Search results

Search for "tin" in Full Text gives 130 result(s) in Beilstein Journal of Organic Chemistry.

Red light excitation: illuminating photocatalysis in a new spectrum

  • Lucas Fortier,
  • Corentin Lefebvre and
  • Norbert Hoffmann

Beilstein J. Org. Chem. 2025, 21, 296–326, doi:10.3762/bjoc.21.22

Graphical Abstract
PDF
Album
Review
Published 07 Feb 2025

Giese-type alkylation of dehydroalanine derivatives via silane-mediated alkyl bromide activation

  • Perry van der Heide,
  • Michele Retini,
  • Fabiola Fanini,
  • Giovanni Piersanti,
  • Francesco Secci,
  • Daniele Mazzarella,
  • Timothy Noël and
  • Alberto Luridiana

Beilstein J. Org. Chem. 2024, 20, 3274–3280, doi:10.3762/bjoc.20.271

Graphical Abstract
  • , alkyl radicals have been produced from alkyl halides, using azobisisobutyronitrile (AIBN) as initiator, promoting a tin-mediated XAT (Figure 1a) [8][9]. However, tin-based compounds are highly toxic and require harsh conditions for the initiation event. Fortunately, a renaissance in the field of
  • radical activation, resulting in milder and safer reaction conditions [14][15][16]. Given the toxicity of tin-based compounds, there has been significant interest in developing alternative halogen-atom-transfer reagents. Borane, alkylamine, and silane compounds have emerged as effective XAT reagents upon
  • slight increase in chemical yield. Giese reaction: Radical addition on olefins with an electron-withdrawing group (EWG) followed by a HAT or SET and protonation; halogen-atom transfer: (a) tin-mediated XAT, (b) XAT initiated by a photocatalyst (PC) and mediated by boranes (B), silanes (Si) or alkylamines
PDF
Album
Supp Info
Letter
Published 17 Dec 2024

A review of recent advances in electrochemical and photoelectrochemical late-stage functionalization classified by anodic oxidation, cathodic reduction, and paired electrolysis

  • Nian Li,
  • Ruzal Sitdikov,
  • Ajit Prabhakar Kale,
  • Joost Steverlynck,
  • Bo Li and
  • Magnus Rueping

Beilstein J. Org. Chem. 2024, 20, 2500–2566, doi:10.3762/bjoc.20.214

Graphical Abstract
PDF
Album
Review
Published 09 Oct 2024

Electrochemical allylations in a deep eutectic solvent

  • Sophia Taylor and
  • Scott T. Handy

Beilstein J. Org. Chem. 2024, 20, 2217–2224, doi:10.3762/bjoc.20.189

Graphical Abstract
  • used, offering an interesting new option for electrochemical allylations. Keywords: allylation; electrosynthesis; eutectic solvent; recycling; tin; Introduction The last several years have witnessed a tremendous resurgence of interest in electrochemistry in the area of organic synthesis [1]. While
  • 1:3 molar ratio of tetrabutylammonium bromide and ethylene glycol (TBAB/EG) [28]. Using the reaction of p-anisaldehyde with allyl bromide as a test case, reactions were performed using three sets of different sacrificial electrodes as well as non-sacrificial graphite. As can be seen in Table 1, tin
  • (entry 1) resulted in good conversion to the allylation product, while zinc, magnesium, and graphite (Table 1, entries 3–5) displayed no reaction at all. This observation was somewhat surprising considering that both zinc and tin are very commonly used in conventional allylations in addition to as
PDF
Album
Full Research Paper
Published 02 Sep 2024

Efficacy of radical reactions of isocyanides with heteroatom radicals in organic synthesis

  • Akiya Ogawa and
  • Yuki Yamamoto

Beilstein J. Org. Chem. 2024, 20, 2114–2128, doi:10.3762/bjoc.20.182

Graphical Abstract
  • abstraction reaction from tin hydride or hydrosilane by radical initiators such as AIBN has effectively been used. When tin and silyl radicals generated in this way are reacted with isocyanides, they are more susceptible to steric hindrance than group 16 or 15 heteroatom radicals due to the greater number of
  • radicals abstract hydrogen from the tin hydride or hydrosilane, and the reduction reaction proceeds with the concomitant formation of stannyl or silyl cyanide 15 as byproducts (Scheme 9a) [38][43]. In the presence of acrylonitrile, the formed alkyl radical can add to acrylonitrile, affording the addition
  • with alkenyl, alkynyl, aryl, and isocyano groups as unsaturated groups. Intramolecular cyclization of ortho-alkynylaryl- or ortho-alkenylaryl isocyanides Fukuyama et al. reported that the reaction of an aryl isocyanide with an alkenyl group at the ortho-position with tin hydride in the presence of AIBN
PDF
Album
Perspective
Published 26 Aug 2024

Harnessing unprotected deactivated amines and arylglyoxals in the Ugi reaction for the synthesis of fused complex nitrogen heterocycles

  • Javier Gómez-Ayuso,
  • Pablo Pertejo,
  • Tomás Hermosilla,
  • Israel Carreira-Barral,
  • Roberto Quesada and
  • María García-Valverde

Beilstein J. Org. Chem. 2024, 20, 1758–1766, doi:10.3762/bjoc.20.154

Graphical Abstract
  • more complex systems, we explored post-condensation reactions on the 2-nitrobenzylamine and 3-bromopropylamine derivatives. Thus, we carried out the reduction of the nitro group on derivatives 5b and 5h employing tin(II) chloride and chlorhydric acid in boiling n-butanol (120 °C), conditions previously
  • [29], through post-condensation reactions. Following the methodology previously described in our group [30], the reduction of the nitro group on indole and pyrrole derivatives 9f,g,l–o (Scheme 9, Table 5) employing tin(II) chloride under acidic conditions in boiling n-butanol (120 °C) afforded the
PDF
Album
Supp Info
Full Research Paper
Published 25 Jul 2024

Generation of alkyl and acyl radicals by visible-light photoredox catalysis: direct activation of C–O bonds in organic transformations

  • Mithu Roy,
  • Bitan Sardar,
  • Itu Mallick and
  • Dipankar Srimani

Beilstein J. Org. Chem. 2024, 20, 1348–1375, doi:10.3762/bjoc.20.119

Graphical Abstract
  • , C–C, and C–heteroatom bond formations. The best known technique for the creation of alkyl radicals is the homolytic cleavage of the C–X bond of alkyl halides by toxic tin hydride [17]. Later, various efforts have been made to replace toxic tin hydrides with other reagents [33][34][35][36][37][38][39
  • conventional metal hydrides, such as tin or silicon hydrides. The reaction mechanism is interesting since first, a Lewis acid–base adduct is generated by interaction of Et3N with a boron atom of bis(catecholato)diboron (B2cat2, 19). As a result, one of the catecholate ligands experiences an increase in
PDF
Album
Review
Published 14 Jun 2024

Synthesis of indano[60]fullerene thioketone and its application in organic solar cells

  • Yong-Chang Zhai,
  • Shimon Oiwa,
  • Shinobu Aoyagi,
  • Shohei Ohno,
  • Tsubasa Mikie,
  • Jun-Zhuo Wang,
  • Hirofumi Amada,
  • Koki Yamanaka,
  • Kazuhira Miwa,
  • Naoyuki Imai,
  • Takeshi Igarashi,
  • Itaru Osaka and
  • Yutaka Matsuo

Beilstein J. Org. Chem. 2024, 20, 1270–1277, doi:10.3762/bjoc.20.109

Graphical Abstract
  • , w/w)/PEDOT:PSS/Ag. (b) ITO/ZnO/fullerene:PNTz4T (2:1, w/w)/MoOx/Ag. ITO, indium tin oxide; PEDOT:PSS = poly(3,4-ethylenedioxythiophene) polystyrene sulfonate. Optimization of reaction conditions for the treatment of t-Bu-FIDO with Lawesson's reagent.a Reaction of R-FIDO with Lawesson's reagent.a
PDF
Album
Supp Info
Letter
Published 31 May 2024

(Bio)isosteres of ortho- and meta-substituted benzenes

  • H. Erik Diepers and
  • Johannes C. L. Walker

Beilstein J. Org. Chem. 2024, 20, 859–890, doi:10.3762/bjoc.20.78

Graphical Abstract
  • nitrogen-substituted 1,5-BCHeps 141a–d through a photoredox-catalysed aminoalkylation with amines 140 and iodonium dicarboxylates 139 (Scheme 15A) [27]. Both Anderson and Uchiyama also reported the synthesis of chalcogen- and tin-substituted 1,5-BCHeps 145a–f from [3.1.1]propellane (Scheme 15B) [27][47][60
PDF
Album
Review
Published 19 Apr 2024

Mechanisms for radical reactions initiating from N-hydroxyphthalimide esters

  • Carlos R. Azpilcueta-Nicolas and
  • Jean-Philip Lumb

Beilstein J. Org. Chem. 2024, 20, 346–378, doi:10.3762/bjoc.20.35

Graphical Abstract
  • photochemical instability, as evidenced by their low N–O bond dissociation energy (BDE ≈ 42 kcal/mol) [28], the reliance on toxic tin hydrides as reductants and the undesired radical recombination with reactive 2-pyridylthiyl radicals that leads to (alkylthio)pyridine byproducts [26]. More recently, N
PDF
Album
Perspective
Published 21 Feb 2024

Synthesis of the 3’-O-sulfated TF antigen with a TEG-N3 linker for glycodendrimersomes preparation to study lectin binding

  • Mark Reihill,
  • Hanyue Ma,
  • Dennis Bengtsson and
  • Stefan Oscarson

Beilstein J. Org. Chem. 2024, 20, 173–180, doi:10.3762/bjoc.20.17

Graphical Abstract
  • glycosylation reactions. The 3’-sulfate was finally introduced through tin activation in benzene/DMF followed by treatment with a sulfur trioxide–trimethylamine complex in a 66% yield. Keywords: regioselective sulfation; thioglycoside donors; Thomsen–Friedenreich antigen; Introduction In a collaboration
  • 10 furnished target 1 in a 90% yield. Formation of a stannylidene acetal via tin-activation was employed to achieve selective 3’-O-sulfation of compound 1 [27], with a variety of conditions being attempted (Table 1). With a TEG-N3 lactose compound, tin-activation was performed with Bu2SnO in
  • observable sulfation taking place, the tin-activation step was suspected to be the root of the problem. To rectify this, similar to Malleron et al., 1 was refluxed, in a Dean–Stark set-up, with Bu2SnO in benzene/DMF (5:1, v/v) [32]. The solvent in the receiver was drained after 24 hours and the benzene was
PDF
Album
Supp Info
Full Research Paper
Published 30 Jan 2024

Aromatic systems with two and three pyridine-2,6-dicarbazolyl-3,5-dicarbonitrile fragments as electron-transporting organic semiconductors exhibiting long-lived emissions

  • Karolis Leitonas,
  • Brigita Vigante,
  • Dmytro Volyniuk,
  • Audrius Bucinskas,
  • Pavels Dimitrijevs,
  • Sindija Lapcinska,
  • Pavel Arsenyan and
  • Juozas Vidas Grazulevicius

Beilstein J. Org. Chem. 2023, 19, 1867–1880, doi:10.3762/bjoc.19.139

Graphical Abstract
  • the energy required to remove an electron from a solid material. Thin film samples were precisely prepared through vacuum deposition onto cleaned fluorine-doped tin oxide (FTO)-coated glass substrates, maintained at a low pressure of 2 × 10−6 mbar to ensure sample integrity. During the IPPE experiment
  • configuration comprising indium–tin oxide (ITO) as the bottom electrode, a few μm thick organic layer as the active medium, and aluminum as the top electrode. The entire deposition process was carried out under a vacuum exceeding 2 × 10−6 mbar to ensure the integrity and purity of the layers. In our TOF setup
PDF
Album
Supp Info
Full Research Paper
Published 12 Dec 2023

Charge carrier transport in perylene-based and pyrene-based columnar liquid crystals

  • Alessandro L. Alves,
  • Simone V. Bernardino,
  • Carlos H. Stadtlober,
  • Edivandro Girotto,
  • Giliandro Farias,
  • Rodney M. do Nascimento,
  • Sergio F. Curcio,
  • Thiago Cazati,
  • Marta E. R. Dotto,
  • Juliana Eccher,
  • Leonardo N. Furini,
  • Hugo Gallardo,
  • Harald Bock and
  • Ivan H. Bechtold

Beilstein J. Org. Chem. 2023, 19, 1755–1765, doi:10.3762/bjoc.19.128

Graphical Abstract
  • the analysis procedure. AFM measurements of the organic films were performed using a Nanosurf EasyScan2 apparatus in tapping mode with a scanning rate of 1.0 Hz covering 512 × 512 lines. Hole-only devices were fabricated using indium tin oxide (ITO) coated glass plates (sheet resistance of about 15 Ω
PDF
Album
Supp Info
Full Research Paper
Published 16 Nov 2023

A deep-red fluorophore based on naphthothiadiazole as emitter with hybridized local and charge transfer and ambipolar transporting properties for electroluminescent devices

  • Suangsiri Arunlimsawat,
  • Patteera Funchien,
  • Pongsakorn Chasing,
  • Atthapon Saenubol,
  • Taweesak Sudyoadsuk and
  • Vinich Promarak

Beilstein J. Org. Chem. 2023, 19, 1664–1676, doi:10.3762/bjoc.19.122

Graphical Abstract
  • increasing voltage (CELIV) or MIS-CELIV technique [59][60][61]. Electron- and hole-only MIS devices were fabricated with the structures of indium tin oxide (ITO)/magnesium fluoride (MgF2) (20 nm)/TPECNz (100 nm)/lithium fluoride (LiF) (1 nm)/aluminum (Al) (100 nm) and ITO/MgF2 (20 nm)/TPECNz (100 nm
PDF
Album
Supp Info
Full Research Paper
Published 03 Nov 2023

Synthesis of ether lipids: natural compounds and analogues

  • Marco Antônio G. B. Gomes,
  • Alicia Bauduin,
  • Chloé Le Roux,
  • Romain Fouinneteau,
  • Wilfried Berthe,
  • Mathieu Berchel,
  • Hélène Couthon and
  • Paul-Alain Jaffrès

Beilstein J. Org. Chem. 2023, 19, 1299–1369, doi:10.3762/bjoc.19.96

Graphical Abstract
PDF
Album
Review
Published 08 Sep 2023

Photoredox catalysis harvesting multiple photon or electrochemical energies

  • Mattia Lepori,
  • Simon Schmid and
  • Joshua P. Barham

Beilstein J. Org. Chem. 2023, 19, 1055–1145, doi:10.3762/bjoc.19.81

Graphical Abstract
PDF
Album
Review
Published 28 Jul 2023

First synthesis of acylated nitrocyclopropanes

  • Kento Iwai,
  • Rikiya Kamidate,
  • Khimiya Wada,
  • Haruyasu Asahara and
  • Nagatoshi Nishiwaki

Beilstein J. Org. Chem. 2023, 19, 892–900, doi:10.3762/bjoc.19.67

Graphical Abstract
  • bulkier. The obtained nitrocyclopropane was transformed into furan upon treatment with tin(II) chloride via a ring-opening/ring-closure process. Keywords: acetoxyiodine; conjugate addition; dihydrofuran; nitroalkene; nitrocyclopropane; Introduction 3-Arylated 2-nitrocyclopropane-1,1-dicarbonylic acid
  • compounds to give diarylated (oxoalkyl)malonates [6]. In the reaction using tin(II) chloride as the Lewis acid, the ring opening and nucleophilic attack of the nitro group occur, to produce functionalized isoxazolines (reaction d) [7]. In contrast, denitration under basic conditions generates highly
  • substituent may prevent the attack of other reagents and suppress the decomposition of the nitrocyclopropane framework. The chemical transformation of cyclopropane 1e was investigated. When a solution of 1e and tin(II) chloride in benzene was heated at 100 °C for 14 h, successive ring-opening/ring-closure
PDF
Album
Supp Info
Full Research Paper
Published 21 Jun 2023

Combining the best of both worlds: radical-based divergent total synthesis

  • Kyriaki Gennaiou,
  • Antonios Kelesidis,
  • Maria Kourgiantaki and
  • Alexandros L. Zografos

Beilstein J. Org. Chem. 2023, 19, 1–26, doi:10.3762/bjoc.19.1

Graphical Abstract
  • the perception that radicals cannot be selectively used took place with the introduction of tin hydrides in organic synthesis. Apart from the lower toxicity compared to organomercury reagents, the stability and longevity of tin-centered radicals allowed better propagation of radical chain reactions
PDF
Album
Review
Published 02 Jan 2023

Ionic multiresonant thermally activated delayed fluorescence emitters for light emitting electrochemical cells

  • Merve Karaman,
  • Abhishek Kumar Gupta,
  • Subeesh Madayanad Suresh,
  • Tomas Matulaitis,
  • Lorenzo Mardegan,
  • Daniel Tordera,
  • Henk J. Bolink,
  • Sen Wu,
  • Stuart Warriner,
  • Ifor D. Samuel and
  • Eli Zysman-Colman

Beilstein J. Org. Chem. 2022, 18, 1311–1321, doi:10.3762/bjoc.18.136

Graphical Abstract
  • -emitting electrochemical cells LEECs were fabricated using DiKTa-OBuIm and DiKTa-DPA-OBuIm as emitters. The device stack was the following: ITO/PEDOT:PSS/emitter/Al (where ITO is indium tin oxide; PEDOT:PSS is poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)). The PEDOT:PSS and the emitter layers
PDF
Album
Supp Info
Full Research Paper
Published 22 Sep 2022

Effect of a twin-emitter design strategy on a previously reported thermally activated delayed fluorescence organic light-emitting diode

  • Ettore Crovini,
  • Zhen Zhang,
  • Yu Kusakabe,
  • Yongxia Ren,
  • Yoshimasa Wada,
  • Bilal A. Naqvi,
  • Prakhar Sahay,
  • Tomas Matulaitis,
  • Stefan Diesing,
  • Ifor D. W. Samuel,
  • Wolfgang Brütting,
  • Katsuaki Suzuki,
  • Hironori Kaji,
  • Stefan Bräse and
  • Eli Zysman-Colman

Beilstein J. Org. Chem. 2021, 17, 2894–2905, doi:10.3762/bjoc.17.197

Graphical Abstract
  • ; for example, high triplet energy, good film-forming ability. OLED devices Finally, DICzTRZ and ICzTRZ-based OLEDs were fabricated using the following device structure: ITO (indium tin oxide) (50 nm)/PEDOT:PSS (poly(3,4-ethylenedioxythiophene) polystyrene sulfonate) (35 nm)/PVK (poly(9-vinylcarbazole
PDF
Album
Supp Info
Full Research Paper
Published 08 Dec 2021

Synthetic strategies toward 1,3-oxathiolane nucleoside analogues

  • Umesh P. Aher,
  • Dhananjai Srivastava,
  • Girij P. Singh and
  • Jayashree B. S

Beilstein J. Org. Chem. 2021, 17, 2680–2715, doi:10.3762/bjoc.17.182

Graphical Abstract
  • -catalyzed hydrolysis of protected racemic nucleosides to synthesize the enantiomerically pure oxathiolane nucleoside analogues 1 and 2 (Scheme 41). The protected racemic nucleoside derivatives 95 were synthesized by tin-mediated N-glycosylation of the corresponding acetate precursor 94 with silylated
PDF
Album
Review
Published 04 Nov 2021

Exfoliated black phosphorous-mediated CuAAC chemistry for organic and macromolecular synthesis under white LED and near-IR irradiation

  • Azra Kocaarslan,
  • Zafer Eroglu,
  • Önder Metin and
  • Yusuf Yagci

Beilstein J. Org. Chem. 2021, 17, 2477–2487, doi:10.3762/bjoc.17.164

Graphical Abstract
  • when the components are light sensitive at short wavelength region and spatial control is required. Experimental Materials Red phosphorus (98.9%), tin (99.5%), and tin(IV) iodide (95%) were purchased from Alfa Aesar. Ethyl alcohol (absolute) was obtained from Sigma-Aldrich. Dimethyl sulfoxide (DMSO
  • was synthesized according to a modified procedure [49]. To a Schlenk tube, 3-butyn-1-ol was dissolved in ε-caprolactone and heated to 110 °C under nitrogen. After the reaction mixture warmed up homogeneously, one drop of tin octoate was added to the reaction media and the solution was stirred for 3
PDF
Album
Supp Info
Full Research Paper
Published 23 Sep 2021

Allylic alcohols and amines by carbenoid eliminative cross-coupling using epoxides or aziridines

  • Matthew J. Fleming and
  • David M. Hodgson

Beilstein J. Org. Chem. 2021, 17, 2385–2389, doi:10.3762/bjoc.17.155

Graphical Abstract
  • ). Access to allylic alcohol 8 was also achievable (55%, E/Z = 56:44) in a tin-free process using a sulfonyl leaving group, via α-lithiation of sulfone 15 [18] and in the presence of LTMP (Scheme 7). γ-Hydroxysulfone 16 was formed competitively (44%, dr = 50:50), by direct addition of the lithiated sulfone
  • with cross-coupling using the same carbenoid and epoxide 5 (Scheme 5), where the presence of LTMP also proved necessary. A cinnamylamine 23 could be obtained in a tin-free process (Scheme 10), which utilises the increased acidity of a benzylic ether 22. In this case, the presence of LTMP was necessary
PDF
Album
Supp Info
Letter
Published 10 Sep 2021

Chemical syntheses and salient features of azulene-containing homo- and copolymers

  • Vijayendra S. Shetti

Beilstein J. Org. Chem. 2021, 17, 2164–2185, doi:10.3762/bjoc.17.139

Graphical Abstract
  • polymer 52 in good yields (Scheme 11). The other two polymers 54 and 56 were synthesized through Stille coupling reactions of 46 with 2,6-bis(trimethylstannyl)-4,8-bis(2-ethylhexyloxy)benzo[1,2-b:4,5-b’]dithiophene (53) and tin agent 55, respectively, as shown in the Scheme 12. These polymers 50, 52, 54
PDF
Album
Review
Published 24 Aug 2021

Recent advances in the application of isoindigo derivatives in materials chemistry

  • Andrei V. Bogdanov and
  • Vladimir F. Mironov

Beilstein J. Org. Chem. 2021, 17, 1533–1564, doi:10.3762/bjoc.17.111

Graphical Abstract
  • composite with platinum nanoparticles stabilized with poly(acrylic acid) [113]. Such a catalytic system, obtained by layer-by-layer self-assembly with the addition of poly(diallyldimethylammonium chloride) on the indium tin oxide surface, provided hydrogen formation in photoelectrolytic cycles with a
PDF
Album
Review
Published 06 Jul 2021
Other Beilstein-Institut Open Science Activities