Search results

Search for "resonance" in Full Text gives 826 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

A review of metal-organic frameworks and polymers in mixed matrix membranes for CO2 capture

  • Charlotte Skjold Qvist Christensen,
  • Nicholas Hansen,
  • Mahboubeh Motadayen,
  • Nina Lock,
  • Martin Lahn Henriksen and
  • Jonathan Quinson

Beilstein J. Nanotechnol. 2025, 16, 155–186, doi:10.3762/bjnano.16.14

Graphical Abstract
  • formed may not fully represent the structure of the fabricated MOF-based MMMs. While electron microscopy offers a highly detailed qualitative analysis of specific regions within the membrane, methods such as Fourier-transform infrared spectroscopy (FTIR), nuclear magnetic resonance (NMR) spectroscopy
PDF
Album
Supp Info
Review
Published 12 Feb 2025

TiO2 immobilized on 2D mordenite: effect of hydrolysis conditions on structural, textural, and optical characteristics of the nanocomposites

  • Marina G. Shelyapina,
  • Rosario Isidro Yocupicio-Gaxiola,
  • Gleb A. Valkovsky and
  • Vitalii Petranovskii

Beilstein J. Nanotechnol. 2025, 16, 128–140, doi:10.3762/bjnano.16.12

Graphical Abstract
  • . Figure 2 shows the 27Al magic angle spinning nuclear magnetic resonance (MAS NMR) spectra of the parent compound MOR-L and the TiO2-loaded samples. They confirm the regularity of the zeolite frameworks of the as-prepared samples. The spectrum consists of only one line at 54 ppm, which corresponds to
  • spectrometer (operating with Topspin version 3.2) using a double-resonance 4 mm MAS probe with a rotor speed of 12.5 kHz. XPS spectra of the samples were taken using a Thermo Fisher Scientific Escalab 250Xi spectrometer with non-monochromatic Al Kα radiation (photon energy 1486.6 eV). Bandgaps energies were
PDF
Album
Full Research Paper
Published 10 Feb 2025

Mechanistic insights into endosomal escape by sodium oleate-modified liposomes

  • Ebrahim Sadaqa,
  • Satrialdi,
  • Fransiska Kurniawan and
  • Diky Mudhakir

Beilstein J. Nanotechnol. 2024, 15, 1667–1685, doi:10.3762/bjnano.15.131

Graphical Abstract
PDF
Album
Supp Info
Full Research Paper
Published 30 Dec 2024

Liver-targeting iron oxide nanoparticles and their complexes with plant extracts for biocompatibility

  • Shushanik A. Kazaryan,
  • Seda A. Oganian,
  • Gayane S. Vardanyan,
  • Anatolie S. Sidorenko and
  • Ashkhen A. Hovhannisyan

Beilstein J. Nanotechnol. 2024, 15, 1593–1602, doi:10.3762/bjnano.15.125

Graphical Abstract
  • Fe3O4 NPs have great potential for commercial use and have already found applications in biomedicine, such as magnetic resonance imaging (as contrast enhancement agents), targeted drug or gene delivery, tissue engineering, biological fluid detoxification, hyperthermia, biological sensing, nanozymes, and
PDF
Album
Full Research Paper
Published 11 Dec 2024

Facile synthesis of size-tunable L-carnosine-capped silver nanoparticles and their role in metal ion sensing and catalytic degradation of p-nitrophenol

  • Akash Kumar,
  • Ridhima Chadha,
  • Abhishek Das,
  • Nandita Maiti and
  • Rayavarapu Raja Gopal

Beilstein J. Nanotechnol. 2024, 15, 1576–1592, doi:10.3762/bjnano.15.124

Graphical Abstract
  • properties [3][11][12]. These include localized surface plasmon resonance (LSPR), which can be utilized to detect heavy metal ions. The catalytic properties can be applied to degrade nitrophenolic compounds such as P-NP. Also, it is well documented that the properties of silver nanoparticles can be modulated
  • degradation demonstrates the catalytic prowess of ʟ-car-AgNPs and highlights their potential in environmental remediation applications. The successful synthesis of ʟ-car-AgNPs with tunable plasmon resonance has paved the way for their application as colorimetric sensors for heavy metal detection and as
PDF
Album
Supp Info
Full Research Paper
Published 06 Dec 2024

Lithium niobate on insulator: an emerging nanophotonic crystal for optimized light control

  • Midhun Murali,
  • Amit Banerjee and
  • Tanmoy Basu

Beilstein J. Nanotechnol. 2024, 15, 1415–1426, doi:10.3762/bjnano.15.114

Graphical Abstract
  • resonant wavelength of the DBR can be selectively enhanced without increasing the CQD film thickness, thereby overcoming the inherent tradeoff in these devices. The combination of FP resonance and DBR increases the power conversion efficiency (PCE) of PbS CQD solar cells by 54% and enables a very thin PbS
PDF
Album
Supp Info
Full Research Paper
Published 14 Nov 2024

Nanoarchitectonics with cetrimonium bromide on metal nanoparticles for linker-free detection of toxic metal ions and catalytic degradation of 4-nitrophenol

  • Akash Kumar and
  • Raja Gopal Rayavarapu

Beilstein J. Nanotechnol. 2024, 15, 1312–1332, doi:10.3762/bjnano.15.106

Graphical Abstract
  • and complex operational procedures [21]. Colorimetric detection of heavy metals and catalytic conversion of 4-nitrophenol can be achieved using CTAB-capped gold or silver nanoparticles because of their unique surface plasmon resonance (SPR) properties, allowing for a colorimetric analysis through a
  • change in surface plasmon resonance of the metal nanostructures. A single absorbance peak correlates to the symmetrical shape and collective oscillation of free electrons on the nanoparticle surface. This phenomenon is known as localized surface plasmon resonance (LSPR), a characteristic feature of
  • nanoparticles of the same concentration and size were evaluated to understand the impact of washing. As-prepared AuNR1 at 0.5 and 1 OD did not detect any metal through significant changes in color or plasmon resonance (Supporting Information File 1, Figure S15 and Figure S16). However, a slight blueshift of as
PDF
Album
Supp Info
Full Research Paper
Published 04 Nov 2024

New design of operational MEMS bridges for measurements of properties of FEBID-based nanostructures

  • Bartosz Pruchnik,
  • Krzysztof Kwoka,
  • Ewelina Gacka,
  • Dominik Badura,
  • Piotr Kunicki,
  • Andrzej Sierakowski,
  • Paweł Janus,
  • Tomasz Piasecki and
  • Teodor Gotszalk

Beilstein J. Nanotechnol. 2024, 15, 1273–1282, doi:10.3762/bjnano.15.103

Graphical Abstract
  • [38], but this technique is difficult to apply in SEM chambers (the ultimate working environment for opMEMS) because of the difficulty of obtaining a controlled magnetic field inside. In the experiments, the resonance of the opMEMS was measured outside the vacuum chamber using a SIOS nano vibration
PDF
Album
Full Research Paper
Published 23 Oct 2024

Dual-functionalized architecture enables stable and tumor cell-specific SiO2NPs in complex biological fluids

  • Iris Renata Sousa Ribeiro,
  • Raquel Frenedoso da Silva,
  • Romênia Ramos Domingues,
  • Adriana Franco Paes Leme and
  • Mateus Borba Cardoso

Beilstein J. Nanotechnol. 2024, 15, 1238–1252, doi:10.3762/bjnano.15.100

Graphical Abstract
  • acetone. The compound was dried using a vacuum pump and stored in a desiccator. The product was analyzed by proton nuclear magnetic resonance (1H NMR) in deuterated water (D2O, 600 μL) with the standard trimethylsilyl propionic acid (TMSP). The signal referring to the solvent used, D2O, was omitted from
PDF
Album
Supp Info
Full Research Paper
Published 07 Oct 2024

Enhanced catalytic reduction through in situ synthesized gold nanoparticles embedded in glucosamine/alginate nanocomposites

  • Chi-Hien Dang,
  • Le-Kim-Thuy Nguyen,
  • Minh-Trong Tran,
  • Van-Dung Le,
  • Nguyen Minh Ty,
  • T. Ngoc Han Pham,
  • Hieu Vu-Quang,
  • Tran Thi Kim Chi,
  • Tran Thi Huong Giang,
  • Nguyen Thi Thanh Tu and
  • Thanh-Danh Nguyen

Beilstein J. Nanotechnol. 2024, 15, 1227–1237, doi:10.3762/bjnano.15.99

Graphical Abstract
  • temperature, and the reaction time, by using UV–vis spectroscopy. Changes in the physicochemical properties, such as morphology and particle size of AuNPs, were monitored through absorbance and the λmax values of the surface plasmon resonance (SPR) band. Figure 2 illustrates the impact of synthesis conditions
PDF
Album
Full Research Paper
Published 04 Oct 2024

Realizing active targeting in cancer nanomedicine with ultrasmall nanoparticles

  • André F. Lima,
  • Giselle Z. Justo and
  • Alioscka A. Sousa

Beilstein J. Nanotechnol. 2024, 15, 1208–1226, doi:10.3762/bjnano.15.98

Graphical Abstract
  • function as a more conventional NP platform in nanomedicine applications [18][21][22][38][39][40]. In diagnostic applications, usNPs have been employed in diverse imaging modalities, including optical imaging [41][42], X-ray computer tomography [43], photoacoustic imaging [41][44], magnetic resonance
  • therapeutic target for MM [161]. Based on this, the Gd construct was utilized for the detection of malignant plasma cells in MM using magnetic resonance imaging (MRI). Competitive cell-binding assays confirmed the maintenance of antibody specificity after conjugation to usNPs. The resulting targeted usNPs
PDF
Album
Review
Published 30 Sep 2024

Local work function on graphene nanoribbons

  • Daniel Rothhardt,
  • Amina Kimouche,
  • Tillmann Klamroth and
  • Regina Hoffmann-Vogel

Beilstein J. Nanotechnol. 2024, 15, 1125–1131, doi:10.3762/bjnano.15.91

Graphical Abstract
  • cyclodehydrogenation and the formation of GNRs following [13][26]. The sample was introduced into our SFM attached to the same vacuum chamber, which was cooled down to 115 K using liquid nitrogen. Nanosensors Si tips (resonance frequency f0 = 158 kHz and longitudinal force constant cL = 45 N/m) and PtIr-coated tips
PDF
Album
Supp Info
Letter
Published 29 Aug 2024

Signal generation in dynamic interferometric displacement detection

  • Knarik Khachatryan,
  • Simon Anter,
  • Michael Reichling and
  • Alexander von Schmidsfeld

Beilstein J. Nanotechnol. 2024, 15, 1070–1076, doi:10.3762/bjnano.15.87

Graphical Abstract
  • tip–surface forces, the cantilever displacement is [13]: where A is the cantilever oscillation amplitude and fexc is the excitation frequency kept at the resonance frequency of the cantilever for frequency-modulation NC-AFM. Further taking into account that the interferometer may be misaligned by the
  • accomplished by a HF2LI (Zurich Instruments, Zürich, Switzerland). Experiments are performed with the freely oscillating cantilever. Therefore, the cantilever excitation frequency fexc is set to the eigenfrequency of the cantilever, which is determined by taking a resonance curve before each experiment. By
PDF
Album
Full Research Paper
Published 20 Aug 2024

Effect of wavelength and liquid on formation of Ag, Au, Ag/Au nanoparticles via picosecond laser ablation and SERS-based detection of DMMP

  • Sree Satya Bharati Moram,
  • Chandu Byram and
  • Venugopal Rao Soma

Beilstein J. Nanotechnol. 2024, 15, 1054–1069, doi:10.3762/bjnano.15.86

Graphical Abstract
  • was meticulously evaluated by analyzing the ablation rates, surface plasmon resonance peak positions, and particle size distributions of the obtained colloids. The nanoparticles (NPs) were characterized using the techniques of UV–visible absorption, transmission electron microscopy, and energy
  • . Further, optimized SERS substrates were tested with different Raman excitations to highlight the critical role of molecular resonance absorption. Specifically, an excitation wavelength of 325 nm proved to be the most effective for detecting methyl salicylate and DMMP, underscoring the importance of
  • resonance (SPR) absorption peak, indicating the formation of spherical NPs. The SPR peak of Ag/Au alloy NPs lies between the SPR peak positions of pure Ag and Au NPs. Notably, the plasmon bands of NPs obtained at lower wavelengths (355 and 532 nm) are broadened compared to those of NPs fabricated at higher
PDF
Album
Supp Info
Full Research Paper
Published 19 Aug 2024

Entry of nanoparticles into cells and tissues: status and challenges

  • Kirsten Sandvig,
  • Tore Geir Iversen and
  • Tore Skotland

Beilstein J. Nanotechnol. 2024, 15, 1017–1029, doi:10.3762/bjnano.15.83

Graphical Abstract
  • imaging (i.e., positron emission tomography (PET), single-photon emission computed tomography (SPECT), optical/fluorescence, magnetic resonance imaging (MRI), computed tomography (CT; using X-ray) and ultrasound imaging), and the spatial resolution, depth of imaging, sensitivity, and advantages
PDF
Album
Perspective
Published 12 Aug 2024

Therapeutic effect of F127-folate@PLGA/CHL/IR780 nanoparticles on folate receptor-expressing cancer cells

  • Thi Ngoc Han Pham,
  • Phuong-Thao Dang-Luong,
  • Hong-Phuc Nguyen,
  • Loc Le-Tuan,
  • Xuan Thang Cao,
  • Thanh-Danh Nguyen,
  • Vy Tran Anh and
  • Hieu Vu_Quang

Beilstein J. Nanotechnol. 2024, 15, 954–964, doi:10.3762/bjnano.15.78

Graphical Abstract
  • folic acid to enhance the imaging contrast in magnetic resonance imaging (MRI) or to improve the therapeutic efficacy of nanoparticles [14]. Chlorambucil (CHL) is a nitrogen mustard alkylating drug used to treat several benign tumors and malignancies, including chronic lymphatic leukemia [15], Hodgkin’s
PDF
Album
Supp Info
Full Research Paper
Published 31 Jul 2024

A review on the structural characterization of nanomaterials for nano-QSAR models

  • Salvador Moncho,
  • Eva Serrano-Candelas,
  • Jesús Vicente de Julián-Ortiz and
  • Rafael Gozalbes

Beilstein J. Nanotechnol. 2024, 15, 854–866, doi:10.3762/bjnano.15.71

Graphical Abstract
  • found to be used as NM descriptors, such as the relaxivities R1 and R2 obtained from magnetic resonance studies [44]. Related to magnetism, Kotzabasaki et al. used the magnetic field strength, but also a single categorical descriptor describing the magnetic core composition of the nanoparticles [25
  • ]. Additionally, focusing on the role of the NM as contrast agent in magnetic resonance imaging, the authors added the specific property of cellular internalization of iron, measured as the amount of iron inside the cells [25]. Zhang et al. [79] created a predictive model that uses regression trees to predict the
PDF
Album
Supp Info
Review
Published 11 Jul 2024

Electron-induced ligand loss from iron tetracarbonyl methyl acrylate

  • Hlib Lyshchuk,
  • Atul Chaudhary,
  • Thomas F. M. Luxford,
  • Miloš Ranković,
  • Jaroslav Kočišek,
  • Juraj Fedor,
  • Lisa McElwee-White and
  • Pamir Nag

Beilstein J. Nanotechnol. 2024, 15, 797–807, doi:10.3762/bjnano.15.66

Graphical Abstract
  • use. 1H nuclear magnetic resonance spectra (NMR) were obtained on a Bruker 400 MHz spectrometer. IR spectra were obtained on a PerkinElmer Spectrum ONE FTIR spectrometer using a solution cell equipped with NaCl windows and a path length of 1.0 mm. Synthesis The compound was synthesized according to
  • calibrated by measuring and fitting the 4.4 and 8.2 eV DEA resonance peaks of O− anions produced from CO2 molecules. TEM-QMS setup The TEM-QMS setup was originally constructed and operated at the University of Fribourg, Switzerland [28], and was later moved to Prague and modified [29]. A continuous electron
  • 4.4 eV resonance peak of O− anions produced via DEA to CO2. The electron beam energy resolution was estimated by fitting and extracting the width of the 4.4 eV resonance peak of O−/CO2; during the present measurement it was around 100 meV. In the given mass range, the quadrupole mass resolution was
PDF
Album
Supp Info
Full Research Paper
Published 03 Jul 2024

Exploring surface charge dynamics: implications for AFM height measurements in 2D materials

  • Mario Navarro-Rodriguez,
  • Andres M. Somoza and
  • Elisa Palacios-Lidon

Beilstein J. Nanotechnol. 2024, 15, 767–780, doi:10.3762/bjnano.15.64

Graphical Abstract
  • invasive mode, the driving excitation frequency can be fixed at, or near, the free resonance frequency of the cantilever, or tracked by using a phase-locked loop (PLL) to keep the system always in resonance. If the driving excitation frequency is kept fixed, the phase variations contain information about
  • the dissipation. In this mode, the amplitude reduction may be due to (i) the tip–sample interaction (conservative or non-conservative), which shifts the resonance frequency and, therefore, makes the excitation go out of resonance, (ii) non-conservative interactions, which dissipate parts of the
  • sample [38][39][40][41], or to typically electrostatic conservative forces [42]. In the latter case, using KPFM to minimize these forces mitigates the problem. Finally, if the driving excitation frequency is tracked to follow the resonance frequency shift induced by the tip–sample interactions, the
PDF
Album
Supp Info
Full Research Paper
Published 01 Jul 2024

Elastic modulus of β-Ga2O3 nanowires measured by resonance and three-point bending techniques

  • Annamarija Trausa,
  • Sven Oras,
  • Sergei Vlassov,
  • Mikk Antsov,
  • Tauno Tiirats,
  • Andreas Kyritsakis,
  • Boris Polyakov and
  • Edgars Butanovs

Beilstein J. Nanotechnol. 2024, 15, 704–712, doi:10.3762/bjnano.15.58

Graphical Abstract
  • the mechanical properties of Ga2O3 nanowires (NWs). In this work, we investigated the elastic modulus of individual β-Ga2O3 NWs using two distinct techniques – in-situ scanning electron microscopy resonance and three-point bending in atomic force microscopy. The structural and morphological properties
  • of the synthesised NWs were investigated using X-ray diffraction, transmission and scanning electron microscopies. The resonance tests yielded the mean elastic modulus of 34.5 GPa, while 75.8 GPa mean value was obtained via three-point bending. The measured elastic moduli values indicate the need for
  • for studying the mechanical properties of NWs, such as nanoindentation [15], three-point bending tests using an atomic force microscope (AFM) [16], and in-situ scanning electron microscope (SEM) resonance [17]. However, challenges of obtaining consistent and comparable elastic modulus values across
PDF
Album
Supp Info
Full Research Paper
Published 18 Jun 2024

Enhancing higher-order modal response in multifrequency atomic force microscopy with a coupled cantilever system

  • Wendong Sun,
  • Jianqiang Qian,
  • Yingzi Li,
  • Yanan Chen,
  • Zhipeng Dou,
  • Rui Lin,
  • Peng Cheng,
  • Xiaodong Gao,
  • Quan Yuan and
  • Yifan Hu

Beilstein J. Nanotechnol. 2024, 15, 694–703, doi:10.3762/bjnano.15.57

Graphical Abstract
  • , including increasing the modal frequency of the original cantilever and generating additional resonance peaks, demonstrating the significant potential of the coupled system in various fields of AFM. Keywords: atomic force microscopy; coupled system; higher-order modes; macroscale; multifrequency AFM
  • achieved this by etching specific regions of the cantilever, coating, and utilizing magnetostrictive actuation to enhance the resonance modes of individual cantilevers [13]. Some have explored the enhancement of modal properties by adding rebar structures to cantilever beams using 3D laser writing [14
  • ]. Moreover, the V-shaped design of the cantilever beam reduces its frequency ratio and enhances the possibility of self-excitation, making it more appropriate for multifrequency AFM, particularly in the realm of bimodal AFM [15]. In addition, there are other ways to enhance the resonance response by changing
PDF
Album
Supp Info
Full Research Paper
Published 17 Jun 2024

Gold nanomakura: nanoarchitectonics and their photothermal response in association with carrageenan hydrogels

  • Nabojit Das,
  • Vikas,
  • Akash Kumar,
  • Sanjeev Soni and
  • Raja Gopal Rayavarapu

Beilstein J. Nanotechnol. 2024, 15, 678–693, doi:10.3762/bjnano.15.56

Graphical Abstract
  • gold nanomakura within a 600–700 nm wavelength. The aspect ratio as well as anisotropy of synthesized gold nanomakura can influence photothermal response upon near-infrared irradiation. The role of carbon tail length was evident via absorption peaks obtained from longitudinal surface plasmon resonance
  • . Plasmon resonance in spherical nanoparticles can be stretched over a relatively small wavelength range by changing the diameter, whereas casting anisotropy serves an extra degree of freedom for controlling the plasmon band over a range of visible to infrared (IR) spectrum [4]. Gold nanoparticles are well
  • -known noble metal materials whose resonance occurs in both visible and infrared range of the electromagnetic spectrum, rendering pertinence in various disciplines such as surface-enhanced Raman scattering (SERS), optical sensors, fluorescence (SPR) sensor chips, deoxyribonucleic acid (DNA) sensors
PDF
Album
Supp Info
Full Research Paper
Published 07 Jun 2024

AFM-IR investigation of thin PECVD SiOx films on a polypropylene substrate in the surface-sensitive mode

  • Hendrik Müller,
  • Hartmut Stadler,
  • Teresa de los Arcos,
  • Adrian Keller and
  • Guido Grundmeier

Beilstein J. Nanotechnol. 2024, 15, 603–611, doi:10.3762/bjnano.15.51

Graphical Abstract
  • than 10–30 nm below the top surface). As this is a higher-order nonlinear effect, the resulting tip–surface force is very small compared to that of classical contact-mode-based AFM-IR techniques, such as the ring-down method or resonance-enhanced AFM-IR, where the photothermal tip–sample force can be
  • measured in a first-order detection scheme with or without additional resonance enhancement. However, it contains chemical information from a much larger depth (hundreds of nanometers to several micrometers). If the difference or sum of freely selectable laser pulse repetition frequency and mechanical
  • modulation (i.e., drive frequency) in surface-sensitive AFM-IR mode equals a mechanical resonance of the tip–surface contact, sufficient IR signal enhancement can be obtained at this frequency (i.e., detection frequency). This is used to measure the IR signature of thin material sections close to the top
PDF
Album
Correction
Full Research Paper
Published 24 May 2024

Stiffness calibration of qPlus sensors at low temperature through thermal noise measurements

  • Laurent Nony,
  • Sylvain Clair,
  • Daniel Uehli,
  • Aitziber Herrero,
  • Jean-Marc Themlin,
  • Andrea Campos,
  • Franck Para,
  • Alessandro Pioda and
  • Christian Loppacher

Beilstein J. Nanotechnol. 2024, 15, 580–602, doi:10.3762/bjnano.15.50

Graphical Abstract
  • reported on artificial atoms formed by quantum corrals [9]. In nc-AFM, the probe, whose mechanical behavior may advantageously be compared to that of a one-dimensional simple harmonic oscillator (SHO) of resonance frequency f1 (flexural fundamental eigenmode) and stiffness k1, is sinusoidally excited at f1
  • resonance frequency remains unchanged, f1. When the tip is in the range of attractive interatomic forces Fint(r), that is, for tip–surface separations r 1 nm, non-linear effects modify the oscillator dynamics, which shifts its resonance frequency down to lower values < f1. The resulting frequency shift Δf
  • , which forms the tip. The tip is electrically connected to an electrode that collects the tunneling current if scanning tunneling experiments are to be performed along with nc-AFM experiments. The qPlus sensors feature a resonance frequency of f1 ≃ 25 kHz and a most commonly reported stiffness of 1800 N
PDF
Album
Supp Info
Full Research Paper
Published 23 May 2024

Radiofrequency enhances drug release from responsive nanoflowers for hepatocellular carcinoma therapy

  • Yanyan Wen,
  • Ningning Song,
  • Yueyou Peng,
  • Weiwei Wu,
  • Qixiong Lin,
  • Minjie Cui,
  • Rongrong Li,
  • Qiufeng Yu,
  • Sixue Wu,
  • Yongkang Liang,
  • Wei Tian and
  • Yanfeng Meng

Beilstein J. Nanotechnol. 2024, 15, 569–579, doi:10.3762/bjnano.15.49

Graphical Abstract
  • significantly suppressed HCC cell proliferation. Moreover, CUR-Fe@MnO2 NFs were effective T1/T2 contrast agents for molecular magnetic resonance imaging due to the release of Mn2+ and Fe3O4 NCs. Keywords: curcumin; hepatocellular carcinoma; magnetic resonance imaging (MRI); radiofrequency (RF) hyperthermia
  • (Fe3O4 NCs), – CUR layer, – and MnO2 (CUR-Fe@MnO2 NFs). These NFs carry CUR and Fe3O4 NCs, achieve sustained and concurrent drug release, and can be used for molecular magnetic resonance imaging (MRI). Moreover, we explored the ability of the NFs to release drugs and evaluated their cytotoxic effects
  • live/dead staining. In vitro magnetic resonance imaging CUR-Fe@MnO2 NFs can release Mn2+ and Fe3O4 NCs. Mn2+ can shorten the T1 effect, and Fe3O4 NCs can shorten the T2 effect. In this study, CUR-Fe@MnO2 NFs at pH 5.0 + GSH + H2O2 were mixed with a 1% agarose solution to create solutions of different
PDF
Album
Full Research Paper
Published 22 May 2024
Other Beilstein-Institut Open Science Activities