Search results

Search for "resolution" in Full Text gives 1238 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Exploring surface charge dynamics: implications for AFM height measurements in 2D materials

  • Mario Navarro-Rodriguez,
  • Andres M. Somoza and
  • Elisa Palacios-Lidon

Beilstein J. Nanotechnol. 2024, 15, 767–780, doi:10.3762/bjnano.15.64

Graphical Abstract
  • microscopy (AFM) techniques emerge as ideal tools to investigate them [26][27]. Depending on the operation mode and under controlled environmental conditions, AFM offers the possibility to record morphology along with relevant electronic, mechanical, or magnetic properties with nanoscale resolution. In
  • local degree of reduction, with a lateral size for the domains that varies from tens to hundreds of nanometers. This confirms, on the one hand, that this mechanism achieves nanoscale resolution, primarily attributable to the tip, and, on the other hand, that the voltage dissipation mechanism depends on
  • achieves nanoscale resolution and is sensitive to local heterogeneities in the material’s properties. We also show that this effect is particularly relevant whenever the 2D material is supported on an insulating substrate and can be an important source of error when determining its thickness. According to
PDF
Album
Supp Info
Full Research Paper
Published 01 Jul 2024

Effect of repeating hydrothermal growth processes and rapid thermal annealing on CuO thin film properties

  • Monika Ozga,
  • Eunika Zielony,
  • Aleksandra Wierzbicka,
  • Anna Wolska,
  • Marcin Klepka,
  • Marek Godlewski,
  • Bogdan J. Kowalski and
  • Bartłomiej S. Witkowski

Beilstein J. Nanotechnol. 2024, 15, 743–754, doi:10.3762/bjnano.15.62

Graphical Abstract
  • , which allowed for the investigation of both topography and electrical properties of the films. Surface topography analysis was performed by utilizing an atomic force microscopy (AFM) operating in Peak Force Tapping mode. The surface was scanned at a resolution of 1024 × 1024 measurement points using a
  • resolution of 256 × 256 pixels presented in the paper were derived from the “SCM data” channel. Contact potential difference (VCPD) measurements were carried out using Kelvin probe force microscopy (KPFM) in amplitude modulation mode, also employing SCM-PIT-V2 probes from Bruker. These measurements were
  • underwent structural analysis using a high-resolution X-ray diffractometer X’Pert Pro MRD (Panalytical) equipped with a Cu anode (λ = 1.54060 Å). X-ray photoelectron spectroscopy (XPS) measurements were conducted utilizing a Scienta R4000 hemispherical analyzer with a pass energy of 200 eV and monochromatic
PDF
Album
Full Research Paper
Published 24 Jun 2024

Level set simulation of focused ion beam sputtering of a multilayer substrate

  • Alexander V. Rumyantsev,
  • Nikolai I. Borgardt,
  • Roman L. Volkov and
  • Yuri A. Chaplygin

Beilstein J. Nanotechnol. 2024, 15, 733–742, doi:10.3762/bjnano.15.61

Graphical Abstract
  • semiconductor heterostructures [13]. Metal and dielectric layers can be used as hard masks for achieving high resolution and throughput of the FIB nanofabrication process [14]. Modification of integrated circuits [15] is an industrially relevant application of multilayer structure processing. Effective
PDF
Album
Full Research Paper
Published 24 Jun 2024

Simultaneous electrochemical determination of uric acid and hypoxanthine at a TiO2/graphene quantum dot-modified electrode

  • Vu Ngoc Hoang,
  • Dang Thi Ngoc Hoa,
  • Nguyen Quang Man,
  • Le Vu Truong Son,
  • Le Van Thanh Son,
  • Vo Thang Nguyen,
  • Le Thi Hong Phong,
  • Ly Hoang Diem,
  • Kieu Chan Ly,
  • Ho Sy Thang and
  • Dinh Quang Khieu

Beilstein J. Nanotechnol. 2024, 15, 719–732, doi:10.3762/bjnano.15.60

Graphical Abstract
  • diffraction, Raman spectroscopy, high-resolution transmission electron microscopy, and energy-dispersive X-ray mapping. The TiO2/GQDs-GCE exhibits better electrochemical activity for uric acid and hypoxanthine than GQDs/GCE or TiO2/GCE in differential pulse voltammetry (DPV) measurements. Under optimized
  • GQDs were observed by using a JEM 2100 high-resolution transmission electron microscopy (HRTEM), Joel, Japan. Raman spectroscopy measurements were performed on a WiTec, Alpha 300R with a 532 nm laser. Surface analyses of the obtained materials were carried out using a S-4800 scanning electron
PDF
Album
Supp Info
Full Research Paper
Published 20 Jun 2024

Elastic modulus of β-Ga2O3 nanowires measured by resonance and three-point bending techniques

  • Annamarija Trausa,
  • Sven Oras,
  • Sergei Vlassov,
  • Mikk Antsov,
  • Tauno Tiirats,
  • Andreas Kyritsakis,
  • Boris Polyakov and
  • Edgars Butanovs

Beilstein J. Nanotechnol. 2024, 15, 704–712, doi:10.3762/bjnano.15.58

Graphical Abstract
  • these different methods arise from multiple factors. For instance, different NW growth mechanisms and sensitive synthesis conditions, their structural and geometrical variations, beam theory model validity, and the resolution of microscopy techniques leading to inaccurate measurements of the NW
  • dimensions, particularly at the lower resolution limit [18]. The low symmetry of monoclinic crystal systems, as in the β-Ga2O3 case, might promote the growth of nanostructures with different crystalline orientations, which often leads to the formation of nanostructures with various dimensions, such as NWs
PDF
Album
Supp Info
Full Research Paper
Published 18 Jun 2024

Enhancing higher-order modal response in multifrequency atomic force microscopy with a coupled cantilever system

  • Wendong Sun,
  • Jianqiang Qian,
  • Yingzi Li,
  • Yanan Chen,
  • Zhipeng Dou,
  • Rui Lin,
  • Peng Cheng,
  • Xiaodong Gao,
  • Quan Yuan and
  • Yifan Hu

Beilstein J. Nanotechnol. 2024, 15, 694–703, doi:10.3762/bjnano.15.57

Graphical Abstract
  • , Chinese Academy of Sciences, Dalian 116023, P. R. China 10.3762/bjnano.15.57 Abstract Multifrequency atomic force microscopy (AFM) utilizes the multimode operation of cantilevers to achieve rapid high-resolution imaging and extract multiple properties. However, the higher-order modal response of
  • ; Introduction Multifrequency atomic force microscopy (AFM) has become an important tool for nanoscale imaging and characterization [1][2]. This technique involves the excitation and detection of multiple frequencies to improve data acquisition speed, sensitivity, and resolution, as well as to enable material
  • [7][8][9]. The higher-order eigenmodes of the cantilever can effectively improve Q-factor, imaging rate, and mass sensing resolution [10][11]. For traditional rectangular cantilevers, the higher-order modal response is usually weaker than that of the fundamental mode in ambient air [12]. This
PDF
Album
Supp Info
Full Research Paper
Published 17 Jun 2024

Laser synthesis of nanoparticles in organic solvents – products, reactions, and perspectives

  • Theo Fromme,
  • Sven Reichenberger,
  • Katharine M. Tibbetts and
  • Stephan Barcikowski

Beilstein J. Nanotechnol. 2024, 15, 638–663, doi:10.3762/bjnano.15.54

Graphical Abstract
PDF
Album
Review
Published 05 Jun 2024

Exfoliation of titanium nitride using a non-thermal plasma process

  • Priscila Jussiane Zambiazi,
  • Dolores Ribeiro Ricci Lazar,
  • Larissa Otubo,
  • Rodrigo Fernando Brambilla de Souza,
  • Almir Oliveira Neto and
  • Cecilia Chaves Guedes-Silva

Beilstein J. Nanotechnol. 2024, 15, 631–637, doi:10.3762/bjnano.15.53

Graphical Abstract
  • the same exfoliation method. These combined findings highlight the structural changes during the non-thermal plasma exfoliation process, further supporting the successful transformation of bulk TiN into nanosheets. Figure 3 shows high-resolution transmission electron microscopy (HRTEM) images of TiN
  • higher transparency to the microscope beam is observed, indicating fewer scattering centers. When comparing Figure 3a and Figure 3d, it is clear that the initial compact 3D TiN blocks underwent a transformation and evolved into plate-like thin layers. The high-resolution image in Figure 3f shows a
PDF
Album
Letter
Published 31 May 2024

AFM-IR investigation of thin PECVD SiOx films on a polypropylene substrate in the surface-sensitive mode

  • Hendrik Müller,
  • Hartmut Stadler,
  • Teresa de los Arcos,
  • Adrian Keller and
  • Guido Grundmeier

Beilstein J. Nanotechnol. 2024, 15, 603–611, doi:10.3762/bjnano.15.51

Graphical Abstract
  • Photothermal AFM-IR nanospectroscopy is a technique that combines the chemical information from infrared (IR) spectroscopy with the high spatial resolution of atomic force microscopy (AFM). For this, the sample is illuminated with a tunable IR laser [1]. When a suitable IR wavelength is chosen, resonant
  • of spatial resolution. In ATR-IR spectroscopy, the resolution is theoretically limited by λ/2, which corresponds to several µm [3]. In contrast, the development of new and powerful tunable IR laser sources, such as optical parametric oscillator (OPO) and quantum cascade lasers (QCL), enabled a
  • nanoscale resolution of AFM-IR down to 10 nm [3]. Nowadays, the limit of the spatial resolution is given by the apex of the AFM tip. One of the first AFM-IR demonstrations was reported in 2005 by Dazzi et al. [4], who presented AFM-IR spectra of single bacterial cells. Further on, this technique became more
PDF
Album
Correction
Full Research Paper
Published 24 May 2024

Stiffness calibration of qPlus sensors at low temperature through thermal noise measurements

  • Laurent Nony,
  • Sylvain Clair,
  • Daniel Uehli,
  • Aitziber Herrero,
  • Jean-Marc Themlin,
  • Andrea Campos,
  • Franck Para,
  • Alessandro Pioda and
  • Christian Loppacher

Beilstein J. Nanotechnol. 2024, 15, 580–602, doi:10.3762/bjnano.15.50

Graphical Abstract
  • University, CNRS, Centrale Marseille, FSCM (FR1739), CP2M, 13397 Marseille, France 10.3762/bjnano.15.50 Abstract Non-contact atomic force microscopy (nc-AFM) offers a unique experimental framework for topographical imaging of surfaces with atomic and/or sub-molecular resolution. The technique also permits
  • possible to quantify the interatomic interaction forces that develop between the tip and the surface acquired in spectroscopic data cube modes [7][8] with both high sensitivity and high spatial resolution. Recently, the force sensitivity has been pushed forward, and forces as low as 100 fN have been
  • -Omicron, operated at 9.8 K. We use commercial qPlus sensors purchased from Scienta-Omicron. Scanning electron microscopy (SEM) pictures of one of these probes are shown in Figure 1. SEM analysis was performed with a Zeiss GeminiSEM 500 ultrahigh-resolution FESEM at 15 kV. Secondary electron detection was
PDF
Album
Supp Info
Full Research Paper
Published 23 May 2024

Radiofrequency enhances drug release from responsive nanoflowers for hepatocellular carcinoma therapy

  • Yanyan Wen,
  • Ningning Song,
  • Yueyou Peng,
  • Weiwei Wu,
  • Qixiong Lin,
  • Minjie Cui,
  • Rongrong Li,
  • Qiufeng Yu,
  • Sixue Wu,
  • Yongkang Liang,
  • Wei Tian and
  • Yanfeng Meng

Beilstein J. Nanotechnol. 2024, 15, 569–579, doi:10.3762/bjnano.15.49

Graphical Abstract
  • sample was added to ethanol and ultrasonically dispersed. Then the dispersed liquid was added dropwise to the copper net. After drying, the US FEI Tecnai F20 TEM was used at an accelerated voltage of 200 kV to capture the morphology in high resolution. Zeta potentials and hydrodynamic diameters were
PDF
Album
Full Research Paper
Published 22 May 2024

Directed growth of quinacridone chains on the vicinal Ag(35 1 1) surface

  • Niklas Humberg,
  • Lukas Grönwoldt and
  • Moritz Sokolowski

Beilstein J. Nanotechnol. 2024, 15, 556–568, doi:10.3762/bjnano.15.48

Graphical Abstract
  • ) can be seen (red circles in Figure 2a), while in the other 50% of all cases, it looks as if the chain grows undistorted across the Ag step (light blue circles). For a closer look, a zoom-in onto chains at Ag step edges with molecular resolution is displayed in the inset. The blue circle highlights a
  • of three QA chains at a Ag step edge, which was chosen for the high molecular resolution. (b) Small-scale STM image (UBias = 1.5 V, I = 25 pA) showing two of the four azimuthal orientations A and D, as well as two chains in the new orientation E (red lines). The black dashed lines indicate the
PDF
Album
Supp Info
Full Research Paper
Published 21 May 2024

Electron-induced deposition using Fe(CO)4MA and Fe(CO)5 – effect of MA ligand and process conditions

  • Hannah Boeckers,
  • Atul Chaudhary,
  • Petra Martinović,
  • Amy V. Walker,
  • Lisa McElwee-White and
  • Petra Swiderek

Beilstein J. Nanotechnol. 2024, 15, 500–516, doi:10.3762/bjnano.15.45

Graphical Abstract
PDF
Album
Supp Info
Full Research Paper
Published 08 May 2024

Aero-ZnS prepared by physical vapor transport on three-dimensional networks of sacrificial ZnO microtetrapods

  • Veaceslav Ursaki,
  • Tudor Braniste,
  • Victor Zalamai,
  • Emil Rusu,
  • Vladimir Ciobanu,
  • Vadim Morari,
  • Daniel Podgornii,
  • Pier Carlo Ricci,
  • Rainer Adelung and
  • Ion Tiginyanu

Beilstein J. Nanotechnol. 2024, 15, 490–499, doi:10.3762/bjnano.15.44

Graphical Abstract
  • selected to focus the light on the sample surface. The system calibration was performed on a monocrystalline Si wafer with the main peak measured at 521 cm−1. A 1200 gr/mm grating with a resolution of 1 cm−1 was utilized. SEM images of ZnS microtetrapods obtained from ZnO microtetrapods after a
PDF
Album
Full Research Paper
Published 02 May 2024

Photocatalytic degradation of methylene blue under visible light by cobalt ferrite nanoparticles/graphene quantum dots

  • Vo Chau Ngoc Anh,
  • Le Thi Thanh Nhi,
  • Le Thi Kim Dung,
  • Dang Thi Ngoc Hoa,
  • Nguyen Truong Son,
  • Nguyen Thi Thao Uyen,
  • Nguyen Ngoc Uyen Thu,
  • Le Van Thanh Son,
  • Le Trung Hieu,
  • Tran Ngoc Tuyen and
  • Dinh Quang Khieu

Beilstein J. Nanotechnol. 2024, 15, 475–489, doi:10.3762/bjnano.15.43

Graphical Abstract
  • (Japan). High-resolution transmission electron microscopy (HR-TEM) observation was performed with a JEM 1010. The intermediates in the MB degradation were determined by using an Agilent 1100 LC/MS-MS system with an electron spray ionization source combined with an ion trap. Synthesis of CoFe2O4, CoFe2O4
PDF
Album
Supp Info
Full Research Paper
Published 29 Apr 2024

Sidewall angle tuning in focused electron beam-induced processing

  • Sangeetha Hari,
  • Willem F. van Dorp,
  • Johannes J. L. Mulders,
  • Piet H. F. Trompenaars,
  • Pieter Kruit and
  • Cornelis W. Hagen

Beilstein J. Nanotechnol. 2024, 15, 447–456, doi:10.3762/bjnano.15.40

Graphical Abstract
  • simply varying the etch position on the sidewall using the top view SE image for reference, the slope of the deposit can be tuned from negative (outward) to positive (inward). The evolution has been studied in detail by high-resolution imaging in a TEM. A surprising trend not indicated by the simple
  • : Additional experimental data. Acknowledgements Considerable parts of this paper originate from Hari, S., ‘High resolution resist-free lithography in the SEM’, doctoral thesis (chapter 6), Delft University of Technology, Netherlands, 2017. Funding This work is supported by NanoNextNL, a micro- and
PDF
Album
Supp Info
Full Research Paper
Published 23 Apr 2024

Heat-induced morphological changes in silver nanowires deposited on a patterned silicon substrate

  • Elyad Damerchi,
  • Sven Oras,
  • Edgars Butanovs,
  • Allar Liivlaid,
  • Mikk Antsov,
  • Boris Polyakov,
  • Annamarija Trausa,
  • Veronika Zadin,
  • Andreas Kyritsakis,
  • Loïc Vidal,
  • Karine Mougin,
  • Siim Pikker and
  • Sergei Vlassov

Beilstein J. Nanotechnol. 2024, 15, 435–446, doi:10.3762/bjnano.15.39

Graphical Abstract
  • number of split events per length of either adhered or suspended part. The number of splits was calculated from SEM images of the large areas (approx. 120 × 80 µm) taken with maximum picture resolution (6144 × 4415). This ensured that there was no bias in choosing individual NWs for analysis, but all NWs
PDF
Album
Supp Info
Full Research Paper
Published 22 Apr 2024

Investigating ripple pattern formation and damage profiles in Si and Ge induced by 100 keV Ar+ ion beam: a comparative study

  • Indra Sulania,
  • Harpreet Sondhi,
  • Tanuj Kumar,
  • Sunil Ojha,
  • G R Umapathy,
  • Ambuj Mishra,
  • Ambuj Tripathi,
  • Richa Krishna,
  • Devesh Kumar Avasthi and
  • Yogendra Kumar Mishra

Beilstein J. Nanotechnol. 2024, 15, 367–375, doi:10.3762/bjnano.15.33

Graphical Abstract
  • electron microscopy; Introduction Scientific research varying from electronics to photonics, homeland security, high-resolution parallel patterning of magnetic media, biotechnology, and medicine are based upon nanotechnology. These applications require nanopatterning techniques to fabricate devices or
  • in a controlled manner on a wide variety of substrates with required dimensions. There are reports from 1960’s, by Cunningham et al. [1] and Navez et al. [2], on the production of submicron and nanoscale patterns by IBS. However, with the availability of high-resolution tools such as atomic force
  • ions (He+ ≈1–2 MeV). It impinges on the target material which provides good mass and depth resolution and also probes smaller radiation damages [35]. The damage produced by ion implantation in semiconductors consists of randomly distributed atoms displaced from their regular lattice sites up to a depth
PDF
Album
Supp Info
Full Research Paper
Published 05 Apr 2024

Comparative electron microscopy particle sizing of TiO2 pigments: sample preparation and measurement

  • Ralf Theissmann,
  • Christopher Drury,
  • Markus Rohe,
  • Thomas Koch,
  • Jochen Winkler and
  • Petr Pikal

Beilstein J. Nanotechnol. 2024, 15, 317–332, doi:10.3762/bjnano.15.29

Graphical Abstract
  • nm, setting the requirements for the measurement conditions. These must allow the smallest particles to be imaged with sufficient resolution and record a field of view such that it does not cut off a significant fraction of the largest particles. With a resolution of 1.4 nm/pixel and a field of view
  • calculated, and the result is given in Table 1. The larger particles are therefore systematically underrepresented in any EM measurement. As such, any microscopic measurement is biased towards smaller particles because of simple geometric constraints; the higher the resolution and the smaller the field of
  • hand. Both particle size distributions show two maxima, one for primary particles and one for aggregates and agglomerates. Re-dispersion destroys agglomerates that formed overnight and increases the number of primary particles. SEM top-view image; in-lens SE detector, resolution: 0.99 nm/pixel, field
PDF
Album
Supp Info
Full Research Paper
Published 25 Mar 2024

Vinorelbine-loaded multifunctional magnetic nanoparticles as anticancer drug delivery systems: synthesis, characterization, and in vitro release study

  • Zeynep Özcan and
  • Afife Binnaz Hazar Yoruç

Beilstein J. Nanotechnol. 2024, 15, 256–269, doi:10.3762/bjnano.15.24

Graphical Abstract
  • -resolution analytical electron microscope (FE-SEM, Thermo Scientific, Apreo 2S LoVac) and a scanning transmission electron microscope (STEM, Phillips XL, 30 ESEM-FEG/EDAX) operating at 120 kV acceleration voltage. The structure of the nanoparticles was analyzed by X-ray diffraction (XRD, PANalytical, Xpert
PDF
Album
Full Research Paper
Published 28 Feb 2024

Design, fabrication, and characterization of kinetic-inductive force sensors for scanning probe applications

  • August K. Roos,
  • Ermes Scarano,
  • Elisabet K. Arvidsson,
  • Erik Holmgren and
  • David B. Haviland

Beilstein J. Nanotechnol. 2024, 15, 242–255, doi:10.3762/bjnano.15.23

Graphical Abstract
  • microscopy (SPM), the tip plays a fundamental role in the achievable lateral resolution of the image. The focused electron-beam induced deposition (FEBID) [34] technique has been adapted to fabricate tips for SPM, for example, to enhance commercial platinum–iridium alloy (Pt-Ir)-coated conductive tips [35
PDF
Album
Full Research Paper
Published 15 Feb 2024

Quantitative wear evaluation of tips based on sharp structures

  • Ke Xu and
  • Houwen Leng

Beilstein J. Nanotechnol. 2024, 15, 230–241, doi:10.3762/bjnano.15.22

Graphical Abstract
  • . Orji et al. [14] utilized a transmission electron microscope (TEM) to image a tip and derived its tapered shape from the TEM image. Electron microscopic observation offers the advantages of high precision and resolution, enabling accurate acquisition of morphological information about the tip. However
PDF
Album
Full Research Paper
Published 14 Feb 2024

Ion beam processing of DNA origami nanostructures

  • Leo Sala,
  • Agnes Zerolová,
  • Violaine Vizcaino,
  • Alain Mery,
  • Alicja Domaracka,
  • Hermann Rothard,
  • Philippe Boduch,
  • Dominik Pinkas and
  • Jaroslav Kocišek

Beilstein J. Nanotechnol. 2024, 15, 207–214, doi:10.3762/bjnano.15.20

Graphical Abstract
  • nanoparticle binding [50][51] can be used to bring metallic materials to the surface at unprecedented resolution. Irradiation of such metal–DNA origami nanostructures with ion beams can be used to manufacture metallic nanostructures with sub-nanometer resolution. Finally, the localized DNA origami height
PDF
Album
Supp Info
Full Research Paper
Published 12 Feb 2024

Graphene removal by water-assisted focused electron-beam-induced etching – unveiling the dose and dwell time impact on the etch profile and topographical changes in SiO2 substrates

  • Aleksandra Szkudlarek,
  • Jan M. Michalik,
  • Inés Serrano-Esparza,
  • Zdeněk Nováček,
  • Veronika Novotná,
  • Piotr Ozga,
  • Czesław Kapusta and
  • José María De Teresa

Beilstein J. Nanotechnol. 2024, 15, 190–198, doi:10.3762/bjnano.15.18

Graphical Abstract
  • processes using the so-called focused electron-beam-induced etching (FEBIE), with a spatial resolution of ten nanometers. Nanopatterning graphene with such a method in one single step and without using a physical mask or resist is a very appealing approach. During the process, on top of graphene
  • communication devices. All those future technologies will require high-precision lithography techniques with excellent lateral resolution, high throughput, and minimized possibility of material damage. In the last decade, several approaches have been made to provide the most suitable method for patterning
  • shape control are very limited in those cases. Conventional electron beam lithography (EBL) reaches the resolution of a few nanometers. However, it leaves residual resists on the surface [9], which strongly affects electrical transport properties [10]. A similar high resolution can be achieved with e
PDF
Album
Full Research Paper
Published 07 Feb 2024

Enhanced feedback performance in off-resonance AFM modes through pulse train sampling

  • Mustafa Kangül,
  • Navid Asmari,
  • Santiago H. Andany,
  • Marcos Penedo and
  • Georg E. Fantner

Beilstein J. Nanotechnol. 2024, 15, 134–143, doi:10.3762/bjnano.15.13

Graphical Abstract
  • at frequencies far away from the resonance frequency of the cantilever (off-resonance tapping (ORT) modes) can provide high-resolution imaging of a wide range of sample types, including biological samples, soft polymers, and hard materials. These modes offer precise and stable control of vertical
PDF
Album
Supp Info
Full Research Paper
Published 01 Feb 2024
Other Beilstein-Institut Open Science Activities