Search results

Search for "microscopy" in Full Text gives 1781 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Tendency in tip polarity changes in non-contact atomic force microscopy imaging on a fluorite surface

  • Bob Kyeyune,
  • Philipp Rahe and
  • Michael Reichling

Beilstein J. Nanotechnol. 2025, 16, 944–950, doi:10.3762/bjnano.16.72

Graphical Abstract
  • Bob Kyeyune Philipp Rahe Michael Reichling Institut für Physik, Universität Osnabrück, Barbarastraße 7, 49076 Osnabrück, Germany 10.3762/bjnano.16.72 Abstract We investigate the impact of tip changes on atomic-scale non-contact atomic force microscopy (NC-AFM) contrast formation when imaging a
  • . Keywords: atomic resolution imaging; calcium fluoride surface; interaction force; non-contact atomic force microscopy (NC-AFM); tip change; Introduction Non-contact atomic force microscopy (NC-AFM) [1] is a surface science tool that has been used to atomically resolve surfaces of semiconductor and
PDF
Album
Full Research Paper
Published 26 Jun 2025

Structural and magnetic properties of microwave-synthesized reduced graphene oxide/VO2/Fe2O3 nanocomposite

  • Sumanta Sahoo,
  • Ankur Sood and
  • Sung Soo Han

Beilstein J. Nanotechnol. 2025, 16, 921–932, doi:10.3762/bjnano.16.70

Graphical Abstract
  • and 6.50 mA using an Al Kα. The morphologies and elemental analyses of rGO and the NCs were analyzed through scanning electron microscopy (SEM, Hitachi, S-4800). The structural analysis of these fabricated NCs was examined using high-resolution transmission electron microscopy (HRTEM, FEI Tecnai G2
PDF
Album
Full Research Paper
Published 20 Jun 2025

Focused ion beam-induced platinum deposition with a low-temperature cesium ion source

  • Thomas Henning Loeber,
  • Bert Laegel,
  • Meltem Sezen,
  • Feray Bakan Misirlioglu,
  • Edgar J. D. Vredenbregt and
  • Yang Li

Beilstein J. Nanotechnol. 2025, 16, 910–920, doi:10.3762/bjnano.16.69

Graphical Abstract
  • magnetic or superconductive structures can be created [1][2][3][4]. Also, specific mechanical structures on atomic force microscopy (AFM) cantilevers can be made [5][6]. In the literature, four mechanisms are used to explain the complex process of focused ion beam-induced deposition (FIBID) [5][7]; the
  • Ga+. With these benefits in applications established, microscopy and induced deposition studies help to establish more properties of the Cs+ FIB. Given the similar sources and FIB column designs of Cs+ and Rb+ FIBs, it is useful to compare applications with these FIBs to understand the relative
  • energy-dispersive X-ray spectroscopy (EDS), lamellas for transmission electron microscopy (TEM) were prepared. Experimental The Ga+ FIB is a ThermoFisher Helios NanoLab 650 and uses a gas injection system (GIS). ZeroK NanoTech Corporation has created commercially available Cs+ FIB systems based on
PDF
Album
Full Research Paper
Published 16 Jun 2025

Characterization of ion track-etched conical nanopores in thermal and PECVD SiO2 using small angle X-ray scattering

  • Shankar Dutt,
  • Rudradeep Chakraborty,
  • Christian Notthoff,
  • Pablo Mota-Santiago,
  • Christina Trautmann and
  • Patrick Kluth

Beilstein J. Nanotechnol. 2025, 16, 899–909, doi:10.3762/bjnano.16.68

Graphical Abstract
  • and a wider size distribution. Results and Discussions Figure 1 shows plan-view scanning electron microscopy (SEM) images of nanopores fabricated in thermal (Figure 1a) and PECVD (Figure 1b) SiO2 by etching ion tracks produced with 1.6 GeV Au ion irradiation (see Experimental and Theory section for
  • note that, unless otherwise noted, the nanopore radius or size mentioned throughout this work refers specifically to the radius of the cone base. To overcome the limited sampling of pores in SEM imaging, we complemented the microscopy analysis with small-angle X-ray scattering, which provides
  • measured pore radii, we estimate track etch rates of 69 ± 3 nm/min for thermal and 90 ± 6 nm/min for PECVD SiO2, respectively. While the scanning electron microscopy images reveal the variation in nanopore size for PECVD SiO2 compared to thermal SiO2, as well as differences in nanopore morphology, these
PDF
Album
Full Research Paper
Published 12 Jun 2025

Heat-induced transformation of nickel-coated polycrystalline diamond film studied in situ by XPS and NEXAFS

  • Olga V. Sedelnikova,
  • Yuliya V. Fedoseeva,
  • Dmitriy V. Gorodetskiy,
  • Yuri N. Palyanov,
  • Elena V. Shlyakhova,
  • Eugene A. Maksimovskiy,
  • Anna A. Makarova,
  • Lyubov G. Bulusheva and
  • Aleksandr V. Okotrub

Beilstein J. Nanotechnol. 2025, 16, 887–898, doi:10.3762/bjnano.16.67

Graphical Abstract
  • process occurring at the interface between diamond and Ni nanoparticles was revealed using high-resolution transmission electron microscopy (HRTEM) [19][24]. During annealing, Ni nanoparticles etch the diamond surface, resulting in the formation of a narrow interdiffusion zone. The carbon atoms released
  • . Additionally, angle-resolved NEXAFS spectra of annealed Ni-coated SCD were measured to reveal the orientation of the formed graphitic layers. After synchrotron measurements, the samples were exposed to air and further analyzed using Raman spectroscopy and scanning electron microscopy (SEM). The obtained
  • coating upon annealing. This result confirms previously reported findings, which demonstrated the catalytic role of nickel in the reconstruction of a diamond surface [17][18][19][20][21][22][23][24]. Based on electron microscopy and Raman spectroscopy data, the authors of those studies claimed that
PDF
Album
Supp Info
Full Research Paper
Published 12 Jun 2025

Ar+ implantation-induced tailoring of RF-sputtered ZnO films: structural, morphological, and optical properties

  • Manu Bura,
  • Divya Gupta,
  • Arun Kumar and
  • Sanjeev Aggarwal

Beilstein J. Nanotechnol. 2025, 16, 872–886, doi:10.3762/bjnano.16.66

Graphical Abstract
  • in grazing incidence angle X-ray diffraction patterns. Atomic force microscopy images show grain size reduction and a fall in the surface roughness value of films after implantation. The implantation-induced structural modifications are further correlated with the variation in diffuse reflectance
  • using a WITec alpha300 RA Raman spectrometer under excitation with a 532 nm solid-state diode laser operated at 10 mW. The topography of the films is examined using atomic force microscopy (AFM) with a Bruker Multimode 8 instrument. The surface morphology of pristine and implanted films is further
  • studied using field-emission scanning electron microscopy (FESEM) along with energy dispersive X-ray spectroscopy (EDS). Cross-sectional images are also obtained to evaluate the thickness of ZnO film. The optical properties of pristine and implanted ZnO films are investigated using a Shimadzu UV–visible
PDF
Album
Full Research Paper
Published 11 Jun 2025

Insights into the electronic and atomic structures of cerium oxide-based ultrathin films and nanostructures using high-brilliance light sources

  • Paola Luches and
  • Federico Boscherini

Beilstein J. Nanotechnol. 2025, 16, 860–871, doi:10.3762/bjnano.16.65

Graphical Abstract
  • spectra in photoemission electron microscopy (PEEM) mode, in which the photon energy is scanned across the XAS edge and the intensity of the secondary electrons is detected using a PEEM. This allowed to image the shape and size of ceria nanoislands on Ru(0001) and to probe and compare the oxidation state
PDF
Album
Review
Published 10 Jun 2025

Synchrotron X-ray photoelectron spectroscopy study of sodium adsorption on vertically arranged MoS2 layers coated with pyrolytic carbon

  • Alexander V. Okotrub,
  • Anastasiya D. Fedorenko,
  • Anna A. Makarova,
  • Veronica S. Sulyaeva,
  • Yuliya V. Fedoseeva and
  • Lyubov G. Bulusheva

Beilstein J. Nanotechnol. 2025, 16, 847–859, doi:10.3762/bjnano.16.64

Graphical Abstract
  • . The scanning electron microscopy (SEM) images of the surface of raw MoS2 film, hydrogen-annealed film, and PyC film are compared in Figure 1b,c,e. The raw MoS2 film covers the entire area of the substrate and contains polysulfide nanoparticles on the surface (Figure 1b). These nanoparticles are absent
PDF
Album
Supp Info
Full Research Paper
Published 10 Jun 2025

Facile one-step radio frequency magnetron sputtering of Ni/NiO on stainless steel for an efficient electrode for hydrogen evolution reaction

  • Ha Huu Do,
  • Khac Binh Nguyen,
  • Phuong N. Nguyen and
  • Hoai Phuong Pham

Beilstein J. Nanotechnol. 2025, 16, 837–846, doi:10.3762/bjnano.16.63

Graphical Abstract
  • and metal oxide phases, offering a potential for HER. These outcomes indicated the successful Ni/NiO thin film fabrication on SS substrates. The uniformity of the electrocatalyst material is a vital factor that has a direct effect on electrode performance. Scanning electron microscopy (SEM) was
PDF
Album
Supp Info
Full Research Paper
Published 06 Jun 2025

Synthesis and magnetic transitions of rare-earth-free Fe–Mn–Ni–Si-based compositionally complex alloys at bulk and nanoscale

  • Shabbir Tahir,
  • Tatiana Smoliarova,
  • Carlos Doñate-Buendía,
  • Michael Farle,
  • Natalia Shkodich and
  • Bilal Gökce

Beilstein J. Nanotechnol. 2025, 16, 823–836, doi:10.3762/bjnano.16.62

Graphical Abstract
  • microscopy (TEM) and EDX with a Jeol 2200FS microscope (Japan) equipped with an Oxford X-MaxN TLE 80 EDX detector (UK). The microscope was operated at an acceleration voltage of 200 kV and utilized a 2k × 2k GATAN UltraScan 1000XP CCD camera. For TEM analysis, the colloidal particles were dispersed onto a
PDF
Album
Supp Info
Full Research Paper
Published 05 Jun 2025

Supramolecular hydration structure of graphene-based hydrogels: density functional theory, green chemistry and interface application

  • Hon Nhien Le,
  • Duy Khanh Nguyen,
  • Minh Triet Dang,
  • Huyen Trinh Nguyen,
  • Thi Bang Tam Dao,
  • Trung Do Nguyen,
  • Chi Nhan Ha Thuc and
  • Van Hieu Le

Beilstein J. Nanotechnol. 2025, 16, 806–822, doi:10.3762/bjnano.16.61

Graphical Abstract
  • GO-SG-ZH powder. The graphene-based nanocomposites in hydrogel form and in powder form were comparatively characterized using moisture analysis, scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), and aqueous dispersibility. Brush coating of graphene oxide–nanosilica–zinc
  • microscopy and energy-dispersive X-ray spectroscopy were performed using a JSM-IT200 system (JEOL). Samples were coated with Pt before the SEM-EDS analysis. X-ray diffraction was performed on a D8 Advance instrument (Bruker). Fourier-transform infrared spectroscopy (FTIR) was characterized with a FT/IR-6600
PDF
Album
Supp Info
Full Research Paper
Published 04 Jun 2025

Morphology and properties of pyrite nanoparticles obtained by pulsed laser ablation in liquid and thin films for photodetection

  • Akshana Parameswaran Sreekala,
  • Bindu Krishnan,
  • Rene Fabian Cienfuegos Pelaes,
  • David Avellaneda Avellaneda,
  • Josué Amílcar Aguilar-Martínez and
  • Sadasivan Shaji

Beilstein J. Nanotechnol. 2025, 16, 785–805, doi:10.3762/bjnano.16.60

Graphical Abstract
  • microscopy, scanning electron microscopy, X-ray photoelectron spectroscopy, and ultraviolet–visible spectroscopy. The morphology of the NPs in different solvents varied from spherical, rice-like to rod-like particles which demonstrates the effect of the solvent on the morphology/composition of NPs
  • nanocolloid in this work. The optical properties of nanocolloids and their thin films were evaluated using UV–visible (UV–vis) spectroscopy. The nanoparticle characterization and surface morphology were studied using transmission electron microscopy (TEM), scanning electron microscopy (SEM), and the
  • temperatures and amounts of sulfur. Characterization The morphological analyses of pyrite NPs were recorded using the FEI Titan G2 80–300 for TEM, high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM), high-resolution TEM (HRTEM) and selected area electron diffraction (SAED). The
PDF
Album
Supp Info
Full Research Paper
Published 03 Jun 2025

Changes of structural, magnetic and spectroscopic properties of microencapsulated iron sucrose nanoparticles in saline

  • Sabina Lewińska,
  • Pavlo Aleshkevych,
  • Roman Minikayev,
  • Anna Bajorek,
  • Mateusz Dulski,
  • Krystian Prusik,
  • Tomasz Wojciechowski and
  • Anna Ślawska-Waniewska

Beilstein J. Nanotechnol. 2025, 16, 762–784, doi:10.3762/bjnano.16.59

Graphical Abstract
  • changes upon dissolution in saline were tested. For the undissolved sample, calcium alginate microcapsules with irregular shapes were registered via scanning electron microscopy, inside which core–shell nanoparticles were identified by transmission electron microscopy micrographs. Magnetic studies (DC and
  • information about the iron release process from such microcapsules based on changes in physical properties. In order to carry out this study, a multi-technique analysis of undissolved and dissolved compounds was performed, including microstructure studies using scanning electron microscopy (SEM) and
  • transmission electron microscopy (TEM). Composition studies using XRD, magnetic properties using dc and ac magnetometry, and extensive spectral analysis using Fourier-transform infrared spectroscopy (FTIR), Raman, and electron paramagnetic resonance (EPR) were also performed. Considering that the AB-Fortis
PDF
Album
Full Research Paper
Published 02 Jun 2025

Thickness dependent oxidation in CrCl3: a scanning X-ray photoemission and Kelvin probe microscopies study

  • Shafaq Kazim,
  • Rahul Parmar,
  • Maryam Azizinia,
  • Matteo Amati,
  • Muhammad Rauf,
  • Andrea Di Cicco,
  • Seyed Javid Rezvani,
  • Dario Mastrippolito,
  • Luca Ottaviano,
  • Tomasz Klimczuk,
  • Luca Gregoratti and
  • Roberto Gunnella

Beilstein J. Nanotechnol. 2025, 16, 749–761, doi:10.3762/bjnano.16.58

Graphical Abstract
  • particular technological interest, even more in the case of chromium trihalides (CrX3, X = Cl, Br, and I), whose longer lifetime under ambient conditions is particularly intriguing. By using synchrotron-based scanning photoelectron microscopy with a resolution of 0.1 μm and Kelvin probe force microscopy, we
  • oxidation or the introduction of surface vacancies, a novel and versatile approach is unveiled for the development of low-dimensional multifunctional nanodevices. Keywords: chemical mapping; CrX3; Kelvin probe force microscopy; mechanical exfoliation; scanning photoelectron microscopy (SPEM); two
  • [2][11][8][10], focusing on thin layered flakes and the role of the layer thicknesses obtained by spectro- and scanning microscopy with a lateral resolution of a few tens of nanometers. The interaction with the supporting substrate is a crucial factor [3][12] regarding the properties of the flakes
PDF
Album
Supp Info
Full Research Paper
Published 02 Jun 2025

Efficiency of single-pulse laser fragmentation of organic nutraceutical dispersions in a circular jet flow-through reactor

  • Tina Friedenauer,
  • Maximilian Spellauge,
  • Alexander Sommereyns,
  • Verena Labenski,
  • Tuba Esatbeyoglu,
  • Christoph Rehbock,
  • Heinz P. Huber and
  • Stephan Barcikowski

Beilstein J. Nanotechnol. 2025, 16, 711–727, doi:10.3762/bjnano.16.55

Graphical Abstract
  • yield of submicrometer particles and nanoparticles was quantified using UV–vis extinction spectroscopy, scanning electron microscopy, and analytical centrifugation, while high-performance liquid chromatography determined degradation. We found improved fragmentation efficiency at lower mass
  • of the laser fluence and more precise PPV adjustment, allowing for the use of significantly higher concentrations (because of the low liquid layer thickness) [81]. Also, to gain deeper insights into the fragmentation mechanisms of organic MPs, pump–probe microscopy imaging, as already performed for
PDF
Album
Supp Info
Full Research Paper
Published 26 May 2025

Nanostructured materials characterized by scanning photoelectron spectromicroscopy

  • Matteo Amati,
  • Alexey S. Shkvarin,
  • Alexander I. Merentsov,
  • Alexander N. Titov,
  • María Taeño,
  • David Maestre,
  • Sarah R. McKibbin,
  • Zygmunt Milosz,
  • Ana Cremades,
  • Rainer Timm and
  • Luca Gregoratti

Beilstein J. Nanotechnol. 2025, 16, 700–710, doi:10.3762/bjnano.16.54

Graphical Abstract
  • , environmental reliability, and operando capabilities. Scanning photoelectron spectromicroscopy (SPEM) is one of the characterization tools that combine high spectral resolution X-ray photoelectron spectroscopy with submicron spatial resolution. In particular, the SPEM equipment hosted at the ESCA microscopy
  • several improvements have been developed at synchrotron light facilities where unique properties of X-ray radiation can be found. Scanning photoelectron microscopy (SPEM) combines XPS analysis with lateral resolution; chemical imaging as well as XPS spectroscopy at nanoscale sized areas can be performed
  • providing fine chemical and electronic analysis of samples regardless of their morphology, which often limits the capabilities of other microscopy techniques [11]. This work reports three examples of SPEM experiments focused on the characterization of nanostructured materials. Measurements were performed at
PDF
Album
Review
Published 23 May 2025

High-temperature epitaxial growth of tantalum nitride thin films on MgO: structural evolution and potential for SQUID applications

  • Michelle Cedillo Rosillo,
  • Oscar Contreras López,
  • Jesús Antonio Díaz,
  • Agustín Conde Gallardo and
  • Harvi A. Castillo Cuero

Beilstein J. Nanotechnol. 2025, 16, 690–699, doi:10.3762/bjnano.16.53

Graphical Abstract
  • , atomic force microscopy, and transmission electron microscopy analyses revealed that the TaN films exhibit excellent crystallinity and smooth surface morphology, when deposited at optimal temperatures of 750 and 850 °C. The films exhibit superconducting transition temperatures (Tc) ranging from 5.0 to
  • . Atomic force microscopy (AFM, XE-70 Park Systems) in contact mode was used to study the surface morphology of the films. The synthesis protocol used in this study was modified from the work reported by Quintanar-Zamora et al. [15] by varying the substrate temperature and the nitrogen pressure. Results
  • 750 °C, the sample, which has δ-TaN as the significant phase, exhibits a superconducting transition at Tc = 5.3 K. The highest value of Tc was obtained for the film deposited at 850 °C with pN2 = 90 mTorr (Tc = 6.3 K). Cross-sectional transmission electron microscopy samples were prepared by a 4 kV Ar
PDF
Album
Full Research Paper
Published 22 May 2025

The impact of tris(pentafluorophenyl)borane hole transport layer doping on interfacial charge extraction and recombination

  • Konstantinos Bidinakis and
  • Stefan A. L. Weber

Beilstein J. Nanotechnol. 2025, 16, 678–689, doi:10.3762/bjnano.16.52

Graphical Abstract
  • in solar cells based on these materials. To do so on operating solar cells, we created samples with exposed cross-sections and examined their potential profile distributions with Kelvin probe force microscopy (KPFM), implementing our comprehensive measurement protocol. Using the Lewis acid tris
  • ; hole transport layer doping; Kelvin probe force microscopy; perovskite solar cells; Introduction Perovskite solar cells (PSCs) are a promising class of photovoltaic material that exhibits high power conversion efficiencies and relies on a low-cost solution-processed fabrication method [1][2][3][4]. At
  • force microscopy (KPFM) is an important tool for conducting such studies, enabling the measurement of the perovskite’s surface potential by monitoring the electrostatic force between the surface and a conductive probe (See Supporting Information File 1, Section 1). This measurement can provide insights
PDF
Album
Supp Info
Full Research Paper
Published 21 May 2025

Colloidal few layered graphene–tannic acid preserves the biocompatibility of periodontal ligament cells

  • Teissir Ben Ammar,
  • Naji Kharouf,
  • Dominique Vautier,
  • Housseinou Ba,
  • Nivedita Sudheer,
  • Philippe Lavalle and
  • Vincent Ball

Beilstein J. Nanotechnol. 2025, 16, 664–677, doi:10.3762/bjnano.16.51

Graphical Abstract
  • granules, each being hundreds of micrometers in size (Figure 1A). In contrast, the obtained FLG–TA colloid has a layered structure, and sheets seem to have been peeled off from the graphite surface (Figure 1B,C). Transmission electron microscopy (TEM) micrographs of the flakes’ edges (Figure 1D,E) reveal
  • with FLG–TA concentrations ranging from 1 to 200 µg·mL−1. Cellular morphology was examined using scanning electron microscopy (SEM, Figure 5), with untreated cells as controls. The occupancy index (OI) of FLG–TA in cell populations and the lateral dimensions of FLG–TA particles on cell membranes were
  • surfaces as observed through SEM, we undertook additional confocal microscopy analyses concentrating on the actin cytoskeleton, which is a pivotal determinant of cellular structural integrity and adhesion capability, as well as overall cell viability [39][40]. The arrangement of actin filaments is
PDF
Album
Supp Info
Full Research Paper
Published 20 May 2025

Aprepitant-loaded solid lipid nanoparticles: a novel approach to enhance oral bioavailability

  • Mazhar Hussain,
  • Muhammad Farooq,
  • Muhammad Asad Saeed,
  • Muhammad Ijaz,
  • Sherjeel Adnan,
  • Zeeshan Masood,
  • Muhammad Waqas,
  • Wafa Ishaq and
  • Nabeela Ameer

Beilstein J. Nanotechnol. 2025, 16, 652–663, doi:10.3762/bjnano.16.50

Graphical Abstract
  • microscopy (SEM), X-ray diffraction (XRD), differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA), in vitro drug release in 0.1 M HCl (pH 1.2) and phosphate-buffered saline (PBS, pH 7.4), and pharmacokinetic studies. The optimal formulation (APT-CD-NP4) containing the highest
  • solubility and enhanced dissolution using a minimum quantity of carriers. The developed SLNs were evaluated regarding drug content and using scanning electron microscopy (SEM), thermal gravimetric analysis (TGA) and differential scanning calorimetry (DSC), as well as polydispersity index (PDI), particle size
  • . Scanning electron microscopy (SEM) photographs of APT-NPs were obtained on a JSM-6380A, Joel, Japan operating at a voltage of 10.0 kV. The specimens were mounted on a metallic stub with double-sided adhesive tape and gold-coated in an argon atmosphere prior to observation [28]. Drug excipient interaction
PDF
Album
Full Research Paper
Published 15 May 2025

Nanoscale capacitance spectroscopy based on multifrequency electrostatic force microscopy

  • Pascal N. Rohrbeck,
  • Lukas D. Cavar,
  • Franjo Weber,
  • Peter G. Reichel,
  • Mara Niebling and
  • Stefan A. L. Weber

Beilstein J. Nanotechnol. 2025, 16, 637–651, doi:10.3762/bjnano.16.49

Graphical Abstract
  • of Mainz, Staudingerweg 7, 55128 Mainz, Germany Institute for Photovoltaics, University of Stuttgart, Pfaffenwaldring 47, 70569 Stuttgart, Germany 10.3762/bjnano.16.49 Abstract We present multifrequency heterodyne electrostatic force microscopy (MFH-EFM) as a novel electrostatic force microscopy
  • , enabling the measurement of the local dielectric function over a wide range of frequencies. We demonstrate the reliable operation of MFH-EFM using standard atomic force microscopy equipment plus an external lock-in amplifier up to a frequency of 5 MHz, which can in principle be extended to gigahertz
  • nanoscale systems across materials science, biology, and nanotechnology, complementing established methods in the field. Keywords: atomic force microscopy; capacitance gradients; dielectric constant; dielectric spectroscopy; heterodyne frequency mixing; Kelvin probe force microscopy; multifrequency AFM
PDF
Album
Supp Info
Full Research Paper
Published 08 May 2025

A formulation containing Cymbopogon flexuosus essential oil: improvement of biochemical parameters and oxidative stress in diabetic rats

  • Ailton Santos Sena-Júnior,
  • Cleverton Nascimento Santana Andrade,
  • Pedro Henrique Macedo Moura,
  • Jocsã Hémany Cândido dos Santos,
  • Cauãn Torres Trancoso,
  • Eloia Emanuelly Dias Silva,
  • Deise Maria Rego Rodrigues Silva,
  • Ênio Pereira Telles,
  • Luiz André Santos Silva,
  • Isabella Lima Dantas Teles,
  • Sara Fernanda Mota de Almeida,
  • Daniel Alves de Souza,
  • Jileno Ferreira Santos,
  • Felipe José Aidar Martins,
  • Ana Mara de Oliveira e Silva,
  • Sandra Lauton-Santos,
  • Guilherme Rodolfo Souza de Araujo,
  • Cristiane Bani Correa,
  • Rogéria De Souza Nunes,
  • Lysandro Pinto Borges and
  • Ana Amélia Moreira Lira

Beilstein J. Nanotechnol. 2025, 16, 617–636, doi:10.3762/bjnano.16.48

Graphical Abstract
  • of this system. The literature reports that a PDI below 0.5 also indicates greater physical stability of the obtained formulation [20][21]. The M7-EOCF sample was also examined using polarized light microscopy to investigate its optical properties. Isotropic behavior was observed (Supporting
PDF
Album
Supp Info
Full Research Paper
Published 07 May 2025

Feasibility analysis of carbon nanofiber synthesis and morphology control using a LPG premixed flame

  • Iftikhar Rahman Bishal,
  • Muhammad Hilmi Ibrahim,
  • Norikhwan Hamzah,
  • Mohd Zamri Mohd Yusop,
  • Faizuan Bin Abdullah,
  • I Putu Tedy Indrayana and
  • Mohd Fairus Mohd Yasin

Beilstein J. Nanotechnol. 2025, 16, 581–590, doi:10.3762/bjnano.16.45

Graphical Abstract
  • microscopy (FESEM, Zeiss Crossbeam 340) for morphological analysis. Raman spectroscopy (HORIBA XploRA PLUS, 532 nm) was carried out to analyze the signature spectra of the grown CNFs. Results and Discussion Flame characterization and temperature The flames were characterized regarding flame shape and
PDF
Album
Full Research Paper
Published 23 Apr 2025

Retrieval of B1 phase from high-pressure B2 phase for CdO nanoparticles by electronic excitations in CdxZn1−xO composite thin films

  • Arkaprava Das,
  • Marcin Zając and
  • Carla Bittencourt

Beilstein J. Nanotechnol. 2025, 16, 551–560, doi:10.3762/bjnano.16.43

Graphical Abstract
  • spectrometer (Bruker), equipped with an Ar ion laser (532 nm) with 0.2 mW laser operating power. Scanning electron microscopy (SEM) analysis was carried out with a HITACHI SU8020 model, using an electron beam energy of 3.0 keV. X-ray photoelectron spectroscopy (XPS) was performed using an ESCA-5000 Versa Probe
PDF
Album
Full Research Paper
Published 17 Apr 2025

Functionalized gold nanoflowers on carbon screen-printed electrodes: an electrochemical platform for biosensing hemagglutinin protein of influenza A H1N1 virus

  • Carlos Enrique Torres-Méndez,
  • Sharmilee Nandi,
  • Klara Martinovic,
  • Patrizia Kühne,
  • Yifan Liu,
  • Sam Taylor,
  • Maria Lysandrou,
  • Maria Ines Berrojo Romeyro Mascarenhas,
  • Viktoria Langwallner,
  • Javier Enrique Sebastián Alonso,
  • Ivana Jovanovic,
  • Maike Lüftner,
  • Georgia-Vasiliki Gkountana,
  • David Bern,
  • Abdul-Raouf Atif,
  • Ehsan Manouchehri Doulabi,
  • Gemma Mestres and
  • Masood Kamali-Moghaddam

Beilstein J. Nanotechnol. 2025, 16, 540–550, doi:10.3762/bjnano.16.42

Graphical Abstract
  • protein at clinically relevant concentrations. Scanning electron microscopy Scanning electron microscopy (SEM) analysis was explored to characterize the surface of the electrodes after electrodeposition of gold nanoparticles (Figure 2). Because of the high conductivity of gold, a difference in contrast is
PDF
Album
Supp Info
Full Research Paper
Published 16 Apr 2025
Other Beilstein-Institut Open Science Activities