Search results

Search for "toxicity" in Full Text gives 370 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Green synthesis of silver nanoparticles derived from algae and their larvicidal properties to control Aedes aegypti

  • Matheus Alves Siqueira de Assunção,
  • Douglas Dourado,
  • Daiane Rodrigues dos Santos,
  • Gabriel Bezerra Faierstein,
  • Mara Elga Medeiros Braga,
  • Severino Alves Junior,
  • Rosângela Maria Rodrigues Barbosa,
  • Herminio José Cipriano de Sousa and
  • Fábio Rocha Formiga

Beilstein J. Nanotechnol. 2024, 15, 1566–1575, doi:10.3762/bjnano.15.123

Graphical Abstract
  • cost and sustainable biosynthesis. In the perspective of using AgNPs in the development of novel insecticides for vector control, this review deals with the eco-friendly synthesis of AgNPs through seaweed extracts as reducing and stabilizing agents. In addition, assessment of toxicity of these
  • of toxicity of AgNPs in mosquito larvae has recently been reported (Figure 3). The small size of AgNPs is linked to two pathways of action. First, AgNPs can pass through the insect cuticle and penetrate individual cells. The second way is the ingestion of AgNPs by larvae through their generalist
  • the presence or absence of larvae feeding must be established for better reliability of larvicidal studies. Furthermore, although the studies included did not carry out toxicity studies on non-target species, it is important to highlight the need for studies such as phytotoxicity, in vitro studies in
PDF
Album
Review
Published 04 Dec 2024

The round-robin approach applied to nanoinformatics: consensus prediction of nanomaterials zeta potential

  • Dimitra-Danai Varsou,
  • Arkaprava Banerjee,
  • Joyita Roy,
  • Kunal Roy,
  • Giannis Savvas,
  • Haralambos Sarimveis,
  • Ewelina Wyrzykowska,
  • Mateusz Balicki,
  • Tomasz Puzyn,
  • Georgia Melagraki,
  • Iseult Lynch and
  • Antreas Afantitis

Beilstein J. Nanotechnol. 2024, 15, 1536–1553, doi:10.3762/bjnano.15.121

Graphical Abstract
  • effects. The integration of in silico new approach methodologies (NAMs) within the area of nanotechnology has created a plethora of possibilities for the assessment of NM properties and toxicity to support and/or substitute traditional experimental methodologies [2][3]. The field of nanoinformatics covers
  • [10][11][12] have been presented recently for predicting various NM properties and toxicity effects. The combination of multiple NAMs, both experimental and computational, within an “Integrated Approaches to Testing and Assessment” (IATA) framework will further improve the entire risk evaluation of
  • [26][27]. The computational prediction of the ZP of NMs (Figure 1) has been of high interest in the area of nanoinformatics during the last decade, given the role of surface charge in determining NMs interactions with membranes and in driving toxicity, whereby positively charged particles are
PDF
Album
Supp Info
Full Research Paper
Published 29 Nov 2024

Integrating high-performance computing, machine learning, data management workflows, and infrastructures for multiscale simulations and nanomaterials technologies

  • Fabio Le Piane,
  • Mario Vozza,
  • Matteo Baldoni and
  • Francesco Mercuri

Beilstein J. Nanotechnol. 2024, 15, 1498–1521, doi:10.3762/bjnano.15.119

Graphical Abstract
PDF
Album
Perspective
Published 27 Nov 2024

Polymer lipid hybrid nanoparticles for phytochemical delivery: challenges, progress, and future prospects

  • Iqra Rahat,
  • Pooja Yadav,
  • Aditi Singhal,
  • Mohammad Fareed,
  • Jaganathan Raja Purushothaman,
  • Mohammed Aslam,
  • Raju Balaji,
  • Sonali Patil-Shinde and
  • Md. Rizwanullah

Beilstein J. Nanotechnol. 2024, 15, 1473–1497, doi:10.3762/bjnano.15.118

Graphical Abstract
  • improve the selective delivery of drugs/phytochemicals to specific tissues or cells. A site-specific targeting approach enhances the therapeutic efficacy of phytochemicals and reduces systemic toxicity. In addition to enhancing solubility and targeting, PLHNPs offer controlled release properties that are
  • metabolism, and degradation in the physiological fluids. This necessitates higher doses to achieve therapeutic effects, which may increase the risk of side effects and toxicity [26][27]. Chemical instability is also a critical challenge. Phytochemicals can be chemically unstable and degrade under
  • in the distribution of phytochemicals throughout the body rather than targeting specific tissues or cells. Non-specific distribution increases the risk of off-target effects and systemic toxicity, reducing the concentration of the phytochemical at the desired site of action and decreasing therapeutic
PDF
Album
Review
Published 22 Nov 2024

Nanotechnological approaches for efficient N2B delivery: from small-molecule drugs to biopharmaceuticals

  • Selin Akpinar Adscheid,
  • Akif E. Türeli,
  • Nazende Günday-Türeli and
  • Marc Schneider

Beilstein J. Nanotechnol. 2024, 15, 1400–1414, doi:10.3762/bjnano.15.113

Graphical Abstract
  • materials to tailor them for therapeutic applications. Because of the unique benefits and to avoid limitations such as burst release, low encapsulation efficiency, and toxicity [120], researchers have been combining NPs to develop hybrid NPs. Hybrid NPs are nanoparticles prepared by a combination of at
  • site of action with the highest efficiency and without toxicity or enzymatic degradation is considered a challenge [147]. Therefore, using DDSs to deliver biopharmaceuticals via N2B will provide increased stability and targeting potential. Meredith et al. [148] and Patharapankal et al. [149] presented
PDF
Album
Review
Published 12 Nov 2024

Nanoarchitectonics with cetrimonium bromide on metal nanoparticles for linker-free detection of toxic metal ions and catalytic degradation of 4-nitrophenol

  • Akash Kumar and
  • Raja Gopal Rayavarapu

Beilstein J. Nanotechnol. 2024, 15, 1312–1332, doi:10.3762/bjnano.15.106

Graphical Abstract
  • potentially carcinogenic, and it is hard to predict their toxicity at early stages of exposure. In addition, industrial wastewater may contain toxic compounds such as the widely used 4-nitrophenol [1]. Hence, one need is to develop a dual-functional and flexible linker-free metal nanoparticle-based sensor
  • high strength to nanoparticles, the use of such nanoparticles is limited in sensing, catalysis, and biomedical applications because of post-synthesis functionalization, morphology, and toxicity [6][7][8]. CTAB is a resilient molecule on the nanoparticle surface because of its micellar structure and
  • [15]. Besides heavy metals, 4-nitrophenol is widely used for dye synthesis, insecticides and pesticides, indicators, and photographic chemicals [16]. Regarding the use of 4-nitrophenol, there are several toxicity concerns via different exposure routes, including dermal, oral, and inhalation [17
PDF
Album
Supp Info
Full Research Paper
Published 04 Nov 2024

Interaction of graphene oxide with tannic acid: computational modeling and toxicity mitigation in C. elegans

  • Romana Petry,
  • James M. de Almeida,
  • Francine Côa,
  • Felipe Crasto de Lima,
  • Diego Stéfani T. Martinez and
  • Adalberto Fazzio

Beilstein J. Nanotechnol. 2024, 15, 1297–1311, doi:10.3762/bjnano.15.105

Graphical Abstract
  • interaction of GO with tannic acid (TA) and its consequences for GO toxicity. We focused on understanding how TA interacts with GO, its impact on the material surface chemistry, colloidal stability, as well as, toxicity and biodistribution using the Caenorhabditis elegans model. Employing computational
  • -dependent mitigating effect on the toxicity of GO, which can be attributed not only to the surface interactions between the molecule and the material but also to the inherent biological properties of TA in C. elegans. Our findings contribute to a deeper understanding of GO’s environmental behavior and
  • toxicity and highlight the potential of tannic acid for the synthesis and surface functionalization of graphene-based nanomaterials, offering insights into safer nanotechnology development. Keywords: biodistribution; density functional theory; ecotoxicity; molecular dynamics; surface interactions
PDF
Album
Supp Info
Full Research Paper
Published 30 Oct 2024

Functional morphology of cleaning devices in the damselfly Ischnura elegans (Odonata, Coenagrionidae)

  • Silvana Piersanti,
  • Gianandrea Salerno,
  • Wencke Krings,
  • Stanislav Gorb and
  • Manuela Rebora

Beilstein J. Nanotechnol. 2024, 15, 1260–1272, doi:10.3762/bjnano.15.102

Graphical Abstract
  • . In this regard, it is important to remember that understanding insect grooming may provide insights into routes of entry of pesticides because the oral toxicity of substances that induce grooming (such as insecticides or other chemicals toxic for insects) should increase in insects that include
PDF
Album
Supp Info
Full Research Paper
Published 16 Oct 2024

Dual-functionalized architecture enables stable and tumor cell-specific SiO2NPs in complex biological fluids

  • Iris Renata Sousa Ribeiro,
  • Raquel Frenedoso da Silva,
  • Romênia Ramos Domingues,
  • Adriana Franco Paes Leme and
  • Mateus Borba Cardoso

Beilstein J. Nanotechnol. 2024, 15, 1238–1252, doi:10.3762/bjnano.15.100

Graphical Abstract
  • exhibit heightened efficacy and reduced toxicity for medical purposes. Keywords: colloidal stability; complex media; functionalized nanoparticles; hemolysis; targeting tumor; Introduction In recent years, there has been a growing search for developing high-efficiency nanomedicines for cancer treatment
  • corona formation, toxicity, and tumor targeting in biologically relevant media, including supplemented cell culture media, human plasma, and murine blood. Our results indicated that (i) low amounts of human plasma proteins adsorb on doubly functionalized SiO2NPs, (ii) the addition of ZW leads to a
PDF
Album
Supp Info
Full Research Paper
Published 07 Oct 2024

Enhanced catalytic reduction through in situ synthesized gold nanoparticles embedded in glucosamine/alginate nanocomposites

  • Chi-Hien Dang,
  • Le-Kim-Thuy Nguyen,
  • Minh-Trong Tran,
  • Van-Dung Le,
  • Nguyen Minh Ty,
  • T. Ngoc Han Pham,
  • Hieu Vu-Quang,
  • Tran Thi Kim Chi,
  • Tran Thi Huong Giang,
  • Nguyen Thi Thanh Tu and
  • Thanh-Danh Nguyen

Beilstein J. Nanotechnol. 2024, 15, 1227–1237, doi:10.3762/bjnano.15.99

Graphical Abstract
  • particular, have demonstrated significant control over the nucleation and growth of metallic nanoparticles. Utilizing polysaccharide-mediated procedures for AuNP synthesis offers several advantages over conventional methods, including cost-effectiveness, energy efficiency, low toxicity, and eco-friendliness
PDF
Album
Full Research Paper
Published 04 Oct 2024

Realizing active targeting in cancer nanomedicine with ultrasmall nanoparticles

  • André F. Lima,
  • Giselle Z. Justo and
  • Alioscka A. Sousa

Beilstein J. Nanotechnol. 2024, 15, 1208–1226, doi:10.3762/bjnano.15.98

Graphical Abstract
  • ; (iii) investigating usNP long-term tissue accumulation and potential toxicity; (iv) quantifying usNP tumor extravasation and intravasation; and (v) assessing usNP intratumoral diffusion. Integrating this knowledge will enable mathematical modeling of body clearance, tumor uptake, and intratumoral
PDF
Album
Review
Published 30 Sep 2024

Synthesis, characterization and anticancer effect of doxorubicin-loaded dual stimuli-responsive smart nanopolymers

  • Ömür Acet,
  • Pavel Kirsanov,
  • Burcu Önal Acet,
  • Inessa Halets-Bui,
  • Dzmitry Shcharbin,
  • Şeyda Ceylan Cömert and
  • Mehmet Odabaşı

Beilstein J. Nanotechnol. 2024, 15, 1189–1196, doi:10.3762/bjnano.15.96

Graphical Abstract
  • , high stability, low toxicity, modifiable hydrophilicity/hydrophobicity, and the possibility of surface functionalization for targeted localization. Polymeric nanoparticles are a versatile approach to drug delivery (DD) with the potential to circumvent barriers associated with negative impacts on
PDF
Album
Full Research Paper
Published 26 Sep 2024

Introducing third-generation periodic table descriptors for nano-qRASTR modeling of zebrafish toxicity of metal oxide nanoparticles

  • Supratik Kar and
  • Siyun Yang

Beilstein J. Nanotechnol. 2024, 15, 1142–1152, doi:10.3762/bjnano.15.93

Graphical Abstract
  • of their unique properties. However, their size, surface area, and reactivity can cause toxicity, potentially leading to oxidative stress, inflammation, and cellular or DNA damage. In this study, a nano-quantitative structure–toxicity relationship (nano-QSTR) model was initially developed to assess
  • zebrafish toxicity for 24 MONPs. Previously established 23 first- and second-generation periodic table descriptors, along with five newly proposed third-generation descriptors derived from the periodic table, were employed. Subsequently, to enhance the quality and predictive capability of the nano-QSTR
  • model, a nano-quantitative read across structure–toxicity relationship (nano-qRASTR) model was created. This model integrated read-across descriptors with modeled descriptors from the nano-QSTR approach. The nano-qRASTR model, featuring three attributes, outperformed the previously reported simple QSTR
PDF
Album
Supp Info
Full Research Paper
Published 10 Sep 2024

Recent updates in applications of nanomedicine for the treatment of hepatic fibrosis

  • Damai Ria Setyawati,
  • Fransiska Christydira Sekaringtyas,
  • Riyona Desvy Pratiwi,
  • A’liyatur Rosyidah,
  • Rohimmahtunnissa Azhar,
  • Nunik Gustini,
  • Gita Syahputra,
  • Idah Rosidah,
  • Etik Mardliyati,
  • Tarwadi and
  • Sjaikhurrizal El Muttaqien

Beilstein J. Nanotechnol. 2024, 15, 1105–1116, doi:10.3762/bjnano.15.89

Graphical Abstract
  • accumulation selectively through specific binding to receptors overexpressed by cancer cells (left panel of Figure 1), resulting in enhanced therapeutic activity and reduced systemic toxicity. Globally, there are around 15 approved cancer drug nanoformulations for clinical use, and 80 candidates for novel
  • model, the efficient intrahepatic delivery of R406-PLGA NPs ameliorated liver inflammation, fibrosis, and hepatic steatosis, probably because of improved pharmacokinetics and bioavailability of R406. Despite its favorable toxicity profile, only 19 drug formulations based on PLGA have been approved by
  • dissolve a broad range of poorly water-soluble drugs. As this polymeric platform could deliver substantial amounts of curcumin to the liver, a significant reduction in in vivo CCl4-induced hepatocellular injury could be observed. The toxicity data also shows that NanoCurc™ essentially exhibits no toxicity
PDF
Album
Review
Published 23 Aug 2024

Unveiling the potential of alginate-based nanomaterials in sensing technology and smart delivery applications

  • Shakhzodjon Uzokboev,
  • Khojimukhammad Akhmadbekov,
  • Ra’no Nuritdinova,
  • Salah M. Tawfik and
  • Yong-Ill Lee

Beilstein J. Nanotechnol. 2024, 15, 1077–1104, doi:10.3762/bjnano.15.88

Graphical Abstract
  • several excellent properties that can be crucial in drug delivery, such as low cost, antioxidant and antibacterial activity, non-toxicity, biodegradability, and biocompatibility. Biopolymeric nanoparticles (NPs) can be used in DDSs, and they can protect the drugs from the adverse conditions of the
  • gel structure. As a result, the viscosity and other mechanical qualities of alginate can be enhanced, allowing for the formation of a hydrogel. The attractive properties of alginate include low cost, abundance, biocompatibility, biodegradability, antibacterial activity, non-toxicity, and the ease to
  • digestive enzymes in the gastrointestinal tract can break down some medications before they reach the bloodstream [45]. In addition to this, lack of selectivity can minimize their effectiveness. Also, drug absorption may be high in detoxifying organs such as liver and kidneys, causing toxicity in those
PDF
Album
Review
Published 22 Aug 2024

Atomistic insights into the morphological dynamics of gold and platinum nanoparticles: MD simulations in vacuum and aqueous media

  • Evangelos Voyiatzis,
  • Eugenia Valsami-Jones and
  • Antreas Afantitis

Beilstein J. Nanotechnol. 2024, 15, 995–1009, doi:10.3762/bjnano.15.81

Graphical Abstract
  • picture of the NPs’ toxicity and reactivity emerges: Small/hot NPs are likely more toxic than their large/cold counterparts. Because of the small size of the NPs considered, the observed structural modifications are challenging to be studied by experimental techniques. The present approach can be readily
  • information regarding the toxicity and reactivity of these NPs by monitoring the behaviour of nano-descriptors commonly employed in quantitative structure–activity relationship (QSAR) models and by measuring the water–NP energetic interactions. The extracted information from our simulations complements
  • signifies the occurrence of a phase transition in a cluster of atoms. Additional atomic parameters are the average potential energy, force, and coordination number per atom. These quantities have also been employed as descriptors in nano-QSAR models to successfully predict the toxicity of NPs [73][74][75
PDF
Album
Supp Info
Full Research Paper
Published 07 Aug 2024

Therapeutic effect of F127-folate@PLGA/CHL/IR780 nanoparticles on folate receptor-expressing cancer cells

  • Thi Ngoc Han Pham,
  • Phuong-Thao Dang-Luong,
  • Hong-Phuc Nguyen,
  • Loc Le-Tuan,
  • Xuan Thang Cao,
  • Thanh-Danh Nguyen,
  • Vy Tran Anh and
  • Hieu Vu_Quang

Beilstein J. Nanotechnol. 2024, 15, 954–964, doi:10.3762/bjnano.15.78

Graphical Abstract
  • discovered to have exceptional inherent tumor-targeting characteristics without any modification, and it is a fluorophore enabling near-infrared imaging. However, IR780 iodide has low water stability and photostability [23] and shows acute toxicity at high doses [24], which limits its clinical application
  • cytotoxicity The toxicity of F127-folate@PLGA/CHL/IR780 was assessed by the MTT test. Cells were treated with these nanoparticles at several concentrations (0.5, 1, and 1.5 mg/mL) and time points (24, 48, and 72 h) and then assessed. The cells were then exposed to MTT for 4 h. The medium was removed with care
  • , decreased toxicity, and versatility are some of the benefits of PLGA nanoparticles [1][3][4]. Therefore, this study aimed to synthesize PLGA nanoparticles with these advantages. The PLGA nanoparticles in this study were designed to contain CHL, a well-known cancer medication [19], as well as IR780, a
PDF
Album
Supp Info
Full Research Paper
Published 31 Jul 2024

Facile synthesis of Fe-based metal–organic frameworks from Fe2O3 nanoparticles and their application for CO2/N2 separation

  • Van Nhieu Le,
  • Hoai Duc Tran,
  • Minh Tien Nguyen,
  • Hai Bang Truong,
  • Toan Minh Pham and
  • Jinsoo Kim

Beilstein J. Nanotechnol. 2024, 15, 897–908, doi:10.3762/bjnano.15.74

Graphical Abstract
  • using metallic iron and iron salts, along with HF and HNO3, in a conventional hydrothermal reactor operated at high temperatures [9][10]. While HF and HNO3 improve yield and quality of MIL-100(Fe), they are harmful to the environment because of their toxicity and corrosiveness. As a result, scientists
PDF
Album
Supp Info
Full Research Paper
Published 19 Jul 2024

A review on the structural characterization of nanomaterials for nano-QSAR models

  • Salvador Moncho,
  • Eva Serrano-Candelas,
  • Jesús Vicente de Julián-Ortiz and
  • Rafael Gozalbes

Beilstein J. Nanotechnol. 2024, 15, 854–866, doi:10.3762/bjnano.15.71

Graphical Abstract
  • component of the nanoform (core, surface, or structure) and also experimental features (related to the nanomaterial’s behavior, preparation, or test conditions) that indirectly reflect its structure. Keywords: descriptors; nanomaterials; nano-QSAR; QSAR; toxicity; Introduction Computational techniques of
  • –100 nm). Figure 1 shows some types of NMs according to their dimensions [12]. Several studies show that the nanoscopic structure of the nanoparticles or their aggregates affects the behavior of NMs, and more particularly their toxicity. The influence of the size and the structure of nanoparticles or
  • their aggregates on their toxicity has been recently reviewed [13]. From now, we will use the label “nanostructure” to refer to these properties, in comparison with the term “structure” referring to the chemical composition. The nanostructural differences among nanoparticles can be defined by different
PDF
Album
Supp Info
Review
Published 11 Jul 2024

When nanomedicines meet tropical diseases

  • Eder Lilia Romero,
  • Katrien Van Bocxlaer and
  • Fabio Rocha Formiga

Beilstein J. Nanotechnol. 2024, 15, 830–832, doi:10.3762/bjnano.15.69

Graphical Abstract
  • ]. Potentially beneficial properties of nanomedicines include enhanced drug solubility, improved bioavailability, targeted drug delivery, longer half-life, and reduced toxicity. This thematic issue covers pre-clinical research employing chemotherapeutic or prophylactic nanomedicines against NTDs in a concise
PDF
Editorial
Published 08 Jul 2024

Green synthesis of biomass-derived carbon quantum dots for photocatalytic degradation of methylene blue

  • Dalia Chávez-García,
  • Mario Guzman,
  • Viridiana Sanchez and
  • Rubén D. Cadena-Nava

Beilstein J. Nanotechnol. 2024, 15, 755–766, doi:10.3762/bjnano.15.63

Graphical Abstract
  • are designed to be resistant to light, detergents, and cleaning products, making them difficult to remove. When these dyes are released into water bodies, they cause pollution problems such as chemical oxygen demand, toxicity, and reduced light penetration, which affects aquatic life. As a result, the
PDF
Album
Full Research Paper
Published 25 Jun 2024

Radiofrequency enhances drug release from responsive nanoflowers for hepatocellular carcinoma therapy

  • Yanyan Wen,
  • Ningning Song,
  • Yueyou Peng,
  • Weiwei Wu,
  • Qixiong Lin,
  • Minjie Cui,
  • Rongrong Li,
  • Qiufeng Yu,
  • Sixue Wu,
  • Yongkang Liang,
  • Wei Tian and
  • Yanfeng Meng

Beilstein J. Nanotechnol. 2024, 15, 569–579, doi:10.3762/bjnano.15.49

Graphical Abstract
  • leading cause of cancer death worldwide. Most patients are diagnosed at an advanced stage, and systemic chemotherapy is the preferred treatment modality for advanced HCC. Curcumin (CUR) is a polyphenolic antineoplastic drug with low toxicity obtained from plants. However, its low bioavailability and poor
  • significant side effects such as hypertension, proteinuria, and skin toxicity [7][8]. Hence, there is a pressing need to develop new therapeutic modalities that offer substantial efficacy while minimizing side effects. Extensive efforts have been dedicated to drug development and delivery technologies in
  • on normal liver cells. At the optimal concentration of NFs, the antitumor effects of the RF, CUR, and CUR-Fe@MnO2 NFs on Huh-7 cells were similar, which indicated that their toxicity to Huh-7 cells was limited. There was no significant difference in cell viability between RF, CUR, CUR-Fe@MnO2 NFs
PDF
Album
Full Research Paper
Published 22 May 2024

On the additive artificial intelligence-based discovery of nanoparticle neurodegenerative disease drug delivery systems

  • Shan He,
  • Julen Segura Abarrategi,
  • Harbil Bediaga,
  • Sonia Arrasate and
  • Humberto González-Díaz

Beilstein J. Nanotechnol. 2024, 15, 535–555, doi:10.3762/bjnano.15.47

Graphical Abstract
  • compound towards the target site with a substantial reduction of toxicity for the adjacent tissues, and help the NDDs to pass physiological barriers, increasing bioavailability without resorting to high dosages [5][11]. Therefore, researchers are studying and developing new treatment approaches that use
  • , we consider AI/ML to be helpful in the development of N2D3Ss to select the most efficient combination of NP and drug, taking into account properties regarding chemical absorption, distribution, metabolism, excretion, and toxicity (ADMET), and the biological activity regarding NDs [20]. Nevertheless
  • ]. In this paper the IFPTML method was used to combine preclinical assays of NDDs and NPs. Speck-Planche et al. described multiple IFPTML approaches regarding toxicity and drug delivery of NPs with a large number of species under a wide variety of experimental conditions. However, this study did not
PDF
Album
Supp Info
Full Research Paper
Published 15 May 2024

Cholesterol nanoarchaeosomes for alendronate targeted delivery as an anti-endothelial dysfunction agent

  • Horacio Emanuel Jerez,
  • Yamila Roxana Simioni,
  • Kajal Ghosal,
  • Maria Jose Morilla and
  • Eder Lilia Romero

Beilstein J. Nanotechnol. 2024, 15, 517–534, doi:10.3762/bjnano.15.46

Graphical Abstract
  • with sufficient effectivity under dynamic conditions [26]. However, simple in vitro experimental settings employing static conditions could anticipate both potential toxicity and therapeutic effects. In this context, new natural biomaterials such as archaeolipids are being explored with growing
PDF
Album
Supp Info
Full Research Paper
Published 13 May 2024

Photocatalytic degradation of methylene blue under visible light by cobalt ferrite nanoparticles/graphene quantum dots

  • Vo Chau Ngoc Anh,
  • Le Thi Thanh Nhi,
  • Le Thi Kim Dung,
  • Dang Thi Ngoc Hoa,
  • Nguyen Truong Son,
  • Nguyen Thi Thao Uyen,
  • Nguyen Ngoc Uyen Thu,
  • Le Van Thanh Son,
  • Le Trung Hieu,
  • Tran Ngoc Tuyen and
  • Dinh Quang Khieu

Beilstein J. Nanotechnol. 2024, 15, 475–489, doi:10.3762/bjnano.15.43

Graphical Abstract
  • degradation and other dyes. Keywords: cobalt ferrite; graphene quantum dots; methylene blue; Introduction Graphene quantum dots (GQDs) have unique properties, including photoluminescence, biocompatibility, slight chemical toxicity, inertness, and excellent photostability [1][2]. Graphene quantum dots
PDF
Album
Supp Info
Full Research Paper
Published 29 Apr 2024
Other Beilstein-Institut Open Science Activities