Search results

Search for "interaction" in Full Text gives 1470 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Nanoarchitectonics with cetrimonium bromide on metal nanoparticles for linker-free detection of toxic metal ions and catalytic degradation of 4-nitrophenol

  • Akash Kumar and
  • Raja Gopal Rayavarapu

Beilstein J. Nanotechnol. 2024, 15, 1312–1332, doi:10.3762/bjnano.15.106

Graphical Abstract
  • does not allow for interactions with ligands via ion–ion interactions. Therefore, multiple surface modifications or linkers must be used for selective interaction between ligand and CTAB-capped gold and silver nanoparticles [7][9]. Contaminants in form of heavy metals and pollutant such as 4
  • change in absorption wavelength. The color of gold and silver nanoparticles highly depends on shape, size, and pH value, which are directly influenced by the ligand–metal interaction [22]. Another essential factor is surface capping, which provides colloidal stability and the surface for ionic
  • interaction with ligands [23]. Previously, post-synthesis surface-modified CTAB-capped gold and silver nanoparticles were used to detect various compounds, including heavy metals [9][24]. Moudgil et al. showed that that poly-ʟ-lysine-coated CTAB-AgNPs are selective and sensitive for detecting Hg2+ [9]. GSH
PDF
Album
Supp Info
Full Research Paper
Published 04 Nov 2024

Interaction of graphene oxide with tannic acid: computational modeling and toxicity mitigation in C. elegans

  • Romana Petry,
  • James M. de Almeida,
  • Francine Côa,
  • Felipe Crasto de Lima,
  • Diego Stéfani T. Martinez and
  • Adalberto Fazzio

Beilstein J. Nanotechnol. 2024, 15, 1297–1311, doi:10.3762/bjnano.15.105

Graphical Abstract
  • Abstract Graphene oxide (GO) undergoes multiple transformations when introduced to biological and environmental media. GO surface favors the adsorption of biomolecules through different types of interaction mechanisms, modulating the biological effects of the material. In this study, we investigated the
  • interaction of GO with tannic acid (TA) and its consequences for GO toxicity. We focused on understanding how TA interacts with GO, its impact on the material surface chemistry, colloidal stability, as well as, toxicity and biodistribution using the Caenorhabditis elegans model. Employing computational
  • modeling, including reactive classical molecular dynamics and ab initio calculations, we reveal that TA preferentially binds to the most reactive sites on GO surfaces via the oxygen-containing groups or the carbon matrix; van der Waals interaction forces dominate the binding energy. TA exhibits a dose
PDF
Album
Supp Info
Full Research Paper
Published 30 Oct 2024

Mn-doped ZnO nanopowders prepared by sol–gel and microwave-assisted sol–gel methods and their photocatalytic properties

  • Cristina Maria Vlăduț,
  • Crina Anastasescu,
  • Silviu Preda,
  • Oana Catalina Mocioiu,
  • Simona Petrescu,
  • Jeanina Pandele-Cusu,
  • Dana Culita,
  • Veronica Bratan,
  • Ioan Balint and
  • Maria Zaharescu

Beilstein J. Nanotechnol. 2024, 15, 1283–1296, doi:10.3762/bjnano.15.104

Graphical Abstract
  •  10 reveals two significant aspects: (i) The main peak emission for both powders suspended in oxalic acid solutions diminishes. This may be suggestive for the charge carrier type (electrons or holes) acting in the photo-mediated interaction of the surface catalyst with the reactant [53]. (ii) The SG
PDF
Album
Supp Info
Full Research Paper
Published 28 Oct 2024

Dual-functionalized architecture enables stable and tumor cell-specific SiO2NPs in complex biological fluids

  • Iris Renata Sousa Ribeiro,
  • Raquel Frenedoso da Silva,
  • Romênia Ramos Domingues,
  • Adriana Franco Paes Leme and
  • Mateus Borba Cardoso

Beilstein J. Nanotechnol. 2024, 15, 1238–1252, doi:10.3762/bjnano.15.100

Graphical Abstract
  • (targeting agent) to provide selective interaction with tumor cell lines in biological media. The stability of these dually functionalized SiO2NPs is preserved in unprocessed human plasma while yielding a decrease in the number of adsorbed proteins. Experiments in murine blood further proved that these
PDF
Album
Supp Info
Full Research Paper
Published 07 Oct 2024

Enhanced catalytic reduction through in situ synthesized gold nanoparticles embedded in glucosamine/alginate nanocomposites

  • Chi-Hien Dang,
  • Le-Kim-Thuy Nguyen,
  • Minh-Trong Tran,
  • Van-Dung Le,
  • Nguyen Minh Ty,
  • T. Ngoc Han Pham,
  • Hieu Vu-Quang,
  • Tran Thi Kim Chi,
  • Tran Thi Huong Giang,
  • Nguyen Thi Thanh Tu and
  • Thanh-Danh Nguyen

Beilstein J. Nanotechnol. 2024, 15, 1227–1237, doi:10.3762/bjnano.15.99

Graphical Abstract
  • . While gelispheres enhance the physical and mechanical properties of sodium alginate, their poor solubility limits their applicability. Recently, an ionotropic gelation method has been developed to produce nanoparticles from gelispheres through interaction between oligosaccharides (e.g., cyclodextrins
  • , offering a potent solution for dye remediation [28]. In our ongoing research, we synthesized for the first time AuNPs using GluN molecules, serving as both interaction agents to cross-link Ca-Alg gelispheres and reducing agents, thereby providing a novel material for the stabilization of AuNPs. The
  • reduction of 4-NiP (2.05 × 10−3 s−1, R2 = 0.995). This variance may stem from the hindrance caused by the interaction between the hydroxy group in 4-NiP and functional groups in the polysaccharide chains, impeding the adsorption/desorption dynamics on the surface of the AuNPs. The rate constant for MO
PDF
Album
Full Research Paper
Published 04 Oct 2024

Realizing active targeting in cancer nanomedicine with ultrasmall nanoparticles

  • André F. Lima,
  • Giselle Z. Justo and
  • Alioscka A. Sousa

Beilstein J. Nanotechnol. 2024, 15, 1208–1226, doi:10.3762/bjnano.15.98

Graphical Abstract
  • interaction with cell surface receptors on cancer cells, the incorporation of targeting ligands onto usNPs must optimize the exposure, orientation, and conformation of the functional portion. For small molecules and peptides in particular, the functional moiety must circumvent both steric hindrance from the
PDF
Album
Review
Published 30 Sep 2024

A low-kiloelectronvolt focused ion beam strategy for processing low-thermal-conductance materials with nanoampere currents

  • Annalena Wolff,
  • Nico Klingner,
  • William Thompson,
  • Yinghong Zhou,
  • Jinying Lin and
  • Yin Xiao

Beilstein J. Nanotechnol. 2024, 15, 1197–1207, doi:10.3762/bjnano.15.97

Graphical Abstract
  • the ion incidence angle and associated changes in interaction volume shape as well as heat generation need to be investigated further. The ion beam usually hits the sample at glancing angles during TEM lamella preparation and cross-sectioning, which leads to anisotropic changes in the interaction
  • should carefully evaluate if changes to the ion incidence angle can lead to a further reduction in ion beam-induced heat damage. The effect of the different interaction volume sizes and shapes for various ion species should be studied to better understand where the proposed 1D model works and where a 3D
  • simulations for 5 keV gallium ions in collagen The finite element simulator COMSOL was used to simulate the interaction of 5 keV Ga+ with collagen using the time-dependent differential equation of heat conduction for a stationary, homogeneous, and isotropic solid, The time evolution of a single gallium ion’s
PDF
Album
Full Research Paper
Published 27 Sep 2024

Synthesis, characterization and anticancer effect of doxorubicin-loaded dual stimuli-responsive smart nanopolymers

  • Ömür Acet,
  • Pavel Kirsanov,
  • Burcu Önal Acet,
  • Inessa Halets-Bui,
  • Dzmitry Shcharbin,
  • Şeyda Ceylan Cömert and
  • Mehmet Odabaşı

Beilstein J. Nanotechnol. 2024, 15, 1189–1196, doi:10.3762/bjnano.15.96

Graphical Abstract
  • drug doxorubicin (DOX) has been used in the present study. It is a known antitumor antibiotic of the anthracycline series, which has been approved as anticancer drug in 1974. It has antimitotic and antiproliferative effects. The mechanism of action is interaction with DNA, the formation of free
PDF
Album
Full Research Paper
Published 26 Sep 2024

AI-assisted models to predict chemotherapy drugs modified with C60 fullerene derivatives

  • Jonathan-Siu-Loong Robles-Hernández,
  • Dora Iliana Medina,
  • Katerin Aguirre-Hurtado,
  • Marlene Bosquez,
  • Roberto Salcedo and
  • Alan Miralrio

Beilstein J. Nanotechnol. 2024, 15, 1170–1188, doi:10.3762/bjnano.15.95

Graphical Abstract
  • combine these properties to find out if an interaction between two species will occur and to obtain new quantitative relationships. Another helpful descriptor is the global electrophilicity, calculated as ω = χ2/2η [33]. Electrophilicity is related to the energetic stabilization that a species gains by
  • theoretical study on the interactions and stability of paracetamol complexes with C60–COOH [35]. Consequently, this work proposes the interaction of C60–COOH fullerene with anticancer drugs. As a complement, a water-soluble fullerene predicted as stable at the normal human body temperature was proposed to
  • of drug–C60 were initially considered. The variables to model the interaction with C60–COOH were taken directly from those of drug–C60. For example, AI model 1 with C60–COOH used the variables that had an importance greater than zero from AI model 1 of drug–C60. The most important variables in the
PDF
Album
Supp Info
Full Research Paper
Published 19 Sep 2024

Quantum-to-classical modeling of monolayer Ge2Se2 and its application in photovoltaic devices

  • Anup Shrivastava,
  • Shivani Saini,
  • Dolly Kumari,
  • Sanjai Singh and
  • Jost Adam

Beilstein J. Nanotechnol. 2024, 15, 1153–1169, doi:10.3762/bjnano.15.94

Graphical Abstract
  • electron-like wave functions have been generated using the projected augmented wave (PAW) method. A plane-wave basis set has been used to consolidate the interaction between core and valence electrons with an optimized threshold energy of 60 Ry. For efficient and precise calculations, the Brillouin zone
  • implication. After getting the value of the deformation potential using Kawaji theory [80], we can formulate the phonon-limited mobility (μ2D) because of the interaction of the charge carriers with low acoustic phonons as [81]: where C denotes the elastic constant of a 2D material and is the geometric mean
PDF
Album
Full Research Paper
Published 11 Sep 2024

Introducing third-generation periodic table descriptors for nano-qRASTR modeling of zebrafish toxicity of metal oxide nanoparticles

  • Supratik Kar and
  • Siyun Yang

Beilstein J. Nanotechnol. 2024, 15, 1142–1152, doi:10.3762/bjnano.15.93

Graphical Abstract
  • of an element. In the context of nanoparticles, the size of the metal atoms directly affects the overall size and surface area of the nanoparticles, which are critical factors in their reactivity and interaction with other materials. The ionic radius is essential for understanding the metal’s
  • ), suggesting that nanomaterials composed of atoms with larger radii are associated with a decrease in %EIzebrafish. A larger atomic radius might indicate weaker bonding and less effective interaction with the enzyme or its substrate, leading to less enzyme inhibition. This could be due to the diffuse nature of
PDF
Album
Supp Info
Full Research Paper
Published 10 Sep 2024

Photocatalytic methane oxidation over a TiO2/SiNWs p–n junction catalyst at room temperature

  • Qui Thanh Hoai Ta,
  • Luan Minh Nguyen,
  • Ngoc Hoi Nguyen,
  • Phan Khanh Thinh Nguyen and
  • Dai Hai Nguyen

Beilstein J. Nanotechnol. 2024, 15, 1132–1141, doi:10.3762/bjnano.15.92

Graphical Abstract
  • surface interaction with gases during photocatalytic oxidative coupling can be analyzed using water contact angle analysis (as shown in Supporting Information File 1, Figure S2). The wettability of pure p-Si and the p-Si NW array are illustrated in Figure S3 (Supporting Information File 1). Pure p-Si had
  • Information File 1, Figure S2. The contact angle between horizontal sample surface and the perimeter of the water drop was measured after 10 s of interaction. The in situ photocurrent measurements were carried out in the presence of gaseous reactants (CH4/air = 4.5/0.5) ranging from −2 V to +3 V under dark
PDF
Album
Supp Info
Full Research Paper
Published 02 Sep 2024

Direct electron beam writing of silver using a β-diketonate precursor: first insights

  • Katja Höflich,
  • Krzysztof Maćkosz,
  • Chinmai S. Jureddy,
  • Aleksei Tsarapkin and
  • Ivo Utke

Beilstein J. Nanotechnol. 2024, 15, 1117–1124, doi:10.3762/bjnano.15.90

Graphical Abstract
  • irradiated with primary electrons, which is caused by the backscattered electrons generated by the interaction with the substrate [28]. Figure 1b shows the corresponding Monte-Carlo simulation of the secondary and backscattered electron (SE + BSE) distribution for a Gaussian beam of 250 nm FWHM impinging on
  • parasitic co-deposition occurred below the actual helix wires caused by the residual primary electrons that penetrate the helix arms [39]. This can potentially be reduced by lowering the primary beam energy and, correspondingly, the interaction volume, while at the same time a more circular cross section of
PDF
Album
Supp Info
Letter
Published 26 Aug 2024

Recent updates in applications of nanomedicine for the treatment of hepatic fibrosis

  • Damai Ria Setyawati,
  • Fransiska Christydira Sekaringtyas,
  • Riyona Desvy Pratiwi,
  • A’liyatur Rosyidah,
  • Rohimmahtunnissa Azhar,
  • Nunik Gustini,
  • Gita Syahputra,
  • Idah Rosidah,
  • Etik Mardliyati,
  • Tarwadi and
  • Sjaikhurrizal El Muttaqien

Beilstein J. Nanotechnol. 2024, 15, 1105–1116, doi:10.3762/bjnano.15.89

Graphical Abstract
  • small interfering RNA) for hereditary transthyretin amyloidosis (ATTR) [10]. Here, we describe the mechanism of nanomedicine-based drug delivery for liver fibrosis treatment. In the following review, we briefly summarize the basic physiology of liver fibrosis, the interaction between NPs and the liver
  • in the liver [27][28]. The interaction of the nanocarriers with various types of cells is size-dependent [30]. Nanocarriers with a particle size bigger than 100 nm could be taken up by LSECs and Kupffer cells through endocytosis. With the increase of particle size, the uptake of nanocarriers by
PDF
Album
Review
Published 23 Aug 2024

Unveiling the potential of alginate-based nanomaterials in sensing technology and smart delivery applications

  • Shakhzodjon Uzokboev,
  • Khojimukhammad Akhmadbekov,
  • Ra’no Nuritdinova,
  • Salah M. Tawfik and
  • Yong-Ill Lee

Beilstein J. Nanotechnol. 2024, 15, 1077–1104, doi:10.3762/bjnano.15.88

Graphical Abstract
  • nanoparticles have demonstrated enormous advantages for sensing applications. First, alginate-based nanoparticles have a high surface area-to-volume ratio. This feature allows for increased interaction with the target analyte, leading to enhanced sensitivity and detection capabilities. Additionally, alginate
  • efficiency of 81.2% and a high drug loading capacity of 18.3% were obtained. Furthermore, at pH 5.0, 90% of the DOX was released from the conjugated NPs. An acidic environment can be cause for the reduced electrostatic interaction between alginate and DOX. It is noteworthy that KB cancer cells effectively
PDF
Album
Review
Published 22 Aug 2024

Effect of wavelength and liquid on formation of Ag, Au, Ag/Au nanoparticles via picosecond laser ablation and SERS-based detection of DMMP

  • Sree Satya Bharati Moram,
  • Chandu Byram and
  • Venugopal Rao Soma

Beilstein J. Nanotechnol. 2024, 15, 1054–1069, doi:10.3762/bjnano.15.86

Graphical Abstract
  • implications for developing more efficient and stable SERS substrates for chemical detection applications. Keywords: dimethyl methyl phosphonate; laser material interaction; metal nanoparticles; picosecond laser ablation; SERS; thiram; Introduction Metal nanoparticles (NPs) are versatile materials widely
  • wavelengths (1064 nm). This broadening could be ascribed to the size/shape of the NPs, their aggregation, and variations in size distribution under different laser wavelengths. The NP productivity in the LASiS approach is mainly influenced by laser wavelength irradiation based on the interaction of the
  • , and (c) 1064 nm) in DW are shown. At 355 nm, a distinctive nanochain morphology linking spherical NPs was evident, contrasting with the separated spherical morphology. The prevalent interaction at 355 nm with the liquid phase was more influential than the NP production, resulting in particles with
PDF
Album
Supp Info
Full Research Paper
Published 19 Aug 2024

Interface properties of nanostructured carbon-coated biological implants: an overview

  • Mattia Bartoli,
  • Francesca Cardano,
  • Erik Piatti,
  • Stefania Lettieri,
  • Andrea Fin and
  • Alberto Tagliaferro

Beilstein J. Nanotechnol. 2024, 15, 1041–1053, doi:10.3762/bjnano.15.85

Graphical Abstract
  • due to mere surface interactions, as summarized in Figure 3. The interaction between implants and the immune system is highly tissue-specific, with different responses observed depending on the implantation sites. Usually, the insertion of an implant is followed by the adsorption of plasma components
  • potential influenced the mechanical characteristics, suggesting a better interaction with the surrounding tissues. Jozwik et al. [147] also reported the long durability of ND coatings in heart implants without any appreciable decrement of performance. Furthermore, ND layers can be easily integrated with
  • with peculiar chemical reactivity and resistance to oxidative stress. Summary and Future Perspectives The results herein discuss the complex scenario of the interaction between implants and living tissues, which is still far from being fully understood. The engineering of implant surfaces with
PDF
Album
Review
Published 16 Aug 2024

Entry of nanoparticles into cells and tissues: status and challenges

  • Kirsten Sandvig,
  • Tore Geir Iversen and
  • Tore Skotland

Beilstein J. Nanotechnol. 2024, 15, 1017–1029, doi:10.3762/bjnano.15.83

Graphical Abstract
  • of new types of NPs, there is a knowledge gap when it comes to our understanding of the interaction of NPs with both cells and tissues. However, it is well known that NP properties, such as surface charge, size, and the material they are composed of can affect cellular uptake, biodistribution, and
PDF
Album
Perspective
Published 12 Aug 2024

Can neutral clusters: a two-step G0W0 and DFT benchmark

  • Sunila Bakhsh,
  • Sameen Aslam,
  • Muhammad Khalid,
  • Muhammad Sohail,
  • Sundas Zafar,
  • Sumayya Abdul Wadood,
  • Kareem Morsy and
  • Muhammad Aamir Iqbal

Beilstein J. Nanotechnol. 2024, 15, 1010–1016, doi:10.3762/bjnano.15.82

Graphical Abstract
  • . Apart from the accuracy of the functional, there can be a van der Waals interaction effect for clusters, which can be calculated by semi-empirical corrections added to the conventional density functional approximation and needs detailed assessment for small clusters (n = 2–10). In such cases, DFT-D
PDF
Album
Supp Info
Full Research Paper
Published 08 Aug 2024

Recent progress on field-effect transistor-based biosensors: device perspective

  • Billel Smaani,
  • Fares Nafa,
  • Mohamed Salah Benlatrech,
  • Ismahan Mahdi,
  • Hamza Akroum,
  • Mohamed walid Azizi,
  • Khaled Harrar and
  • Sayan Kanungo

Beilstein J. Nanotechnol. 2024, 15, 977–994, doi:10.3762/bjnano.15.80

Graphical Abstract
  • heterogeneous environment. Additionally, the amplifier increases the signal that is produced by the transducer element [50]. In this sense, the transducer is responsible for converting the interaction that occurs between the biorecognition component and the analyte into a signal. Also, an immobilized biological
  • . The first transduction mechanism is known as charge modulation, in which charged biomolecule species bind to the surface of the gate insulator and modify the charge density of the channel surface, and thus the surface conductivity by Coulomb interaction. This acts as a gating mechanism, and
PDF
Album
Review
Published 06 Aug 2024

Electrospun nanofibers: building blocks for the repair of bone tissue

  • Tuğrul Mert Serim,
  • Gülin Amasya,
  • Tuğba Eren-Böncü,
  • Ceyda Tuba Şengel-Türk and
  • Ayşe Nurten Özdemir

Beilstein J. Nanotechnol. 2024, 15, 941–953, doi:10.3762/bjnano.15.77

Graphical Abstract
  • increases, entanglement and interaction of polymer chains will occur to a greater extent, resulting in an increase in elastic properties of the fibers [54]. Polymer molecular weight The molecular weight of the polymer is another important parameter regarding electrospinning as it affects solution viscosity
  • observed. Pore size and porosity percentage are also related to the molecular weight of the polymer [57][66]. Solvent or solvent mixture The solvent, or the solvent mixture, used is critical for the stable formation of a Taylor cone. It affects the intermolecular interaction in the polymer–solvent system
PDF
Album
Review
Published 25 Jul 2024

Effects of cutting tool geometry on material removal of a gradient nanograined CoCrNi medium entropy alloy

  • Yu-Sheng Lu,
  • Yu-Xuan Hung,
  • Thi-Xuyen Bui and
  • Te-Hua Fang

Beilstein J. Nanotechnol. 2024, 15, 925–940, doi:10.3762/bjnano.15.76

Graphical Abstract
  • carried out with time steps of 0.001 ps and a 10 ps equilibrium process. Table 1 shows the MD simulation parameters of the GNG CoCrNi MEA cutting process for this study. The embedded atom method (EAM) potential from Farkas et al. [11] was utilized for modeling the atomic interaction of the atoms in the
  • CoCrNi MEA substrates. The Lennard-Jones (LJ) potential was used to model the interaction among tool and sample atoms, and among the atoms in the tool [12][13][14][15]. The parameters of the LJ potential are displayed in Table 2. The MD cutting simulations were carried out using the large-scale atomic
PDF
Album
Full Research Paper
Published 23 Jul 2024

Water-assisted purification during electron beam-induced deposition of platinum and gold

  • Cristiano Glessi,
  • Fabian A. Polman and
  • Cornelis W. Hagen

Beilstein J. Nanotechnol. 2024, 15, 884–896, doi:10.3762/bjnano.15.73

Graphical Abstract
  • accessible in purification during deposition since the amount of intact MeCpPtMe3 molecules adsorbed to the substrate should be larger. Similarly, the protonation of an acetylacetonate ligand to form acetylacetone causes the formation of a much weaker metal–ligand interaction. Such an acetylacetonate ligand
PDF
Album
Supp Info
Full Research Paper
Published 18 Jul 2024

A review on the structural characterization of nanomaterials for nano-QSAR models

  • Salvador Moncho,
  • Eva Serrano-Candelas,
  • Jesús Vicente de Julián-Ortiz and
  • Rafael Gozalbes

Beilstein J. Nanotechnol. 2024, 15, 854–866, doi:10.3762/bjnano.15.71

Graphical Abstract
  • its interaction with other substances, as for example using the maximum salt concentration in the medium with no significant coagulation or the rate constant of its oxidation by hydrogen peroxide [68]. It should be noted that the use of experimental descriptors can be exclusive, and there are models
PDF
Album
Supp Info
Review
Published 11 Jul 2024

Synthesis of silver–palladium Janus nanoparticles using co-sputtering of independent sources: experimental and theorical study

  • Maria J. Martínez-Carreón,
  • Francisco Solís-Pomar,
  • Abel Fundora,
  • Claudio D. Gutiérrez-Lazos,
  • Sergio Mejía-Rosales,
  • Hector N. Fernández-Escamilla,
  • Jonathan Guerrero-Sánchez,
  • Manuel F. Meléndrez and
  • Eduardo Pérez-Tijerina

Beilstein J. Nanotechnol. 2024, 15, 808–816, doi:10.3762/bjnano.15.67

Graphical Abstract
  • constraints until the forces were less than 0.02 eV/Å. To consider surface effects, we break the symmetry along the z axis by introducing a vacuum space of 20 Å to preclude surface self-interaction. The Brillouin zone for the 3D bulk phases was sampled with an 8 × 8 × 8 k-points mesh under the Monkhorst–Pack
PDF
Album
Full Research Paper
Published 04 Jul 2024
Other Beilstein-Institut Open Science Activities