Search results

Search for "SiO2" in Full Text gives 472 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Isolation of cubic Si3P4 in the form of nanocrystals

  • Polina K. Nikiforova,
  • Sergei S. Bubenov,
  • Vadim B. Platonov,
  • Andrey S. Kumskov,
  • Nikolay N. Kononov,
  • Tatyana A. Kuznetsova and
  • Sergey G. Dorofeev

Beilstein J. Nanotechnol. 2023, 14, 971–979, doi:10.3762/bjnano.14.80

Graphical Abstract
  • be induced by a reaction of Si3P4 NPs with the air moisture resulting in a fluctuating ratio of SiO2/Si3P4 in the particles. The possibility of phosphorus sorption on the well-developed surface of NPs further complicates the determination of the ratio. As higher temperatures were found to promote
PDF
Album
Supp Info
Full Research Paper
Published 26 Sep 2023

Low temperature atomic layer deposition of cobalt using dicobalt hexacarbonyl-1-heptyne as precursor

  • Mathias Franz,
  • Mahnaz Safian Jouzdani,
  • Lysann Kaßner,
  • Marcus Daniel,
  • Frank Stahr and
  • Stefan E. Schulz

Beilstein J. Nanotechnol. 2023, 14, 951–963, doi:10.3762/bjnano.14.78

Graphical Abstract
  • crystal 200 mm silicon (100) wafers with a pre-coated thermal SiO2 film of 100 nm thickness. As precursor for all depositions dicobalt hexacarbonyl-1-heptyne [Co2(CO)6HC≡CC5H11] was used. The precursor was synthesised according to Georgi et al. [23] and filled to a common 200 mL stainless steel bubbler
PDF
Album
Supp Info
Full Research Paper
Published 15 Sep 2023

Upscaling the urea method synthesis of CoAl layered double hydroxides

  • Camilo Jaramillo-Hernández,
  • Víctor Oestreicher,
  • Martín Mizrahi and
  • Gonzalo Abellán

Beilstein J. Nanotechnol. 2023, 14, 927–938, doi:10.3762/bjnano.14.76

Graphical Abstract
  • spin-coated on a Si wafer (3000 rpm, 40 s), washed with ethanol and dried afterward. For AFM, the samples were diluted in ethanol and drop-cast on a Si/SiO2 wafer. Si/SiO2 wafers were washed by spin-coating ten droplets of acetone and ten droplets of isopropanol prior to sample deposition. Scanning
PDF
Album
Supp Info
Full Research Paper
Published 11 Sep 2023

Humidity-dependent electrical performance of CuO nanowire networks studied by electrochemical impedance spectroscopy

  • Jelena Kosmaca,
  • Juris Katkevics,
  • Jana Andzane,
  • Raitis Sondors,
  • Liga Jasulaneca,
  • Raimonds Meija,
  • Kiryl Niherysh,
  • Yelyzaveta Rublova and
  • Donats Erts

Beilstein J. Nanotechnol. 2023, 14, 683–691, doi:10.3762/bjnano.14.54

Graphical Abstract
  • of nanostructured CuO, and indicate directions for further applications in humidity sensors and other systems with nanowire interconnects. Results and Discussion The synthesized CuO nanowires (Figure 1a) were assembled between arrays of lithographically defined Au microelectrodes on a Si/SiO2 chip
  • naturally. The substrates were submerged in pure isopropanol (IPA) and ultrasonicated for 3 s to release the CuO nanowires. These nanowires were assembled on arrays of Cr/Au (3/60 nm) microelectrodes lithographically pre-patterned on a commercially available Si/SiO2 wafer substrate (MTI Corporation) diced
PDF
Album
Full Research Paper
Published 05 Jun 2023

Nanoarchitectonics to entrap living cells in silica-based systems: encapsulations with yolk–shell and sepiolite nanomaterials

  • Celia Martín-Morales,
  • Jorge Fernández-Méndez,
  • Pilar Aranda and
  • Eduardo Ruiz-Hitzky

Beilstein J. Nanotechnol. 2023, 14, 522–534, doi:10.3762/bjnano.14.43

Graphical Abstract
  • hand, the use of yolk–silica shell (YS) microstructures formed by soft template synthesis was explored [30] to encapsulate living cells with a highly porous SiO2 network aiming to introduce a small interstitial space between the microorganisms and the silica matrix. The latter strategy intends to
  • template synthesis appeared as a more efficient way to encapsulate living cells. In fact, cellular shellization with a highly porous SiO2 network and a small interstitial space between the cellular microorganisms and the silica matrix turned out to be a proficient cell surface nanoarchitectonics strategy
PDF
Album
Supp Info
Full Research Paper
Published 25 Apr 2023

On the use of Raman spectroscopy to characterize mass-produced graphene nanoplatelets

  • Keith R. Paton,
  • Konstantinos Despotelis,
  • Naresh Kumar,
  • Piers Turner and
  • Andrew J. Pollard

Beilstein J. Nanotechnol. 2023, 14, 509–521, doi:10.3762/bjnano.14.42

Graphical Abstract
  • extinction at 660 nm and using an extinction coefficient of 4237 mL·mg−1·m−1 [28] yielded a concentration of 0.028 mg·mL−1. To characterize the thickness of the particles in GNPref, the dispersion was drop-cast on to a cleaned Si/SiO2 (300 nm thick oxide layer) wafer. Before deposition, the dispersion was
  • diluted by a factor of 10 in fresh NMP. 10 μL of the diluted dispersion was then drop-cast on a Si/SiO2 wafer at a temperature of 200 °C. To remove residual NMP, the sample was dried overnight in a vacuum oven at 60 °C. AFM measurements of the deposited flakes were carried out using Cypher AFM (Asylum
PDF
Album
Supp Info
Full Research Paper
Published 24 Apr 2023

Plasmonic nanotechnology for photothermal applications – an evaluation

  • A. R. Indhu,
  • L. Keerthana and
  • Gnanaprakash Dharmalingam

Beilstein J. Nanotechnol. 2023, 14, 380–419, doi:10.3762/bjnano.14.33

Graphical Abstract
PDF
Album
Review
Published 27 Mar 2023

Overview of mechanism and consequences of endothelial leakiness caused by metal and polymeric nanoparticles

  • Magdalena Lasak and
  • Karol Ciepluch

Beilstein J. Nanotechnol. 2023, 14, 329–338, doi:10.3762/bjnano.14.28

Graphical Abstract
  • the transcellular pathway. NanoEL is a mechanism completely independent of receptors and tumor physiology [12][18][19][21][23]. This effect has been observed for various types of NPs including Au [12][21][33][34], Ag [23], Si [20], TiO2 [18][19][23], and SiO2 [23]. Additionally, NanoEL is responsible
  • of tumors may also contribute to faster intravasation and extravasation of cancer cells, which has been confirmed in both in vitro and in vivo studies. Peng et al. demonstrated that the exposure of breast cancer cells to TiO2, SiO2, and Au NPs significantly accelerates the intravasation and
  • unheard of in a tumor-dependent EPR effect. The extracellular NP mechanism of action for NPs including Ag, Au, Si, TiO2, and SiO2 was also confirmed in other studies, which indicated that it is the most likely method of NanoEL induction. Endothelial leakiness induced by nanomaterials is a direct mechanism
PDF
Album
Review
Published 08 Mar 2023

Biocatalytic synthesis and ordered self-assembly of silica nanoparticles via a silica-binding peptide

  • Mustafa Gungormus

Beilstein J. Nanotechnol. 2023, 14, 280–290, doi:10.3762/bjnano.14.25

Graphical Abstract
  • methods for manufacturing ordered structures of nanoparticles is an ongoing challenge. Ordered structures of SiO2 nanoparticles have gained increased attention due to the great potential they offer in filtering, separation, drug delivery, optics, electronics, and catalysis. Biomolecules, such as peptides
  • and proteins, have been demonstrated to be useful in the synthesis and self-assembly of inorganic nanostructures. Herein, we describe a simple Stöber-based method wherein both the synthesis and the self-assembly of SiO2 nanoparticles can be facilitated by a silica-binding peptide (SiBP). We
  • demonstrate that the SiBP acts as a multirole agent when used alone or in combination with a strong base catalyst (NH3). When used alone, SiBP catalyzes the hydrolysis of precursor molecules in a dose-dependent manner and produces 17–20 nm SiO2 particles organized in colloidal gels. When used in combination
PDF
Album
Supp Info
Full Research Paper
Published 28 Feb 2023

Formation of nanoflowers: Au and Ni silicide cores surrounded by SiOx branches

  • Feitao Li,
  • Siyao Wan,
  • Dong Wang and
  • Peter Schaaf

Beilstein J. Nanotechnol. 2023, 14, 133–140, doi:10.3762/bjnano.14.14

Graphical Abstract
  • This work reports the formation of nanoflowers after annealing of Au/Ni bilayers deposited on SiO2/Si substrates. The cores of the nanoflowers consist of segregated Ni silicide and Au parts and are surrounded by SiOx branches. The SiO2 decomposition is activated at 1050 °C in a reducing atmosphere, and
  • it can be enhanced more by Au compared to Ni. SiO gas from the decomposition of SiO2 and the active oxidation of Si is the source of Si for the growth of the SiOx branches of the nanoflowers. The concentration of SiO gas around the decomposition cavities is inhomogeneously distributed. Closer to the
  • to the strong ability of Au to enhance SiO2 decomposition, and nanoflowers with less difference in their branches can be observed across the whole sample. Keywords: Au/Ni bilayers; dewetting; vapor–liquid–solid; SiO2 decomposition; SiOx nanowires; Introduction Substantial efforts have been devoted
PDF
Album
Supp Info
Full Research Paper
Published 20 Jan 2023

Observation of collective excitation of surface plasmon resonances in large Josephson junction arrays

  • Roger Cattaneo,
  • Mikhail A. Galin and
  • Vladimir M. Krasnov

Beilstein J. Nanotechnol. 2022, 13, 1578–1588, doi:10.3762/bjnano.13.132

Graphical Abstract
  • green, SiO2 in yellow, and the junction interlayer in magenta (from [36]). Red bands in (a) and (c) mark one of the sections in each array, which was used for detailed studies. Panels (b) and (d) show the I–V characteristics of the marked sections in the meander (b) and linear (d) arrays. Measurements
PDF
Album
Full Research Paper
Published 28 Dec 2022

Hydroxyapatite–bioglass nanocomposites: Structural, mechanical, and biological aspects

  • Olga Shikimaka,
  • Mihaela Bivol,
  • Bogdan A. Sava,
  • Marius Dumitru,
  • Christu Tardei,
  • Beatrice G. Sbarcea,
  • Daria Grabco,
  • Constantin Pyrtsac,
  • Daria Topal,
  • Andrian Prisacaru,
  • Vitalie Cobzac and
  • Viorel Nacu

Beilstein J. Nanotechnol. 2022, 13, 1490–1504, doi:10.3762/bjnano.13.123

Graphical Abstract
  • , P, and Na, in the form of oxides, and SiO2, which was proven to be a very useful component for CHA formation, as well as for angiogenesis processes and collagen formation [8][9]. Since the discovery of 45S5 Bioglass, a wide range of bioglasses have been elaborated and investigated, which can be
  • -12MgO-8K2O-40P2O5-20SiO2-5ZnO-5CeO2 (mol %). This composition was chosen in order to combine high solubility of the glass with increased bioactivity, due to the high fraction of P2O5 and, simultaneously, the rather high fraction of SiO2. The inclusion of magnesium and potassium in conjunction with the
  • by an unconventional wet route followed by melting [31][37][38]. As raw materials, the ultra-purity grade reagents boron oxide (B2O3), magnesium oxide (MgO,) potassium carbonate (K2CO3), phosphoric acid (H3PO4), silicon dioxide (SiO2), zinc oxide (ZnO), and cerium oxide (CeO2) have been used. The
PDF
Full Research Paper
Published 12 Dec 2022

Recent trends in Bi-based nanomaterials: challenges, fabrication, enhancement techniques, and environmental applications

  • Vishal Dutta,
  • Ankush Chauhan,
  • Ritesh Verma,
  • C. Gopalkrishnan and
  • Van-Huy Nguyen

Beilstein J. Nanotechnol. 2022, 13, 1316–1336, doi:10.3762/bjnano.13.109

Graphical Abstract
  • -templates”. The high cost of template methods results from the lengthy process of creating and removing templates. Also, environmental aspects need to be considered as removing templates such as SiO2 requires using very corrosive acids or bases [61]. Numerous studies have focused on choosing templates for
PDF
Album
Review
Published 11 Nov 2022

Enhanced electronic transport properties of Te roll-like nanostructures

  • E. R. Viana,
  • N. Cifuentes and
  • J. C. González

Beilstein J. Nanotechnol. 2022, 13, 1284–1291, doi:10.3762/bjnano.13.106

Graphical Abstract
  • writing optical lithography on 1 × 1 cm2 degenerate Si(100) substrates covered by a 300 nm thick high-quality SiO2 layer. A Cr(10 nm)/Au(100 nm) bilayer was thermally evaporated on the sample to produce good ohmic contacts (see Supporting Information File 1). This procedure follows the methodology
  • vacuum, εav = 1.95 is the averaged relative permittivity of the SiO2/air interface of the FET [19][29]. Also, w = 550 nm, t = 50 nm, and L = 5.97 µm are the diameter of the nanostructure, the thickness of the nanostructure, and the length of the FET channel, respectively. The thickness of the dielectric
  • layer (SiO2) in the capacitor is dSiO2 = 300 nm. Figure 4 shows the transfer curves (Ids–Vg) of a single roll-like t-Te NW-1 one-dimensional nanostructure back-gated FET acquired at 5 and 320 K, as well as the calculated values of gm, p, and μh. The hole mobility was estimated to be μh(5 K) = 881 cm2/Vs
PDF
Album
Supp Info
Full Research Paper
Published 08 Nov 2022

Role of titanium and organic precursors in molecular layer deposition of “titanicone” hybrid materials

  • Arbresha Muriqi and
  • Michael Nolan

Beilstein J. Nanotechnol. 2022, 13, 1240–1255, doi:10.3762/bjnano.13.103

Graphical Abstract
  • SiO2 membrane [27] and ≈4.6 Å/cycle at 90 °C in Si(100) wafers [30]. We note the relatively low temperature of the titanicone deposition in refs. [27][30] which may prevent the double reaction with EG. For the TiCl3–GL model, the distance between Ti and O in the Ti–O–CH2CH2OHCH2–O fragment (GL in the
PDF
Album
Supp Info
Full Research Paper
Published 02 Nov 2022

Design of surface nanostructures for chirality sensing based on quartz crystal microbalance

  • Yinglin Ma,
  • Xiangyun Xiao and
  • Qingmin Ji

Beilstein J. Nanotechnol. 2022, 13, 1201–1219, doi:10.3762/bjnano.13.100

Graphical Abstract
  • [112][113]. Such materials possess controllable pore dimensions, compositions, and high surface areas, which may be intriguing substrates for chiral catalysis, sensing, and separation of various kinds of chiral analytes [114][115]. For example, Qiu et al. used SiO2 with chiral channels obtained after
  • chiral anion induction and combined with CD spectroscopy to achieve chiral recognition with a relatively larger size of poly(propiolic acid) sodium salt [116]; He et al. used chiral mesoporous SiO2 and combined with gas chromatography (GC) achieved chiral separation of amino acid derivatives and other
PDF
Album
Review
Published 27 Oct 2022

Application of nanoarchitectonics in moist-electric generation

  • Jia-Cheng Feng and
  • Hong Xia

Beilstein J. Nanotechnol. 2022, 13, 1185–1200, doi:10.3762/bjnano.13.99

Graphical Abstract
  • can be easily grown on substrates to form nanoscale networks and perform well in MEGs due to their unique electron transport properties [2][47][48]. This includes Al2O3 [49], MoS2 [50][51], Ni–Al layered double hydroxide (LDH) [52], MoS2/SiO2 composites [53], TiO2 [54], and Ti3C2Tx MXene nanosheets
  • . (c) A liquid droplet is sandwiched between graphene and a SiO2/Si wafer and is drawn at specific velocities by the wafer. (d) A pulse voltage is generated by continuously falling droplets. (e) Voltage induced by three droplets of different solutions. (f) Fitted slope A = V/v (V of voltage, v of
PDF
Album
Review
Published 25 Oct 2022

Analytical and numerical design of a hybrid Fabry–Perot plano-concave microcavity for hexagonal boron nitride

  • Felipe Ortiz-Huerta and
  • Karina Garay-Palmett

Beilstein J. Nanotechnol. 2022, 13, 1030–1037, doi:10.3762/bjnano.13.90

Graphical Abstract
  • λ0/4n thickness layer of hBN (n = 1.72) was positioned on top of a 15-pair layer DBR with tantalum oxide (Ta2O5) and silicon oxide (SiO2) as the high- and low-index layers, respectively, on a (HL)15 configuration to ensure an electric field antinode at the surface of the hBN layer, making the hBN
PDF
Album
Full Research Paper
Published 27 Sep 2022

Theoretical investigations of oxygen vacancy effects in nickel-doped zirconia from ab initio XANES spectroscopy at the oxygen K-edge

  • Dick Hartmann Douma,
  • Lodvert Tchibota Poaty,
  • Alessio Lamperti,
  • Stéphane Kenmoe,
  • Abdulrafiu Tunde Raji,
  • Alberto Debernardi and
  • Bernard M’Passi-Mabiala

Beilstein J. Nanotechnol. 2022, 13, 975–985, doi:10.3762/bjnano.13.85

Graphical Abstract
  • has been used for the similar SiO2 and has been found to produce theoretical spectra that are consistent with experimental data [45]. Also, a Lorentzian convolution with a variable broadening parameter γ has been applied in the continued fraction. For this purpose, we used γ = 0.3 eV for photon
PDF
Album
Full Research Paper
Published 15 Sep 2022

DNA aptamer selection and construction of an aptasensor based on graphene FETs for Zika virus NS1 protein detection

  • Nathalie B. F. Almeida,
  • Thiago A. S. L. Sousa,
  • Viviane C. F. Santos,
  • Camila M. S. Lacerda,
  • Thais G. Silva,
  • Rafaella F. Q. Grenfell,
  • Flavio Plentz and
  • Antero S. R. Andrade

Beilstein J. Nanotechnol. 2022, 13, 873–881, doi:10.3762/bjnano.13.78

Graphical Abstract
  • characterization utilizing field-effect transistors fabricated using single-layer graphene grown by chemical vapor deposition (CVD) and transferred to Si/SiO2 substrates. The wafers were purchased from Graphene Platform and we produced graphene transistors by conventional photolithography, following the procedures
PDF
Album
Supp Info
Full Research Paper
Published 02 Sep 2022

Temperature and chemical effects on the interfacial energy between a Ga–In–Sn eutectic liquid alloy and nanoscopic asperities

  • Yujin Han,
  • Pierre-Marie Thebault,
  • Corentin Audes,
  • Xuelin Wang,
  • Haiwoong Park,
  • Jian-Zhong Jiang and
  • Arnaud Caron

Beilstein J. Nanotechnol. 2022, 13, 817–827, doi:10.3762/bjnano.13.72

Graphical Abstract
  • the respective stabilities of the oxides at the tip and at the liquid surface, respectively. Their stability can be discussed based on their respective melting points and enthalpies of fusion ΔHfus and formation at T = 298.15 K, For amorphous SiO2, the following values were reported: = 1726 K
  • , = 7.438 kJ/mol, and = −910.68 kJ/mol [30]. For Ga2O3, the literature reports = 2080 K, = 99.77 kJ/mol, and = −1090.85 kJ/mol [30]. Hence, it appears that Ga2O3 is significantly more stable than SiO2, and we suggest that upon penetrating the Ga–In–Sn eutectic melt, oxygen atoms at the tip surface react
PDF
Album
Full Research Paper
Published 23 Aug 2022

Optimizing PMMA solutions to suppress contamination in the transfer of CVD graphene for batch production

  • Chun-Da Liao,
  • Andrea Capasso,
  • Tiago Queirós,
  • Telma Domingues,
  • Fatima Cerqueira,
  • Nicoleta Nicoara,
  • Jérôme Borme,
  • Paulo Freitas and
  • Pedro Alpuim

Beilstein J. Nanotechnol. 2022, 13, 796–806, doi:10.3762/bjnano.13.70

Graphical Abstract
  • ., Cu or Ni) to the desired target substrate (e.g., SiO2/Si, glass, or flexible polymers) often introduces inconsistencies among devices [10]. Various approaches have been developed to address this issue and establish a reproducible transfer process [11][12][13][14][15][16][17]. Among the many, the poly
  • up with a target substrate (SiO2/Si wafer). The sample was dried in a vacuum chamber (ca. 10−4 Torr) at room temperature for 2 h. For PMMA removal, the entire sample was vertically dipped into an acetone bath for 4 h. After that, the exposed graphene on a SiO2/Si substrate was again vertically dipped
  • synthesized graphene domains easy to be observed in an optical microscope equipped with a CCD camera (Supporting Information File 1, Figure S1a). Raman spectroscopy Large-area graphene films and single graphene crystals transferred onto SiO2/Si substrates were characterized by Raman microscopy (WITec GmbH
PDF
Album
Supp Info
Full Research Paper
Published 18 Aug 2022

Efficient liquid exfoliation of KP15 nanowires aided by Hansen's empirical theory

  • Zhaoxuan Huang,
  • Zhikang Jiang,
  • Nan Tian,
  • Disheng Yao,
  • Fei Long,
  • Yanhan Yang and
  • Danmin Liu

Beilstein J. Nanotechnol. 2022, 13, 788–795, doi:10.3762/bjnano.13.69

Graphical Abstract
  • . For the Raman tests, KP15 samples were spun on SiO2(300 nm)/Si substrates. The excitation wavelength used was 532 nm, the spot size was approx. 1 μm, and the laser power was kept below 20 μW. For low-temperature Raman measurements, a Linkam THMS600 cryostat cooled by liquid nitrogen was used to
  • control the temperature. To prevent sample drift, SiO2 (300 nm)/Si substrates with tested KP15 samples were attached by fixtures to the Linkam THMS600 cryostat. Results and Discussion KP15 bulks, prepared by the gas-phase-transfer method, had a flat and smooth surface shown in Figure 1a. The X-ray
PDF
Album
Supp Info
Full Research Paper
Published 17 Aug 2022

Revealing local structural properties of an atomically thin MoSe2 surface using optical microscopy

  • Lin Pan,
  • Peng Miao,
  • Anke Horneber,
  • Alfred J. Meixner,
  • Pierre-Michel Adam and
  • Dai Zhang

Beilstein J. Nanotechnol. 2022, 13, 572–581, doi:10.3762/bjnano.13.49

Graphical Abstract
  • local structural properties on the Raman enhancement at 2D-TMDC monolayer surfaces. Results In this work, triangular MoSe2 flakes were chemically synthesized on a precleaned Si substrate coated with a thermally grown layer of SiO2. To investigate the Raman enhancement effect on a MoSe2 flake, we choose
  • in Figure 1b are high-resolution AFM images of CuPc/MoSe2. The upper inset exhibits a step from the SiO2/Si substrate to the border of the MoSe2 flake, and the lower inset shows a distinct transition from the border to the center of the MoSe2 flake. The MoSe2 flake is fully covered by CuPc molecule
  • aggregations, while on the SiO2/Si substrate some CuPc molecules aggregated to a rod-like particle, which has been also reported in the literature [24]. The height profile marked by the dashed white line in Figure 1b is visualized in Figure 1c. It suggests that the center of the MoSe2 flake is slightly thinner
PDF
Album
Supp Info
Full Research Paper
Published 01 Jul 2022

Investigation of a memory effect in a Au/(Ti–Cu)Ox-gradient thin film/TiAlV structure

  • Damian Wojcieszak,
  • Jarosław Domaradzki,
  • Michał Mazur,
  • Tomasz Kotwica and
  • Danuta Kaczmarek

Beilstein J. Nanotechnol. 2022, 13, 265–273, doi:10.3762/bjnano.13.21

Graphical Abstract
  • requirements of the different characterization methods, thin gradient layers were deposited on silicon (Si), amorphous silica (SiO2) and conductive metallic substrates (Ti6Al4V). The resulting thickness of the prepared thin films was about 610 nm as measured using a Talysurf optical profiler (Tylor Hobson CCI
  • and reaches 40% on average. Visible maxima and minima result from multiple interferences of the light reflected from interfaces between air and thin film and thin film and SiO2 substrate. From the optical spectra, an optical bandgap width of about 2.8 eV was determined for the allowed indirect
PDF
Album
Full Research Paper
Published 24 Feb 2022
Other Beilstein-Institut Open Science Activities