
  • Sébastien Thibaudeau

Beilstein J. Org. Chem. 2021, 17, 343–378, doi:10.3762/bjoc.17.32

Graphical Abstract
  • )carbenium ion. Further studies were conducted by Lenoir and Dahn to shed light on the mechanism of the solvolysis of CF3-substituted diazoalkane derivatives (Figure 10a) [144]. They measured an inverse kinetic isotope effect of kH/kD = 0.25 for the solvolysis of 217a in dioxane/H2O 60:40 in the presence of
PDF
Album
Review
Published 03 Feb 2021

A dynamic combinatorial library for biomimetic recognition of dipeptides in water

  • Florian Klepel and
  • Bart Jan Ravoo

Beilstein J. Org. Chem. 2020, 16, 1588–1595, doi:10.3762/bjoc.16.131

Graphical Abstract
  • (Figure S10, Supporting Information File 1). This behavior does not contradict the ITC measurements and can be attributed to the kinetic isotope effect. Although, D-bonding is generally stronger than H-bonding, its contribution to the peptide–peptide binding can be weakened by even stronger competitive
PDF
Album
Supp Info
Full Research Paper
Published 02 Jul 2020

Recent developments in photoredox-catalyzed remote ortho and para C–H bond functionalizations

  • Rafia Siddiqui and
  • Rashid Ali

Beilstein J. Org. Chem. 2020, 16, 248–280, doi:10.3762/bjoc.16.26

Graphical Abstract
  • substituents (Scheme 5), and (v) the rate-determining step (i.e., breaking of the C–H bond) was suggested to follow a first-order kinetic isotope effect (KH/KD = 5). As such, a library of benzothiazole derivatives was reported using this methodology, and a plausible mechanism is shown in Figure 9. Synthesis of
PDF
Album
Review
Published 26 Feb 2020

Selective benzylic C–H monooxygenation mediated by iodine oxides

  • Kelsey B. LaMartina,
  • Haley K. Kuck,
  • Linda S. Oglesbee,
  • Asma Al-Odaini and
  • Nicholas C. Boaz

Beilstein J. Org. Chem. 2019, 15, 602–609, doi:10.3762/bjoc.15.55

Graphical Abstract
  • via a similar mechanism we examined several aspects of the NHPI-iodate system. A substrate deuterium kinetic isotope effect (KIE) study indicated that the benzylic C–H bond is broken more rapidly than the C–D bond of the deuterated substrate. Catalytic oxidation of a stoichiometric mixture of proteo
PDF
Album
Supp Info
Full Research Paper
Published 05 Mar 2019

A challenging redox neutral Cp*Co(III)-catalysed alkylation of acetanilides with 3-buten-2-one: synthesis and key insights into the mechanism through DFT calculations

  • Andrew Kenny,
  • Alba Pisarello,
  • Arron Bird,
  • Paula G. Chirila,
  • Alex Hamilton and
  • Christopher J. Whiteoak

Beilstein J. Org. Chem. 2018, 14, 2366–2374, doi:10.3762/bjoc.14.212

Graphical Abstract
  • energy difference between the C–H activation and C–C bond formation steps makes identification of the rate limiting step difficult by DFT calculations alone, however, parallel kinetic isotope effect (KIE) experiments do suggest that the C–H activation step is not rate limiting (KIE = 1.3), which is not
PDF
Album
Supp Info
Full Research Paper
Published 10 Sep 2018

Hydroarylations by cobalt-catalyzed C–H activation

  • Rajagopal Santhoshkumar and
  • Chien-Hong Cheng

Beilstein J. Org. Chem. 2018, 14, 2266–2288, doi:10.3762/bjoc.14.202

Graphical Abstract
  • found intermolecular kinetic isotope effect (KIE) of kH/kD = 2.1 and H/D crossover studies strongly suggest that the reaction proceeds through an oxidative addition of a C–H bond to low-valent cobalt followed by alkyne insertion and reductive elimination. Furthermore, the new C–C bond formation occurred
PDF
Album
Review
Published 29 Aug 2018

Phosphodiester models for cleavage of nucleic acids

  • Satu Mikkola,
  • Tuomas Lönnberg and
  • Harri Lönnberg

Beilstein J. Org. Chem. 2018, 14, 803–837, doi:10.3762/bjoc.14.68

Graphical Abstract
  • enzyme–substrate interaction is not distorted, which is the case with other structural modifications. Kinetic isotope effect is defined as the ratio of the rate constants obtained with the light and heavy isotope containing compound, KIE = lightk/heavyk. When this ratio is greater than unity, the isotope
PDF
Album
Review
Published 10 Apr 2018

The synthesis of functionalized bridged polycycles via C–H bond insertion

  • Jiun-Le Shih,
  • Po-An Chen and
  • Jeremy A. May

Beilstein J. Org. Chem. 2016, 12, 985–999, doi:10.3762/bjoc.12.97

Graphical Abstract
  • , even when the exocyclic oxygen was acetylated. This is likely related to the effects observed by Lee (Scheme 4). The Adams group also looked for a deuterium kinetic isotope effect for insertion in both 34 (Y = D, X = OMe) and 37 (Y = D, R = H). Only a small difference in relative rates between C–H and
  • deuterium kinetic isotope effect of 2.34 was seen for C–H insertion with gold catalysis. Hashmi demonstrated the viability of dual gold catalysis for carbene/alkyne cascades with diynes like 109, which gave products from either a 1,2-methyl shift (not shown) or a C–H bond insertion to form enone 112 (Scheme
PDF
Album
Review
Published 17 May 2016

Cascade alkylarylation of substituted N-allylbenzamides for the construction of dihydroisoquinolin-1(2H)-ones and isoquinoline-1,3(2H,4H)-diones

  • Ping Qian,
  • Bingnan Du,
  • Wei Jiao,
  • Haibo Mei,
  • Jianlin Han and
  • Yi Pan

Beilstein J. Org. Chem. 2016, 12, 301–308, doi:10.3762/bjoc.12.32

Graphical Abstract
  • a cyclohexane radical-trapped compound (Scheme 5b). This implies that the current transformation is a radical process. Finally, an obvious competing kinetic isotope effect (KIE) was found with the ratio of 9.3:1 (kH:kD) when the reaction of 6a was performed with cyclohexane and [D]-cyclohexane
PDF
Album
Supp Info
Full Research Paper
Published 17 Feb 2016

Recent highlights in biosynthesis research using stable isotopes

  • Jan Rinkel and
  • Jeroen S. Dickschat

Beilstein J. Org. Chem. 2015, 11, 2493–2508, doi:10.3762/bjoc.11.271

Graphical Abstract
  • assembly of natural product. Also the kinetic isotope effect can be used to probe mechanistic proposals, as elegantly shown for the pentalenene (65) cyclization mechanism. Pentalenene synthase is one of the first and best investigated bacterial terpene cyclases both structurally [70] and functionally [71
PDF
Album
Review
Published 09 Dec 2015

Pyridine-promoted dediazoniation of aryldiazonium tetrafluoroborates: Application to the synthesis of SF5-substituted phenylboronic esters and iodobenzenes

  • George Iakobson,
  • Junyi Du,
  • Alexandra M. Z. Slawin and
  • Petr Beier

Beilstein J. Org. Chem. 2015, 11, 1494–1502, doi:10.3762/bjoc.11.162

Graphical Abstract
  • aromatics using THF-d8 was reported [88]. We explain the reduced yield of 6-D (48% yield) and the formation of tar products by hydrogen atom abstraction from 3 or 6 and subsequent polymerization. No significant amounts of double deuterated products were detected. The kinetic isotope effect was determined
PDF
Album
Supp Info
Full Research Paper
Published 26 Aug 2015

Synthesis of ethoxy dibenzooxaphosphorin oxides through palladium-catalyzed C(sp2)–H activation/C–O formation

  • Seohyun Shin,
  • Dongjin Kang,
  • Woo Hyung Jeon and
  • Phil Ho Lee

Beilstein J. Org. Chem. 2014, 10, 1220–1227, doi:10.3762/bjoc.10.120

Graphical Abstract
  • ranging from 50% and 63%. We carried out kinetic isotope effect (KIE) studies to prove the reaction mechanism (see Scheme 8). The required deuterium-labeled 2-(phenyl)phenylphosphonic acid monoethyl ester 1a-[D5] was efficiently prepared by a Suzuki reaction of deuterated bromobenzene (6) with 2
  • PhI(OAc)2. However, no cyclized product was observed. This result indicates that the C–O reductive elimination from Pd(II) is not favorable. Because both the intermolecular and intramolecular competition experiments exhibited no significant kinetic isotope effect (kH/kD = 1.0 and 0.6; Scheme 8), we
PDF
Album
Supp Info
Full Research Paper
Published 23 May 2014

[2H26]-1-epi-Cubenol, a completely deuterated natural product from Streptomyces griseus

  • Christian A. Citron and
  • Jeroen S. Dickschat

Beilstein J. Org. Chem. 2013, 9, 2841–2845, doi:10.3762/bjoc.9.319

Graphical Abstract
  • Streptomyces griseus. This compound represents the first completely deuterated terpene obtained by fermentation. Despite a few previous reports in the literature the operability of this approach to fully deuterated compounds is still surprising, because the strong kinetic isotope effect of deuterium is known
  • eight to ten days of incubation until fully grown, reflecting the significantly slowed metabolism due to a strong deuterium kinetic isotope effect. After full growth of the culture the volatiles emitted by S. griseus were collected on charcoal traps by use of a closed-loop stripping apparatus (CLSA) [25
PDF
Album
Full Research Paper
Published 10 Dec 2013

Recent advances in transition metal-catalyzed Csp2-monofluoro-, difluoro-, perfluoromethylation and trifluoromethylthiolation

  • Grégory Landelle,
  • Armen Panossian,
  • Sergiy Pazenok,
  • Jean-Pierre Vors and
  • Frédéric R. Leroux

Beilstein J. Org. Chem. 2013, 9, 2476–2536, doi:10.3762/bjoc.9.287

Graphical Abstract
  • induction period and demonstrated the involvement of radical species in the reaction. The authors proposed a mechanism accounting for the EPR profile of the reaction and for the results of kinetic isotope effect experiments (Figure 21). In this mechanism, rhenium intervenes in the initiation step. It acts
PDF
Album
Review
Published 15 Nov 2013

The role of silver additives in gold-mediated C–H functionalisation

  • Scott R. Patrick,
  • Ine I. F. Boogaerts,
  • Sylvain Gaillard,
  • Alexandra M. Z. Slawin and
  • Steven P. Nolan

Beilstein J. Org. Chem. 2011, 7, 892–896, doi:10.3762/bjoc.7.102

Graphical Abstract
  • (Scheme 2) [16]. The observation of a high kinetic isotope effect is suggestive of a concerted metalation–deprotonation mechanism, as first suggested for Pd(II) complexes, in which a pivalate ligand behaves as a proton acceptor via a six-membered transition state [17]. However, addition via a transient Au
PDF
Album
Supp Info
Full Research Paper
Published 01 Jul 2011

Catalysis: transition-state molecular recognition?

  • Ian H. Williams

Beilstein J. Org. Chem. 2010, 6, 1026–1034, doi:10.3762/bjoc.6.117

Graphical Abstract
  • an archetypal reaction in organic chemistry and an important process in biochemistry. Catechol-O-methyl transferase (COMT) catalyses methyl transfer from S-adenosylmethionine (SAM) to a catechol (Scheme 1), and this reaction manifests an unusually large inverse secondary kinetic isotope effect as
PDF
Album
Commentary
Published 03 Nov 2010
Other Beilstein-Institut Open Science Activities