Search results

Search for "lateral resolution" in Full Text gives 108 result(s) in Beilstein Journal of Nanotechnology.

Combined scanning probe electronic and thermal characterization of an indium arsenide nanowire

  • Tino Wagner,
  • Fabian Menges,
  • Heike Riel,
  • Bernd Gotsmann and
  • Andreas Stemmer

Beilstein J. Nanotechnol. 2018, 9, 129–136, doi:10.3762/bjnano.9.15

Graphical Abstract
  • nanoscale tip with the surface. So far, electrical and thermal device characterization by scanning probe microscopy has often suffered from low lateral resolution [3][4][5][6], long-distance averaging effects [7][8][9], and topography-induced crosstalk [10][11][12], allowing for a mainly qualitative data
  • the temperature to be detected with high sensitivity [12]. KFM is a non-contact scanning probe microscopy technique to measure local electrostatic potentials with high lateral resolution. The electrostatic force induced by an ac voltage bias between tip and surface is minimized by adjusting a dc
  • topography, geometrical artefacts and feedback problems can be minimized by appropriate control schemes [20]. The typical lateral resolution of our SThM and KFM setups is on the order of the tip radius (below 10 nm), at a noise level of 20 μK·Hz−0.5 and 1 mV·Hz−0.5, respectively, depending on operating
PDF
Album
Supp Info
Full Research Paper
Published 11 Jan 2018

Comparative study of post-growth annealing of Cu(hfac)2, Co2(CO)8 and Me2Au(acac) metal precursors deposited by FEBID

  • Marcos V. Puydinger dos Santos,
  • Aleksandra Szkudlarek,
  • Artur Rydosz,
  • Carlos Guerra-Nuñez,
  • Fanny Béron,
  • Kleber R. Pirota,
  • Stanislav Moshkalev,
  • José Alexandre Diniz and
  • Ivo Utke

Beilstein J. Nanotechnol. 2018, 9, 91–101, doi:10.3762/bjnano.9.11

Graphical Abstract
  • this work proved to be exceptionally reproducible and are expected to be adequate for applications that require the definition of sub-10 nm structures. This is possible, as the nonthermal electron-induced deposition with low electron densities guarantees lateral resolution fidelity, while the annealing
  • achieved with the use of nitrogen as carrier gas, using a strategy to overcome the usual problem caused by temperature gradients along the GIS [51]. Additionally, direct-write processes with optimized parameters allowed for the deposition of high-purity Co deposits in combination with high lateral
  • resolution [52][53]. Novel strategies have also been recently implemented to produce high-purity Cu nanodeposits using an aqueous solution precursor [54]. Moreover, the conventional post-growth annealing of FEBID deposits under vacuum has been reported as a promising protocol for tuning the non-noble metal
PDF
Album
Supp Info
Full Research Paper
Published 09 Jan 2018

Nanoprofilometry study of focal conic domain structures in a liquid crystalline free surface

  • Anna N. Bagdinova,
  • Evgeny I. Demikhov,
  • Nataliya G. Borisenko and
  • Sergei M. Tolokonnikov

Beilstein J. Nanotechnol. 2017, 8, 2544–2551, doi:10.3762/bjnano.8.254

Graphical Abstract
  • resolution is less than 0.1 nm, and the lateral resolution depends on the objective. We used a 20× objective with a lateral resolution 0.87 μm. Figure 1 shows the 8CB free surface ISSA scans for different liquid crystalline phases. Figure 1a shows the structure of the free surface 8CB in isotropic phase
PDF
Album
Full Research Paper
Published 29 Nov 2017

Robust procedure for creating and characterizing the atomic structure of scanning tunneling microscope tips

  • Sumit Tewari,
  • Koen M. Bastiaans,
  • Milan P. Allan and
  • Jan M. van Ruitenbeek

Beilstein J. Nanotechnol. 2017, 8, 2389–2395, doi:10.3762/bjnano.8.238

Graphical Abstract
  • [16] have been extensively studied, but very little has been done in controlling the actual tip structure itself at the atomic scale. A first attempt in this direction was made in the pioneering article of Binning and Rohrer [1] in which they first introduced STM. They observed that the lateral
  • resolution of their images can be increased when they gently touch the surface with the tip and then retract, which they describe as “mini-spot-welding”. Changing or preparing tips by indenting into the surface is a regular procedure used in the STM community and has been even included in some commercial STM
PDF
Album
Full Research Paper
Published 13 Nov 2017

Bright fluorescent silica-nanoparticle probes for high-resolution STED and confocal microscopy

  • Isabella Tavernaro,
  • Christian Cavelius,
  • Henrike Peuschel and
  • Annette Kraegeloh

Beilstein J. Nanotechnol. 2017, 8, 1283–1296, doi:10.3762/bjnano.8.130

Graphical Abstract
  • (STED) microscopy utilises the saturable deexcitation of fluorophores within an excited volume using a second laser with a red-shifted wavelength. Typically, a donut-shaped depletion laser profile is used to enhance lateral resolution, through focal laser intensities in the range of 100–500 MW·cm−2 [23
PDF
Album
Supp Info
Full Research Paper
Published 21 Jun 2017

Optimizing qPlus sensor assemblies for simultaneous scanning tunneling and noncontact atomic force microscopy operation based on finite element method analysis

  • Omur E. Dagdeviren and
  • Udo D. Schwarz

Beilstein J. Nanotechnol. 2017, 8, 657–666, doi:10.3762/bjnano.8.70

Graphical Abstract
  • lateral resolution of the setup. As a consequence, establishing a highly symmetric tunneling connection with the smallest possible stiffness should receive highest priority during the assembly of tuning fork-based sensors. Methods The results presented in the paper expand on a previously introduced
PDF
Album
Full Research Paper
Published 20 Mar 2017

In situ formation of reduced graphene oxide structures in ceria by combined sol–gel and solvothermal processing

  • Jingxia Yang,
  • Johannes Ofner,
  • Bernhard Lendl and
  • Ulrich Schubert

Beilstein J. Nanotechnol. 2016, 7, 1815–1821, doi:10.3762/bjnano.7.174

Graphical Abstract
  • band of a Si wafer. Raman mapping was performed using a 10× magnification objective and a 300 line grating; a 532 nm (frequency doubled Nd:YAG) DPSS laser was used. An area of 500 × 500 µm2 with a lateral resolution of 5 µm was mapped by scanning each pixel three times for 1 s. X-ray powder diffraction
PDF
Album
Supp Info
Full Research Paper
Published 23 Nov 2016

Numerical investigation of depth profiling capabilities of helium and neon ions in ion microscopy

  • Patrick Philipp,
  • Lukasz Rzeznik and
  • Tom Wirtz

Beilstein J. Nanotechnol. 2016, 7, 1749–1760, doi:10.3762/bjnano.7.168

Graphical Abstract
  • lateral resolution for 2D and 3D imaging. By contrast the development of a mass spectrometer as an add-on tool for the helium ion microscope (HIM), which uses finely focussed He+ or Ne+ beams, allows for the analysis of secondary ions and small secondary cluster ions with unprecedented lateral resolution
  • ], minimising the fragmentation of the polymer chains to retain a maximum of organic information by using cluster primary ions is one field of investigation. Nevertheless, for high lateral resolution, the use of monatomic primary ion species is however required. For the latter, the detection of small secondary
  • resolvable. Some separation is possible for 20 nm inter-layer distances, although the separation is not clear. Depth profiling with 1 keV Ne+ and Ar+ For 1 keV Ne+ and Ar+ beams, the lateral resolution will be reduced compared to the 20 keV conditions, but depth profiling capabilities are largely improved
PDF
Album
Full Research Paper
Published 17 Nov 2016

Hydrophilic silver nanoparticles with tunable optical properties: application for the detection of heavy metals in water

  • Paolo Prosposito,
  • Federico Mochi,
  • Erica Ciotta,
  • Mauro Casalboni,
  • Fabio De Matteis,
  • Iole Venditti,
  • Laura Fontana,
  • Giovanna Testa and
  • Ilaria Fratoddi

Beilstein J. Nanotechnol. 2016, 7, 1654–1661, doi:10.3762/bjnano.7.157

Graphical Abstract
  • the Smolukovsky equation [55]. The scanning tunneling microscope (Tops System, WA Technology) consists of a UHV attachment with an antivibration stacking and a piezoelectric tube with 2 mm maximum scanning area for the tip movement. The lateral resolution of the microscope is ±1 Å and the accuracy in
PDF
Album
Full Research Paper
Published 09 Nov 2016

Nano- and microstructured materials for in vitro studies of the physiology of vascular cells

  • Alexandra M. Greiner,
  • Adria Sales,
  • Hao Chen,
  • Sarah A. Biela,
  • Dieter Kaufmann and
  • Ralf Kemkemer

Beilstein J. Nanotechnol. 2016, 7, 1620–1641, doi:10.3762/bjnano.7.155

Graphical Abstract
  • a different work, a plasmon was used to pattern a photoresist layer by means of NSOM (near-field scanning optical microscopy). A lateral resolution of about 50 nm was achieved, with a fabrication speed of ca 10 mm/s [65]. Nanoimprint lithography (NIL) is a low-cost nanopatterning technique for 2D
PDF
Album
Review
Published 08 Nov 2016

An ellipsometric approach towards the description of inhomogeneous polymer-based Langmuir layers

  • Falko O. Rottke,
  • Burkhard Schulz,
  • Klaus Richau,
  • Karl Kratz and
  • Andreas Lendlein

Beilstein J. Nanotechnol. 2016, 7, 1156–1165, doi:10.3762/bjnano.7.107

Graphical Abstract
  • Δ into thickness maps and therefore to achieve quantitative analysis of the 3D morphology of the Langmuir layers with lateral resolution at the µm scale. Exploiting the nulling-based ellipsometric contrast in this way avoids the methodological problems inherent in the photometric evaluation of BAM
  • and a CCD camera (768 × 572 pixel) were used to take all micrographs, with a resulting lateral resolution of ≈2 μm. Nulling-based thickness mapping The same ellipsometer as mentioned above was used for ellipsometric mapping. An AOI of 50° and a 658 nm laser as a light source were used. For the
PDF
Album
Full Research Paper
Published 08 Aug 2016

Experimental and simulation-based investigation of He, Ne and Ar irradiation of polymers for ion microscopy

  • Lukasz Rzeznik,
  • Yves Fleming,
  • Tom Wirtz and
  • Patrick Philipp

Beilstein J. Nanotechnol. 2016, 7, 1113–1128, doi:10.3762/bjnano.7.104

Graphical Abstract
  • the helium ion microscope (HIM) promises higher lateral resolution than on classical SIMS instruments. However, full advantage of this new technique can only be obtained when the interaction of He+ or Ne+ primary ions with the sample is fully controlled. In this work we investigate how He+ and Ne
  • . Keywords: Helium ion microscopy; irradiation; polymers; preferential sputtering; secondary ion mass spectrometry; simulations; Introduction Progress in materials and life sciences requires sample characterisation with high lateral resolution and high sensitivity. A technique which allows for both is
  • is a SIMS instrument dedicated to high-resolution imaging, a lateral resolution of around 50 nm can be reached. Recently, the development of a SIMS add-on system for the helium ion microscope (HIM) [2] demonstrated SIMS imaging with even higher lateral resolution in the 10 nm range [3]. Initially the
PDF
Album
Full Research Paper
Published 02 Aug 2016

Customized MFM probes with high lateral resolution

  • Óscar Iglesias-Freire,
  • Miriam Jaafar,
  • Eider Berganza and
  • Agustina Asenjo

Beilstein J. Nanotechnol. 2016, 7, 1068–1074, doi:10.3762/bjnano.7.100

Graphical Abstract
  • and poor lateral resolution when working under standard conditions. In this work, we present a convenient route to prepare high-performance MFM probes with sub-10 nm (sub-25 nm) topographic (magnetic) lateral resolution by following an easy and quick low-cost approach. This allows one to not only
  • resolution is not greatly enhanced compared to commercial tips so their applicability is limited to particular cases of interest. Intrinsically related to the lateral resolution is the magnetic sensitivity of the probe. In order to achieve better signal-to-noise ratios, one may want larger amounts of
  • magnetic material to be deposited at the tip apex. Unfortunately, this results in larger tip radii and subsequent lower lateral resolution; furthermore, the influence over the sample magnetic state can increase. Depending on the specific properties of each sample, a balance between resolution and
PDF
Album
Supp Info
Full Research Paper
Published 25 Jul 2016

High-resolution noncontact AFM and Kelvin probe force microscopy investigations of self-assembled photovoltaic donor–acceptor dyads

  • Benjamin Grévin,
  • Pierre-Olivier Schwartz,
  • Laure Biniek,
  • Martin Brinkmann,
  • Nicolas Leclerc,
  • Elena Zaborova and
  • Stéphane Méry

Beilstein J. Nanotechnol. 2016, 7, 799–808, doi:10.3762/bjnano.7.71

Graphical Abstract
  • images with a very high lateral resolution are achieved, which allows for the resolution of local photo-charging contrasts at the scale of single edge-on lamella. This work paves the way for local investigations of the optoelectronic properties of donor–acceptor supramolecular architectures down to the
  • the alignment was estimated by comparing topographic cross-section profiles extracted with the multiple profile tool of WsXM (see Supporting Information File 1 for more details). The estimated lateral resolution is indicated for each SPV image in the corresponding figure caption. Dyads thin films (50
  • analysis reveals that these local SPV contrasts are actually correlated with the supramolecular lattice. One lamella, displaying an SPV lower than its neighbour, is highlighted in Figure 9b,c and Figure 9e,f. For the latter data sets (Figure 9e,f), the lateral resolution falls (on average) below 1 nm (see
PDF
Album
Supp Info
Full Research Paper
Published 03 Jun 2016

Magnetic switching of nanoscale antidot lattices

  • Ulf Wiedwald,
  • Joachim Gräfe,
  • Kristof M. Lebecki,
  • Maxim Skripnik,
  • Felix Haering,
  • Gisela Schütz,
  • Paul Ziemann,
  • Eberhard Goering and
  • Ulrich Nowak

Beilstein J. Nanotechnol. 2016, 7, 733–750, doi:10.3762/bjnano.7.65

Graphical Abstract
  • at a lateral resolution better than the structural grain size of the antidots based on magneto-optical Kerr (MOKE) microscopy is possible and the determination of interaction- and coercive field-distributions by fast MOKE related first-order reversal curves (FORC) is feasible. The hands-on
PDF
Album
Full Research Paper
Published 24 May 2016

Influence of calcium on ceramide-1-phosphate monolayers

  • Joana S. L. Oliveira,
  • Gerald Brezesinski,
  • Alexandra Hill and
  • Arne Gericke

Beilstein J. Nanotechnol. 2016, 7, 236–245, doi:10.3762/bjnano.7.22

Graphical Abstract
  • dependence is characteristic of a first-order transition. Unfortunately, the domains appearing in the two-phase coexistence region are too small for the lateral resolution of our BAM instrument (about 2 µm), and therefore we were not able to follow the nucleation and growth processes associated with the LE
  • . The lateral resolution is ca. 2 µm. Grazing incidence X-ray diffraction (GIXD) Grazing incidence X-ray diffraction (GIXD) experiments were performed at the beamlines BW1 at DESY, Hamburg, Germany, and ID10 at the ERSF, Grenoble, France. The setup includes a Langmuir trough, equipped with one moveable
PDF
Album
Supp Info
Full Research Paper
Published 12 Feb 2016

Orthogonal chemical functionalization of patterned gold on silica surfaces

  • Francisco Palazon,
  • Didier Léonard,
  • Thierry Le Mogne,
  • Francesca Zuttion,
  • Céline Chevalier,
  • Magali Phaner-Goutorbe,
  • Éliane Souteyrand,
  • Yann Chevolot and
  • Jean-Pierre Cloarec

Beilstein J. Nanotechnol. 2015, 6, 2272–2277, doi:10.3762/bjnano.6.233

Graphical Abstract
  • gun (ion current of 2 nA). Areas of 300 × 300 µm were scanned. Under the present operation conditions, the lateral resolution is on the order of 1 μm. Submicron resolution can be achieved, albeit hindering mass resolution. The ion dose was kept below the static conditions limits. The data were
PDF
Album
Letter
Published 01 Dec 2015

Kelvin probe force microscopy for local characterisation of active nanoelectronic devices

  • Tino Wagner,
  • Hannes Beyer,
  • Patrick Reissner,
  • Philipp Mensch,
  • Heike Riel,
  • Bernd Gotsmann and
  • Andreas Stemmer

Beilstein J. Nanotechnol. 2015, 6, 2193–2206, doi:10.3762/bjnano.6.225

Graphical Abstract
  • lateral resolution and pronounced capacitive averaging of the locally measured contact potential difference. Furthermore, local changes in the strength of the electrostatic interaction between tip and surface easily lead to topography crosstalk seen in the surface potential. To take full advantage of the
  • compensated. The scan at elevated height, however, reduces lateral resolution and accuracy of the KFM data as we will detail below. To minimise such lateral averaging, single-scan methods are preferred, performing topography and KFM measurements simultaneously. An additional benefit of single-scan AFM and KFM
  • the main reason for the notoriously low lateral resolution and poor potential accuracy in this mode. When comparing AM and FM modes, one should note that in lift-mode AM-KFM the cantilever is not oscillating anymore when the electrostatic forces are nullified, whereas the mechanical oscillation
PDF
Album
Supp Info
Full Research Paper
Published 23 Nov 2015

Continuum models of focused electron beam induced processing

  • Milos Toth,
  • Charlene Lobo,
  • Vinzenz Friedli,
  • Aleksandra Szkudlarek and
  • Ivo Utke

Beilstein J. Nanotechnol. 2015, 6, 1518–1540, doi:10.3762/bjnano.6.157

Graphical Abstract
  • dimensionless parameters, originally employed by Utke et al. [15], which are useful for describing adsorbate kinetics in FEBIP [1] and giving concise scaling laws for the lateral resolution of the FEBIP process. Irradiative depletion is a dimensionless parameter that quantifies the adsorbate concentration at
  • dimensionless (normalized) version of the Gaussian or tophat electron electron flux profile given by Equation 8 or Equation 9, respectively, and is given by: The lateral resolution can be quantified by the dimensionless parameter , expressed as the ratio of the diameter of the deposit (FWHMD) and the electron
  • irradiative depletion the resolution parameter is equal to 1, giving the highest possible FEBIP resolution (i.e., the smallest possible deposit size in the case of FEBID). In other words, the reaction limited (electron-limited) regime gives better lateral resolution than the mass transport limited (adsorbate
PDF
Album
Review
Published 14 Jul 2015

Formation of pure Cu nanocrystals upon post-growth annealing of Cu–C material obtained from focused electron beam induced deposition: comparison of different methods

  • Aleksandra Szkudlarek,
  • Alfredo Rodrigues Vaz,
  • Yucheng Zhang,
  • Andrzej Rudkowski,
  • Czesław Kapusta,
  • Rolf Erni,
  • Stanislav Moshkalev and
  • Ivo Utke

Beilstein J. Nanotechnol. 2015, 6, 1508–1517, doi:10.3762/bjnano.6.156

Graphical Abstract
  • with a high aspect ratio makes FEBID suitable for fabrication of high resolution probes to scanning magnetic force microscopy (MFM) [17][18][19]. Purification methods of FEBID structures For FEBID direct-write nanostructures lateral resolution can be well-controlled by adjusting the beam and gas flow
PDF
Album
Supp Info
Correction
Full Research Paper
Published 13 Jul 2015

Peptide-equipped tobacco mosaic virus templates for selective and controllable biomineral deposition

  • Klara Altintoprak,
  • Axel Seidenstücker,
  • Alexander Welle,
  • Sabine Eiben,
  • Petia Atanasova,
  • Nina Stitz,
  • Alfred Plettl,
  • Joachim Bill,
  • Hartmut Gliemann,
  • Holger Jeske,
  • Dirk Rothenstein,
  • Fania Geiger and
  • Christina Wege

Beilstein J. Nanotechnol. 2015, 6, 1399–1412, doi:10.3762/bjnano.6.145

Graphical Abstract
  • detectable by electron-optical imaging). The low SIMS Si+ and SiOH+ signal intensities, and the necessary high mass resolution for unambiguous fragment assignments, precluded SIMS imaging with high lateral resolution. Hence, the obtained SIMS data cannot visualize mineralized individual TMV particles or
  • reflection-type time-of-flight analyzer. The UHV base pressure was <5 × 10−9 mbar. For high mass resolution, the Bi source was operated in the “high current bunched” mode, providing short Bi1+ primary ion pulses at 25 keV energy and a lateral resolution of approximately 4 μm. The short pulse length of 0.6 to
PDF
Album
Full Research Paper
Published 25 Jun 2015

Surface excitations in the modelling of electron transport for electron-beam-induced deposition experiments

  • Francesc Salvat-Pujol,
  • Roser Valentí and
  • Wolfgang S. Werner

Beilstein J. Nanotechnol. 2015, 6, 1260–1267, doi:10.3762/bjnano.6.129

Graphical Abstract
  • the emitted secondary electrons influence the growth of the nanostructures, the latter electrons being responsible for the lateral resolution [3]. In the modelling of electron transport for FEBID [2][3][4][5][6][7], electron stopping is described on the basis of properties that are applicable in the
PDF
Album
Review
Published 03 Jun 2015

High sensitivity and high resolution element 3D analysis by a combined SIMS–SPM instrument

  • Yves Fleming and
  • Tom Wirtz

Beilstein J. Nanotechnol. 2015, 6, 1091–1099, doi:10.3762/bjnano.6.110

Graphical Abstract
  • choice for high sensitivity analysis, including isotopic ratio measurements [2][3]. State-of-the-art SIMS imaging instruments can provide chemical 2D and 3D maps with a lateral resolution of around 50 nm [4][5]. However, several important artefacts result from the fact that conventional 3D image
PDF
Album
Supp Info
Full Research Paper
Published 30 Apr 2015

Fundamental edge broadening effects during focused electron beam induced nanosynthesis

  • Roland Schmied,
  • Jason D. Fowlkes,
  • Robert Winkler,
  • Phillip D. Rack and
  • Harald Plank

Beilstein J. Nanotechnol. 2015, 6, 462–471, doi:10.3762/bjnano.6.47

Graphical Abstract
  • more complex proximity effects that significantly reduce lateral edge sharpness and thus should be avoided if desiring high lateral resolution. Keywords: focused electron beam induced deposition; nanofabrication; platinum; simulation; Introduction Focused electron beam induced deposition (FEBID) has
  • avoided when aiming for highest lateral resolution (see also Figure 5c). Conclusion In conclusion, we have qualitatively studied side-wall broadening effects for three-dimensional FEBID deposits using MeCpPt(IV)Me3 precursor on Si–SiO2 substrates. It is found that highest primary electron energies lead to
  • sharpness and by that lateral resolution (see Figure S4, Supporting Information File 1). (a) Classification of proximal shapes (right hand side). The grey box indicates the intended deposit while the black curve schematically summarizes the proximal effects. The left hand side indicates the different
PDF
Album
Supp Info
Full Research Paper
Published 16 Feb 2015

A scanning probe microscope for magnetoresistive cantilevers utilizing a nested scanner design for large-area scans

  • Tobias Meier,
  • Alexander Förste,
  • Ali Tavassolizadeh,
  • Karsten Rott,
  • Dirk Meyners,
  • Roland Gröger,
  • Günter Reiss,
  • Eckhard Quandt,
  • Thomas Schimmel and
  • Hendrik Hölscher

Beilstein J. Nanotechnol. 2015, 6, 451–461, doi:10.3762/bjnano.6.46

Graphical Abstract
  • smoothness of motion in comparison with motorized stages, their maximum extension remains limited to hundreds of micrometers by using mechanical levers for motion amplification. Additionally, a large scan range and a high lateral resolution are contradictory. Because of these challenges, previous attempts to
  • sensitivity and the feedback mechanism when using TMR sensors on AFM cantilevers, we fabricated tipless cantilevers and obtained a suitable resolution on gratings [35]. To increase the lateral resolution, however, sharp tips have to be attached to our cantilevers with TMR sensors. By using a combination of
  • focused ion beam and electron beam deposition, tips can be manually been grown on the apex of the cantilever [59]. The use of such tips enables high lateral resolution as tip radii as small as 30 nm can be achieved. The advantage of this approach is that the tip is subsequently grown and without altering
PDF
Album
Video
Full Research Paper
Published 13 Feb 2015
Other Beilstein-Institut Open Science Activities