Search results

Search for "microstructures" in Full Text gives 146 result(s) in Beilstein Journal of Nanotechnology.

Bio-imaging with the helium-ion microscope: A review

  • Matthias Schmidt,
  • James M. Byrne and
  • Ilari J. Maasilta

Beilstein J. Nanotechnol. 2021, 12, 1–23, doi:10.3762/bjnano.12.1

Graphical Abstract
  • number of publications on HIM imaging of kidneys were published. Paunescu et al. focused on the microstructures of the kidney glomerulus as well as on the brush border microvilli of the proximal convoluted tubules [72]. On the latter they found “micropits on the microvillar surface as well as thin
PDF
Album
Review
Published 04 Jan 2021

Out-of-plane surface patterning by subsurface processing of polymer substrates with focused ion beams

  • Serguei Chiriaev,
  • Luciana Tavares,
  • Vadzim Adashkevich,
  • Arkadiusz J. Goszczak and
  • Horst-Günter Rubahn

Beilstein J. Nanotechnol. 2020, 11, 1693–1703, doi:10.3762/bjnano.11.151

Graphical Abstract
  • pristine Au were used to compare the patterning of thin films with different microstructures. We show that the height of Pt60Pd40 thin films deposited onto poly(methyl methacrylate) and polycarbonate substrates can be patterned by He+ ion beams with ultrahigh precision (nanometers) while preserving in
  • wrinkle-like micropatterns [23][24]. In this work, we have employed thin films of a Pt60Pd40 alloy and of pristine Au. The primary reason for this choice was the difference in their microstructures, specifically in the availability of structural defects capable of providing the release of gases from
PDF
Album
Supp Info
Full Research Paper
Published 06 Nov 2020

Fabrication of nano/microstructures for SERS substrates using an electrochemical method

  • Jingran Zhang,
  • Tianqi Jia,
  • Xiaoping Li,
  • Junjie Yang,
  • Zhengkai Li,
  • Guangfeng Shi,
  • Xinming Zhang and
  • Zuobin Wang

Beilstein J. Nanotechnol. 2020, 11, 1568–1576, doi:10.3762/bjnano.11.139

Graphical Abstract
  • /nanopore; nano/microstructures; SERS substrate; Introduction Surface-enhanced Raman spectroscopy (SERS) can be used to detect biomolecules [1][2][3], explosives [4][5][6], and pesticide residues [7][8][9]. Plasmonic metal nanostructures are often used as SERS substrates to increase the molecule-specific
  • quantification of the Raman intensity of probe molecules. Raman intensity after different treatment times Figure 5 shows the Raman spectra of R6G molecules (10−7 mol·L−1) on nanopore structures that were fabricated using PEO different treatment times. The microstructures vary in their morphology depending to the
PDF
Album
Full Research Paper
Published 16 Oct 2020

Antimicrobial metal-based nanoparticles: a review on their synthesis, types and antimicrobial action

  • Matías Guerrero Correa,
  • Fernanda B. Martínez,
  • Cristian Patiño Vidal,
  • Camilo Streitt,
  • Juan Escrig and
  • Carol Lopez de Dicastillo

Beilstein J. Nanotechnol. 2020, 11, 1450–1469, doi:10.3762/bjnano.11.129

Graphical Abstract
  • different morphologies and sizes. For example, the technique has been used to obtain ultrafine MgO nanoparticles (8–10 nm) [50], TiO2 nanoparticles (10–20 nm) [51], and even flower-like microstructures (diameter ≈6 µm) and microtubes (diameter ≈1 µm and length ≈4 µm) [52]. The sol–gel technique has been
PDF
Album
Review
Published 25 Sep 2020

Highly sensitive detection of estradiol by a SERS sensor based on TiO2 covered with gold nanoparticles

  • Andrea Brognara,
  • Ili F. Mohamad Ali Nasri,
  • Beatrice R. Bricchi,
  • Andrea Li Bassi,
  • Caroline Gauchotte-Lindsay,
  • Matteo Ghidelli and
  • Nathalie Lidgi-Guigui

Beilstein J. Nanotechnol. 2020, 11, 1026–1035, doi:10.3762/bjnano.11.87

Graphical Abstract
  • antireflection abilities [13][14][15]. These composite microstructures have also shown to maximize the path of the Raman excitation laser beam within the substrate, leading to signals with higher intensity. Samransuksamer et al. [16] used TiO2 nanorods decorated with Au NPs, deposited via precipitation by
PDF
Album
Full Research Paper
Published 14 Jul 2020

Microwave photon detection by an Al Josephson junction

  • Leonid S. Revin,
  • Andrey L. Pankratov,
  • Anna V. Gordeeva,
  • Anton A. Yablokov,
  • Igor V. Rakut,
  • Victor O. Zbrozhek and
  • Leonid S. Kuzmin

Beilstein J. Nanotechnol. 2020, 11, 960–965, doi:10.3762/bjnano.11.80

Graphical Abstract
  • Leonid S. Revin Andrey L. Pankratov Anna V. Gordeeva Anton A. Yablokov Igor V. Rakut Victor O. Zbrozhek Leonid S. Kuzmin Institute for Physics of Microstructures of RAS, GSP-105, Nizhny Novgorod, 603950, Russia Center of Cryogenic Nanoelectronics, Nizhny Novgorod State Technical University, Nizhny
PDF
Album
Full Research Paper
Published 23 Jun 2020

A Josephson junction based on a highly disordered superconductor/low-resistivity normal metal bilayer

  • Pavel M. Marychev and
  • Denis Yu. Vodolazov

Beilstein J. Nanotechnol. 2020, 11, 858–865, doi:10.3762/bjnano.11.71

Graphical Abstract
  • Pavel M. Marychev Denis Yu. Vodolazov Institute for Physics of Microstructures, Russian Academy of Sciences, Nizhny Novgorod, 603950, Russia 10.3762/bjnano.11.71 Abstract We calculate the current–phase relation (CPR) of a SN-S-SN Josephson junction based on a SN bilayer of variable thickness
PDF
Album
Full Research Paper
Published 02 Jun 2020

Soybean-derived blue photoluminescent carbon dots

  • Shanshan Wang,
  • Wei Sun,
  • Dong-sheng Yang and
  • Fuqian Yang

Beilstein J. Nanotechnol. 2020, 11, 606–619, doi:10.3762/bjnano.11.48

Graphical Abstract
  • nm from soy milk also at 180 °C. Laser ablation in liquid (LAL) has been used to produce nanomaterials with special morphologies, microstructures, and phases and with various functionalized nanostructures [23][24][25]. For example, carbon-based nanoparticles with fewer side-products have been
PDF
Album
Supp Info
Full Research Paper
Published 09 Apr 2020

An advanced structural characterization of templated meso-macroporous carbon monoliths by small- and wide-angle scattering techniques

  • Felix M. Badaczewski,
  • Marc O. Loeh,
  • Torben Pfaff,
  • Dirk Wallacher,
  • Daniel Clemens and
  • Bernd M. Smarsly

Beilstein J. Nanotechnol. 2020, 11, 310–322, doi:10.3762/bjnano.11.23

Graphical Abstract
  • the precursor on the templating process and the final porosity, in relation to the formation of sp2-hybridized microstructures. Results and Discussion Characterization of the pore system This study is focused on four different hard-templated carbon monoliths based on pitch or resin as carbon precursor
PDF
Album
Supp Info
Correction
Full Research Paper
Published 10 Feb 2020

Rational design of block copolymer self-assemblies in photodynamic therapy

  • Maxime Demazeau,
  • Laure Gibot,
  • Anne-Françoise Mingotaud,
  • Patricia Vicendo,
  • Clément Roux and
  • Barbara Lonetti

Beilstein J. Nanotechnol. 2020, 11, 180–212, doi:10.3762/bjnano.11.15

Graphical Abstract
PDF
Album
Review
Published 15 Jan 2020

Size effects of graphene nanoplatelets on the properties of high-density polyethylene nanocomposites: morphological, thermal, electrical, and mechanical characterization

  • Tuba Evgin,
  • Alpaslan Turgut,
  • Georges Hamaoui,
  • Zdenko Spitalsky,
  • Nicolas Horny,
  • Matej Micusik,
  • Mihai Chirtoc,
  • Mehmet Sarikanat and
  • Maria Omastova

Beilstein J. Nanotechnol. 2020, 11, 167–179, doi:10.3762/bjnano.11.14

Graphical Abstract
  • , Philips). The nanocomposite microstructures were examined at a cryofractured surface in liquid nitrogen, and then coated with a thin layer of gold. XRD analyses (X’Pert PRO, Philips) were performed to determine the overall phase and crystalline structure of the samples. The XRD patterns were recorded at 5
PDF
Album
Supp Info
Full Research Paper
Published 14 Jan 2020

Nonclassical dynamic modeling of nano/microparticles during nanomanipulation processes

  • Moharam Habibnejad Korayem,
  • Ali Asghar Farid and
  • Rouzbeh Nouhi Hefzabad

Beilstein J. Nanotechnol. 2020, 11, 147–166, doi:10.3762/bjnano.11.13

Graphical Abstract
  • and a molecular dynamics model for the nanoparticle. The results showed that the predicted changes in the nonclassical model are less than in the classical model [26]. The experimental studies indicate that size-dependent behavior plays a major role in nano/microstructures where the classical
PDF
Album
Full Research Paper
Published 13 Jan 2020

An investigation on the drag reduction performance of bioinspired pipeline surfaces with transverse microgrooves

  • Weili Liu,
  • Hongjian Ni,
  • Peng Wang and
  • Yi Zhou

Beilstein J. Nanotechnol. 2020, 11, 24–40, doi:10.3762/bjnano.11.3

Graphical Abstract
  • surfaces of shark skin and bird feathers can be imitated and then applied to pipeline surfaces to reduce the viscous drag [23][24]. This provides a novel method to save energy in pipeline transportation. In the last decades, utilization of bionic microstructures to reduce the drag of turbulent flow has
  • microstructure, it can be divided into streamwise grooves and transverse grooves. With the development of numerical simulations and experimental techniques, the influence of microstructures on turbulent flow characteristics can be investigated accurately. Its drag reduction mechanism is owed to the two aspects
  • the above analysis, most of the previous studies focused on external flow with bionic microstructures. However, there are few studies on the internal flow of pipelines with transverse microgrooves [35]. Therefore, it is necessary to evaluate the drag reduction performance of transverse microgrooves
PDF
Album
Full Research Paper
Published 03 Jan 2020

Design of a nanostructured mucoadhesive system containing curcumin for buccal application: from physicochemical to biological aspects

  • Sabrina Barbosa de Souza Ferreira,
  • Gustavo Braga,
  • Évelin Lemos Oliveira,
  • Jéssica Bassi da Silva,
  • Hélen Cássia Rosseto,
  • Lidiane Vizioli de Castro Hoshino,
  • Mauro Luciano Baesso,
  • Wilker Caetano,
  • Craig Murdoch,
  • Helen Elizabeth Colley and
  • Marcos Luciano Bruschi

Beilstein J. Nanotechnol. 2019, 10, 2304–2328, doi:10.3762/bjnano.10.222

Graphical Abstract
  • fragments with heterogeneous, but well defined, structures. This was probably due to the presence and movement of water that was removed due to the freeze-drying process. Besides, the portion of the microstructures or microchannels exhibiting exposed breakage (Figure 4B) were probably due to the interaction
PDF
Album
Supp Info
Full Research Paper
Published 25 Nov 2019

A novel all-fiber-based LiFePO4/Li4Ti5O12 battery with self-standing nanofiber membrane electrodes

  • Li-li Chen,
  • Hua Yang,
  • Mao-xiang Jing,
  • Chong Han,
  • Fei Chen,
  • Xin-yu Hu,
  • Wei-yong Yuan,
  • Shan-shan Yao and
  • Xiang-qian Shen

Beilstein J. Nanotechnol. 2019, 10, 2229–2237, doi:10.3762/bjnano.10.215

Graphical Abstract
  • /Max2500X-ray diffractometer was used to determine the crystalline structure of the composite fibers. A JSM-5600LV scanning electron microscope and a JEOL JEM2010 transmission electron microscope were used to observe the morphology and microstructures of the fibers. The electrochemical performance of the
PDF
Album
Supp Info
Full Research Paper
Published 13 Nov 2019

The importance of design in nanoarchitectonics: multifractality in MACE silicon nanowires

  • Stefania Carapezzi and
  • Anna Cavallini

Beilstein J. Nanotechnol. 2019, 10, 2094–2102, doi:10.3762/bjnano.10.204

Graphical Abstract
  • depended on their aspect ratio. It occurred for aspect ratios greater than 1:10, while it was not observed for an aspect ratio of about 1:5. Actually, many more factors have impact on the self-assembly of arrays of nano- and microstructures with high aspect ratios, when a liquid is evaporated off the
PDF
Album
Full Research Paper
Published 31 Oct 2019

Improvement of the thermoelectric properties of a MoO3 monolayer through oxygen vacancies

  • Wenwen Zheng,
  • Wei Cao,
  • Ziyu Wang,
  • Huixiong Deng,
  • Jing Shi and
  • Rui Xiong

Beilstein J. Nanotechnol. 2019, 10, 2031–2038, doi:10.3762/bjnano.10.199

Graphical Abstract
  • Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China The Institute of Technological Sciences, Wuhan University, Wuhan 430072, China State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, P. O. Box 912, Beijing 100083
PDF
Album
Supp Info
Full Research Paper
Published 25 Oct 2019

Facile synthesis of carbon nanotube-supported NiO//Fe2O3 for all-solid-state supercapacitors

  • Shengming Zhang,
  • Xuhui Wang,
  • Yan Li,
  • Xuemei Mu,
  • Yaxiong Zhang,
  • Jingwei Du,
  • Guo Liu,
  • Xiaohui Hua,
  • Yingzhuo Sheng,
  • Erqing Xie and
  • Zhenxing Zhang

Beilstein J. Nanotechnol. 2019, 10, 1923–1932, doi:10.3762/bjnano.10.188

Graphical Abstract
  • 12 h. CC-CNT@NiO: The NiO was coated on the CC-CNT by the same process with NiCl2 (0.1 M) aqueous solution instead of FeCl3 (0.1 M). Materials characterization The morphologies and microstructures of the as-prepared samples were characterized by using a field-emission scanning electron microscope (FE
PDF
Album
Supp Info
Full Research Paper
Published 23 Sep 2019

Janus-micromotor-based on–off luminescence sensor for active TNT detection

  • Ye Yuan,
  • Changyong Gao,
  • Daolin Wang,
  • Chang Zhou,
  • Baohua Zhu and
  • Qiang He

Beilstein J. Nanotechnol. 2019, 10, 1324–1331, doi:10.3762/bjnano.10.131

Graphical Abstract
  • Ye Yuan Changyong Gao Daolin Wang Chang Zhou Baohua Zhu Qiang He Chemistry and Chemical Engineering College, Inner Mongolia University, College Road 235, Hohhot 010021, China Key Laboratory of Microsystems and Microstructures Manufacturing, Ministry of Education, Harbin Institute of Technology, Yi
PDF
Album
Supp Info
Full Research Paper
Published 28 Jun 2019

Renewable energy conversion using nano- and microstructured materials

  • Harry Mönig and
  • Martina Schmid

Beilstein J. Nanotechnol. 2019, 10, 771–773, doi:10.3762/bjnano.10.76

Graphical Abstract
  • - and microstructures for energy conversion: materials and devices” provides insights into the latest developments in the related fields. Besides a focus on solar-cell concepts [1][2][3][4][5], it also addresses light harvesting by solar fuel production [6][7], and energy storage by batteries [8
  • ]. Nanostructured materials can be synthesized by a huge variety of approaches, extending from self-assembled structures [9], over various lithographic techniques [10] and imprinting methods [11], to different crystallization routes [12]. The thematic issue “Nano- and microstructures for energy conversion
PDF
Editorial
Published 26 Mar 2019

Improving control of carbide-derived carbon microstructure by immobilization of a transition-metal catalyst within the shell of carbide/carbon core–shell structures

  • Teguh Ariyanto,
  • Jan Glaesel,
  • Andreas Kern,
  • Gui-Rong Zhang and
  • Bastian J. M. Etzold

Beilstein J. Nanotechnol. 2019, 10, 419–427, doi:10.3762/bjnano.10.41

Graphical Abstract
  • using halogen gases at elevated temperatures. Depending on the carbide and parameters employed during the synthesis, CDC can be varied from extremely amorphous to highly crystalline microstructures and from ultramicro- to mesoporous pore structures. Therefore, CDC is known as material with tunable
PDF
Album
Supp Info
Full Research Paper
Published 11 Feb 2019

Pull-off and friction forces of micropatterned elastomers on soft substrates: the effects of pattern length scale and stiffness

  • Peter van Assenbergh,
  • Marike Fokker,
  • Julian Langowski,
  • Jan van Esch,
  • Marleen Kamperman and
  • Dimitra Dodou

Beilstein J. Nanotechnol. 2019, 10, 79–94, doi:10.3762/bjnano.10.8

Graphical Abstract
  • microstructures (G′PVA ≈ 101 kPa; EPDMS ≈ 102 kPa), the substrate is expected to be the main component to deform when stress is applied. Geometry effects, if present, are unlikely to significantly contribute to the generated pull-off forces and friction forces, because the soft substrates likely fully conform to
  • microstructures of dimples with a terminal layer, deformation of the terminal layer is likely to happen, given that the elastic modulus of PDMS is in the kilopascal-range, and thus elastic, and the thickness of the terminal layer is limited (i.e., conformation to substrate roughness requires only a small volume
  • of material to elastically deform, resulting in a minor elastic penalty for conformation). The result that higher pull-off forces are generated with the softer PDMS-280 microstructures compared to PDMS-580 microstructures supports a deformation effect of the terminal layer. Besides elastic stretching
PDF
Album
Supp Info
Full Research Paper
Published 08 Jan 2019

Contact splitting in dry adhesion and friction: reducing the influence of roughness

  • Jae-Kang Kim and
  • Michael Varenberg

Beilstein J. Nanotechnol. 2019, 10, 1–8, doi:10.3762/bjnano.10.1

Graphical Abstract
  • been performed so far for thin-film-based adhesives. To this end, we report on the behavior of original and split, wall-shaped adhesive microstructures on different surfaces ranging across four orders of magnitude in roughness. Our results clearly demonstrate that the adhesion- and friction-driven
  • decisive experimental validation of this hypothesis has been performed so far for thin-film-based adhesives. To this end, here we report the adhesive and frictional behavior of original and carefully split wall-shaped adhesive microstructures [36] on different surfaces ranging across four orders of
  • magnitude in roughness. Results and Discussion Pull-off forces measured with original and split wall-shaped adhesive microstructures against different rough surfaces (Figure 1, see Experimental for details) are shown in Figure 2. The surfaces are represented using the traditional root-mean-square deviation
PDF
Album
Full Research Paper
Published 02 Jan 2019

A new bioinspired method for pressure and flow sensing based on the underwater air-retaining surface of the backswimmer Notonecta

  • Matthias Mail,
  • Adrian Klein,
  • Horst Bleckmann,
  • Anke Schmitz,
  • Torsten Scherer,
  • Peter T. Rühr,
  • Goran Lovric,
  • Robin Fröhlingsdorf,
  • Stanislav N. Gorb and
  • Wilhelm Barthlott

Beilstein J. Nanotechnol. 2018, 9, 3039–3047, doi:10.3762/bjnano.9.282

Graphical Abstract
  • the microstructures. Furthermore, the microstructures of the setal bases were analyzed using focused ion beam techniques (FIB, Zeiss Auriga 60). In this case, fresh hemelytra were covered with a thin gold layer using a sputter coater (Sputter Coater 108auto, Cressington). Using the FIB system, a
PDF
Album
Supp Info
Full Research Paper
Published 14 Dec 2018

Biomimetic surface structures in steel fabricated with femtosecond laser pulses: influence of laser rescanning on morphology and wettability

  • Camilo Florian Baron,
  • Alexandros Mimidis,
  • Daniel Puerto,
  • Evangelos Skoulas,
  • Emmanuel Stratakis,
  • Javier Solis and
  • Jan Siegel

Beilstein J. Nanotechnol. 2018, 9, 2802–2812, doi:10.3762/bjnano.9.262

Graphical Abstract
  • for mimicking this structure by exploiting self-organization mechanisms. In particular, employing a combination of such isotropic microstructures shown in Figure 2B (which determine the water contact angle, as will be shown in Figure 4) with an anisotropic overstructure with dimensions of hundreds of
  • dramatically different. Figure 2C shows that for a single scan, no apparent order or self-organization is obtained. Upon rescanning, ordered cone-like microstructures are formed whose size decreases with the scan number. It is questionable though if at this relatively high fluence the scenario of cone
PDF
Album
Supp Info
Full Research Paper
Published 05 Nov 2018
Other Beilstein-Institut Open Science Activities