Search results

Search for "iron oxide" in Full Text gives 168 result(s) in Beilstein Journal of Nanotechnology.

Porous silver-coated pNIPAM-co-AAc hydrogel nanocapsules

  • William W. Bryan,
  • Riddhiman Medhi,
  • Maria D. Marquez,
  • Supparesk Rittikulsittichai,
  • Michael Tran and
  • T. Randall Lee

Beilstein J. Nanotechnol. 2019, 10, 1973–1982, doi:10.3762/bjnano.10.194

Graphical Abstract
  • , Zhao et al. created pH- and temperature-sensitive bioprobes by incorporating pNIPAM hydrogel cores with europium organic complexes [67]. In separate studies, Lee and co-workers utilized both biocompatible gold nanoshells, iron oxide nanoparticles, and gold nanorods with thermo-responsive hydrogel
PDF
Album
Full Research Paper
Published 04 Oct 2019

Magnetic properties of biofunctionalized iron oxide nanoparticles as magnetic resonance imaging contrast agents

  • Natalia E. Gervits,
  • Andrey A. Gippius,
  • Alexey V. Tkachev,
  • Evgeniy I. Demikhov,
  • Sergey S. Starchikov,
  • Igor S. Lyubutin,
  • Alexander L. Vasiliev,
  • Vladimir P. Chekhonin,
  • Maxim A. Abakumov,
  • Alevtina S. Semkina and
  • Alexander G. Mazhuga

Beilstein J. Nanotechnol. 2019, 10, 1964–1972, doi:10.3762/bjnano.10.193

Graphical Abstract
  • Background: One of the future applications of magnetic nanoparticles is the development of new iron-oxide-based magnetic resonance imaging (MRI) negative contrast agents, which are intended to improve the results of diagnostics and complement existing Gd-based contrast media. Results: Iron oxide
  • and human serum albumin coated iron oxide nanoparticles was observed by Mössbauer spectroscopy. Conclusion: This difference in magnetic behavior is explained by the influence of biofunctionalization on the magnetic and electronic properties of the iron oxide nanoparticles. The ZF-NMR spectra analysis
  • allowed us to determine the relative amount of iron located in the core and the surface layer of the nanoparticles. The obtained results are important for understanding the structural and magnetic properties of iron oxide nanoparticles used as T2 contrast agents for MRI. Keywords: iron oxides; Mössbauer
PDF
Album
Full Research Paper
Published 02 Oct 2019

Facile synthesis of carbon nanotube-supported NiO//Fe2O3 for all-solid-state supercapacitors

  • Shengming Zhang,
  • Xuhui Wang,
  • Yan Li,
  • Xuemei Mu,
  • Yaxiong Zhang,
  • Jingwei Du,
  • Guo Liu,
  • Xiaohui Hua,
  • Yingzhuo Sheng,
  • Erqing Xie and
  • Zhenxing Zhang

Beilstein J. Nanotechnol. 2019, 10, 1923–1932, doi:10.3762/bjnano.10.188

Graphical Abstract
  • Education, School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, China 10.3762/bjnano.10.188 Abstract We have successfully prepared iron oxide and nickel oxide on carbon nanotubes on carbon cloth for the use in supercapacitors via a simple aqueous reduction method. The obtained
  • supercapacitors. Keywords: aqueous reduction; carbon nanotubes; iron oxide; nickel oxide; supercapacitors; Introduction Supercapacitors offer long cycling life, superior charge–recharge ability, high power density, and wide operating temperature [1][2][3]. However, the low energy density limits their
  • . deposited iron oxide on CNTs by atomic layer deposition (ALD) and the obtained CNTs@Fe2O3 presented a specific capacitance of 580.6 F·g−1 at 5 A·g−1 [21]. Zhang et al. used magnetron sputtering to prepare sandwich-like CNT@Fe2O3@C structures, and the composite exhibited a specific capacitance of 787.5 F·g−1
PDF
Album
Supp Info
Full Research Paper
Published 23 Sep 2019

Engineered superparamagnetic iron oxide nanoparticles (SPIONs) for dual-modality imaging of intracranial glioblastoma via EGFRvIII targeting

  • Xianping Liu,
  • Chengjuan Du,
  • Haichun Li,
  • Ting Jiang,
  • Zimiao Luo,
  • Zhiqing Pang,
  • Daoying Geng and
  • Jun Zhang

Beilstein J. Nanotechnol. 2019, 10, 1860–1872, doi:10.3762/bjnano.10.181

Graphical Abstract
  • Education, 826 Zhangheng Road, Shanghai 201203, China 10.3762/bjnano.10.181 Abstract In this work, a peptide-modified, biodegradable, nontoxic, brain-tumor-targeting nanoprobe based on superparamagnetic iron oxide nanoparticles (SPIONs) (which have been commonly used as T2-weighted magnetic resonance (MR
  • imaging (MRI); molecular imaging; superparamagnetic iron oxide nanoparticles (SPIONs); nanomedicine; tumor resection; Introduction Tumor resection is one of the most promising clinical treatments of glioblastoma, which is commonly associated with high mortality and inevitable tumor recurrence. To achieve
  • , gadolinium (Gd)-based agents (often Gd-diethylenetriaminepentaacetic acid (DTPA)) and superparamagnetic iron oxide nanoparticles (SPIONs) are the paramagnetic materials generally used as contrast agents to impact the relaxation time T1 or T2, thus generating bright or dark images via MR imaging. Gd-DTPA, as
PDF
Album
Full Research Paper
Published 11 Sep 2019

The effect of magneto-crystalline anisotropy on the properties of hard and soft magnetic ferrite nanoparticles

  • Hajar Jalili,
  • Bagher Aslibeiki,
  • Ali Ghotbi Varzaneh and
  • Volodymyr A. Chernenko

Beilstein J. Nanotechnol. 2019, 10, 1348–1359, doi:10.3762/bjnano.10.133

Graphical Abstract
  • output of a NP system [15][20][21]. Sathya et al. prepared CoxFe3−xO4 nanocubes by a thermal decomposition method and showed that nanoparticles of 18–20 nm in size and a Co fraction of x = 0.5–0.7 have the highest SAR value and are suitable for hyperthermia applications [12]. Nemati et al. prepared iron
  • oxide nanodiscs and compared their heating efficiency with spherical NPs of similar volume at different field strengths [21]. Their results indicated that the heating efficiency obtained for spherical nanoparticles is smaller than that measured for nanodiscs of similar volumes, especially at low field
PDF
Album
Full Research Paper
Published 03 Jul 2019

Photoactive nanoarchitectures based on clays incorporating TiO2 and ZnO nanoparticles

  • Eduardo Ruiz-Hitzky,
  • Pilar Aranda,
  • Marwa Akkari,
  • Nithima Khaorapapong and
  • Makoto Ogawa

Beilstein J. Nanotechnol. 2019, 10, 1140–1156, doi:10.3762/bjnano.10.114

Graphical Abstract
  • ][132]. The incorporation of various types of NPs using neat clay and applying a two-step synthesis has been reported. A recent example of this refers to the incorporation of ZnO nanoparticles to a Fe3O4-sepiolite nanoarchitecture previously prepared by in situ formation of superparamagnetic iron-oxide
  • nanoparticles on the external surface of sepiolite fibres. The resulting ZnO–Fe3O4@sepiolite nanoarchitecture exhibits photoactivity due to the ZnO NPs, and the presence of magnetite NPs facilitates the recovery by the use of a magnet (Figure 4) [133]. Moreover, the presence of iron oxide could be useful also
PDF
Album
Review
Published 31 May 2019

Scavenging of reactive oxygen species by phenolic compound-modified maghemite nanoparticles

  • Małgorzata Świętek,
  • Yi-Chin Lu,
  • Rafał Konefał,
  • Liliana P. Ferreira,
  • M. Margarida Cruz,
  • Yunn-Hwa Ma and
  • Daniel Horák

Beilstein J. Nanotechnol. 2019, 10, 1073–1088, doi:10.3762/bjnano.10.108

Graphical Abstract
  • analysis. Magnetic measurements indicated that the polymer coating does not affect the superparamagnetic character of the iron oxide core. However, magnetic saturation decreased with increasing thickness of the polymer coating. The antioxidant properties of the nanoparticles were analyzed using a 2,2
  • conjugation via esterification or amidation, and free-radical grafting [16]. The aim of this work was to design and fabricate superparamagnetic iron oxide nanoparticles with antioxidant properties. Positively charged γ-Fe2O3 nanoparticles were synthesized through co-precipitation, and their surface was
  • nanoparticles via the LbL technique. Heparin was attached to the γ-Fe2O3 surface via electrostatic interactions. The TEM micrograph of the γ-Fe2O3@Hep particles showed the heparin layer as a thin bright halo around the iron oxide core (Figure 2c). Compared to γ-Fe2O3, the Dh value of the γ-Fe2O3@Hep particles
PDF
Album
Full Research Paper
Published 20 May 2019

Influence of dielectric layer thickness and roughness on topographic effects in magnetic force microscopy

  • Alexander Krivcov,
  • Jasmin Ehrler,
  • Marc Fuhrmann,
  • Tanja Junkers and
  • Hildegard Möbius

Beilstein J. Nanotechnol. 2019, 10, 1056–1064, doi:10.3762/bjnano.10.106

Graphical Abstract
  • overlapped by additional forces acting on the tip such as electrostatic forces. In this work the possibility to reduce capacitive coupling effects between tip and substrate is discussed in relation to the thickness of a dielectric layer introduced in the system. Single superparamagnetic iron oxide
  • roughness of dielectric films with increasing film thickness. Keywords: capacitive coupling; electrostatic effects; magnetic force microscopy; nanoparticles; superparamagnetic iron oxide nanoparticle (SPION); Introduction MFM has become an important tool for studying magnetic properties of surface
PDF
Album
Supp Info
Full Research Paper
Published 17 May 2019

Magnetic field-assisted assembly of iron oxide mesocrystals: a matter of nanoparticle shape and magnetic anisotropy

  • Julian J. Brunner,
  • Marina Krumova,
  • Helmut Cölfen and
  • Elena V. Sturm (née Rosseeva)

Beilstein J. Nanotechnol. 2019, 10, 894–900, doi:10.3762/bjnano.10.90

Graphical Abstract
  • Julian J. Brunner Marina Krumova Helmut Colfen Elena V. Sturm (nee Rosseeva) University of Konstanz, Konstanz, Germany 10.3762/bjnano.10.90 Abstract This letter describes the formation and detailed characterization of iron oxide mesocrystals produced by the directed assembly of superparamagnetic
  • iron oxide-truncated nanocubes using the slow evaporation of the solvent within an externally applied homogeneous magnetic field. Anisotropic mesocrystals with an elongation along the direction of the magnetic field can be produced. The structure of the directed mesocrystals is compared to self
  • to further design novel superstructures including mesocrystals with outstanding morphologies and orientational relations of nanocrystals, which cannot be formed otherwise. In our previous study, the iron oxide nanocrystal synthesis and characterization as well as the formation of self-assembled
PDF
Album
Letter
Published 17 Apr 2019

Tungsten disulfide-based nanocomposites for photothermal therapy

  • Tzuriel Levin,
  • Hagit Sade,
  • Rina Ben-Shabbat Binyamini,
  • Maayan Pour,
  • Iftach Nachman and
  • Jean-Paul Lellouche

Beilstein J. Nanotechnol. 2019, 10, 811–822, doi:10.3762/bjnano.10.81

Graphical Abstract
  • these conditions. The nanotubes with CAN-mag functionalization (red line) show a small and gradual weight loss, at a relatively low temperature range, assigned to the organic ammonium and nitrate components of CAN (cerium and iron oxide are not expected to be affected under nitrogen). WS2-NT-CM-PAA
  • magnetic field until it approaches saturation, and there is no hysteresis loop. Superparamagnetism is typical for iron-oxide nanoparticles [67]. The nanocomposite WS2-NT-CM (blue curve) maintains superparamagnetism, with a saturation value of about ±13 emu/g, which is a sixth of the saturation value for
PDF
Album
Supp Info
Full Research Paper
Published 02 Apr 2019

Heating ability of magnetic nanoparticles with cubic and combined anisotropy

  • Nikolai A. Usov,
  • Mikhail S. Nesmeyanov,
  • Elizaveta M. Gubanova and
  • Natalia B. Epshtein

Beilstein J. Nanotechnol. 2019, 10, 305–314, doi:10.3762/bjnano.10.29

Graphical Abstract
  • ; Introduction Magnetic hyperthermia [1][2][3] is a promising therapeutic method that can be used in combination with chemotherapy or radiotherapy for cancer treatment. Iron oxide nanoparticles are among the materials most popular for application in biomedicine due to their biocompatibility, biodegradability [4
  • ] have been devoted to the development of advanced methods for the synthesis of iron oxide nanoparticles and measurement of their SAR under various conditions. It should be noted that in theoretical SAR calculations [15][16][17][18][19][20][21][22] the assemblies of magnetic nanoparticles with uniaxial
  • magnetic anisotropy have mostly been studied. Meanwhile, perfect iron oxide nanoparticles of spherical shape should have cubic-type magnetic anisotropy [5]. However, to describe the existing experimental data properly one has also to take into account the possible perturbation of the nanoparticle shape. A
PDF
Album
Full Research Paper
Published 29 Jan 2019

Wet chemistry route for the decoration of carbon nanotubes with iron oxide nanoparticles for gas sensing

  • Hussam M. Elnabawy,
  • Juan Casanova-Chafer,
  • Badawi Anis,
  • Mostafa Fedawy,
  • Mattia Scardamaglia,
  • Carla Bittencourt,
  • Ahmed S. G. Khalil,
  • Eduard Llobet and
  • Xavier Vilanova

Beilstein J. Nanotechnol. 2019, 10, 105–118, doi:10.3762/bjnano.10.10

Graphical Abstract
  • , 7000 Mons, Belgium Physics Department & Center for Environmental and Smart Technology (CEST), Faculty of Science, Fayoum University, Fayoum, Egypt 10.3762/bjnano.10.10 Abstract In this work, we investigated the parameters for decorating multiwalled carbon nanotubes with iron oxide nanoparticles using
  • with iron oxide nanoparticles substantially ameliorated the response towards nitrogen dioxide. Keywords: benzene detection; doping; gas sensor; metal nanoparticle decoration; multiwalled carbon nanotubes; NO2 detection; room temperature gas sensing; surface modification; Introduction Carbon nanotubes
  • ][14]. Among them, iron oxide is a semiconductor that has been used in many gas sensing applications because of its low cost and simple preparation [14][15]. This oxide has been used in the detection of acetone, H2S, several alcohols, CO, acetic acid and liquefied petroleum gas (LPG) [16] and forming
PDF
Album
Supp Info
Full Research Paper
Published 09 Jan 2019

Colloidal chemistry with patchy silica nanoparticles

  • Pierre-Etienne Rouet,
  • Cyril Chomette,
  • Laurent Adumeau,
  • Etienne Duguet and
  • Serge Ravaine

Beilstein J. Nanotechnol. 2018, 9, 2989–2998, doi:10.3762/bjnano.9.278

Graphical Abstract
  • and composition. These new colloidal analogues of molecules could serve as building blocks for the assembly of the next generation (meta-)materials. For example, attaching four different satellites (such as one gold, one silver, one iron oxide and one semiconductor nanoparticle) around a central sp3
PDF
Album
Full Research Paper
Published 06 Dec 2018

Size-selected Fe3O4–Au hybrid nanoparticles for improved magnetism-based theranostics

  • Maria V. Efremova,
  • Yulia A. Nalench,
  • Eirini Myrovali,
  • Anastasiia S. Garanina,
  • Ivan S. Grebennikov,
  • Polina K. Gifer,
  • Maxim A. Abakumov,
  • Marina Spasova,
  • Makis Angelakeris,
  • Alexander G. Savchenko,
  • Michael Farle,
  • Natalia L. Klyachko,
  • Alexander G. Majouga and
  • Ulf Wiedwald

Beilstein J. Nanotechnol. 2018, 9, 2684–2699, doi:10.3762/bjnano.9.251

Graphical Abstract
  • out-of-phase. At this point, r2 increases with the NP size. This regime is called the motional average regime (MAR). Therefore, MAR is predicted for relatively small iron oxide NPs, where water diffusion near NPs occurs on much faster timescales than the resonance frequency shift, resulting in
  • induced perturbing field around larger NPs is much stronger, and proton diffusion becomes nondominant for the signal decay. For instance, the r2 values increased rapidly from 173 to 204 and 240 mM−1·s−1 at 7 T for NPs from 8 nm to 23 nm and 37 nm, respectively [63]. For larger 65 nm sized iron oxide NPs
  • state, MPH additionally benefits from Néel losses, increasing the SLP. Diameters in the range of 20–25 nm Fe3O4 are considered to be optimal for iron-oxide-based MPH [79]. Despite this, the observed SLP values for MNP-44 are significantly higher than for MNP-25, which can at least partly be explained by
PDF
Album
Supp Info
Full Research Paper
Published 16 Oct 2018

Cytotoxicity of doxorubicin-conjugated poly[N-(2-hydroxypropyl)methacrylamide]-modified γ-Fe2O3 nanoparticles towards human tumor cells

  • Zdeněk Plichta,
  • Yulia Kozak,
  • Rostyslav Panchuk,
  • Viktoria Sokolova,
  • Matthias Epple,
  • Lesya Kobylinska,
  • Pavla Jendelová and
  • Daniel Horák

Beilstein J. Nanotechnol. 2018, 9, 2533–2545, doi:10.3762/bjnano.9.236

Graphical Abstract
  • toxicity [5][6]. Superparamagnetic iron oxide nanoparticles with well-defined sizes, morphologies and surface are extremely useful in many different areas, in particular in biomedicine. As drug-delivery vehicles, such particles offer significant advantages compared to conventional drug formulations [7][8
  • from MRI contrast agents to drug-delivery systems, local heat sources in magnetic hyperthermia therapy of tumors, magnetically assisted transfection of cells, and magnetic field-assisted separation techniques. Let us to note that MRI is already widely used in human medicine and several iron-oxide-based
  • contrast agents have been approved by the regulatory authorities. It is well-known that the in vivo distribution of iron oxide nanoparticles is strongly influenced by their surface coatings. The coating ensures colloidal stability, prevents particles from aggregation, introduces functional groups for
PDF
Album
Full Research Paper
Published 25 Sep 2018

Nanocellulose: Recent advances and its prospects in environmental remediation

  • Katrina Pui Yee Shak,
  • Yean Ling Pang and
  • Shee Keat Mah

Beilstein J. Nanotechnol. 2018, 9, 2479–2498, doi:10.3762/bjnano.9.232

Graphical Abstract
  • increase its aromatic character, anion exchange capability, and hydrophilic nature of cellulose. Cellulose could also act as a stabilizer for the Fe3O4 nanoparticles to prevent crystal growth and aggregation of particles. In general, magnetic iron oxide is anchored in the polymer matrix to induce magnetic
PDF
Album
Review
Published 19 Sep 2018

Droplet-based synthesis of homogeneous magnetic iron oxide nanoparticles

  • Christian D. Ahrberg,
  • Ji Wook Choi and
  • Bong Geun Chung

Beilstein J. Nanotechnol. 2018, 9, 2413–2420, doi:10.3762/bjnano.9.226

Graphical Abstract
  • when researching these materials. Here, we present a droplet capillary reactor that can be used for the synthesis of magnetic iron oxide nanoparticles. Compared to conventional batch synthesis, the particles synthesized in our droplet reactor have a narrower size distribution and a higher
  • thermal environment, making the controlled synthesis of these nanomaterials for research difficult [13]. Methods for synthesizing magnetic iron oxide nanoparticles can be divided into two categories: high temperature decomposition of iron precursors in organic solvents and the coprecipitation of iron
  • nanoparticles on the large scale. Coprecipitation methods, on the other hand, allow for the simple, scalable synthesis of magnetic iron oxide nanoparticles that can be dispersed in water without requiring further surface treatment [16]. Furthermore, the size of particles synthesized using coprecipitation can be
PDF
Album
Supp Info
Full Research Paper
Published 10 Sep 2018

Electrospun one-dimensional nanostructures: a new horizon for gas sensing materials

  • Muhammad Imran,
  • Nunzio Motta and
  • Mahnaz Shafiei

Beilstein J. Nanotechnol. 2018, 9, 2128–2170, doi:10.3762/bjnano.9.202

Graphical Abstract
  • ], Co3O4 [113][114], iron oxide (Fe2O3) [115][116], tin dioxide (SnO2) [76][117][118][119][120][121][122][123], zinc oxide (ZnO) [124][125][126][127][128][129][130], and indium oxide (In2O3) [78][80][131][132][133][134][135][136][137][138]. Table S2 in Supporting Information File 1 summarizes the sensing
PDF
Album
Supp Info
Review
Published 13 Aug 2018

Synthesis of a MnO2/Fe3O4/diatomite nanocomposite as an efficient heterogeneous Fenton-like catalyst for methylene blue degradation

  • Zishun Li,
  • Xuekun Tang,
  • Kun Liu,
  • Jing Huang,
  • Yueyang Xu,
  • Qian Peng and
  • Minlin Ao

Beilstein J. Nanotechnol. 2018, 9, 1940–1950, doi:10.3762/bjnano.9.185

Graphical Abstract
  • successful loading of of iron oxide and manganese oxide in the two-step procedure. To further characterize the morphologies and structures of Fe3O4/diatomite and MnO2/Fe3O4/diatomite, transmission electron microscopy (TEM) and high-resolution transmission electron microscope (HRTEM) analyses were also
PDF
Album
Supp Info
Full Research Paper
Published 06 Jul 2018

Nanocomposites comprised of homogeneously dispersed magnetic iron-oxide nanoparticles and poly(methyl methacrylate)

  • Sašo Gyergyek,
  • David Pahovnik,
  • Ema Žagar,
  • Alenka Mertelj,
  • Rok Kostanjšek,
  • Miloš Beković,
  • Marko Jagodič,
  • Heinrich Hofmann and
  • Darko Makovec

Beilstein J. Nanotechnol. 2018, 9, 1613–1622, doi:10.3762/bjnano.9.153

Graphical Abstract
  • magnetically induced hyperthermia. In this study, a simple and scalable route for preparing nanocomposites with a high, uniform loading of magnetic nanoparticles is presented. The magnetic iron-oxide nanoparticles were functionalized with a methacrylate-based monomer that copolymerized in a toluene solution
  • oxide/PMMA nanocomposites with a high loading of homogeneously dispersed nanoparticles. The methacrylate-monomer-functionalized magnetic iron-oxide nanoparticles were copolymerized with the MMA monomer in a colloidal suspension. The developed copolymerization procedure has two benefits: firstly, the
  • next step, the magnetic properties of the prepared nanocomposites were studied, and their potential for hyperthermia treatment was evaluated. Experimental Synthesis Ricinoleic-acid-coated iron-oxide nanoparticles (NP-RA) were synthesized using the hydrothermal method at 180 °C and with a molar ratio of
PDF
Album
Supp Info
Full Research Paper
Published 01 Jun 2018

Surface characterization of nanoparticles using near-field light scattering

  • Eunsoo Yoo,
  • Yizhong Liu,
  • Chukwuazam A. Nwasike,
  • Sebastian R. Freeman,
  • Brian C. DiPaolo,
  • Bernardo Cordovez and
  • Amber L. Doiron

Beilstein J. Nanotechnol. 2018, 9, 1228–1238, doi:10.3762/bjnano.9.114

Graphical Abstract
  • )-coated superparamagnetic iron oxide nanoparticles (PEG-SPIOs) with the synthetic pseudotannin polygallol via interpolymer complexation (IPC). Changes in particle size and zeta potential were indirectly assessed via differences between PEG-SPIOs and IPC-SPIOs in particle velocity and scattering intensity
  • reaction kinetics at the particle surface. Keywords: nanoparticle surface properties; nanoparticles; nanophotonic force microscopy; near-field light scattering; superparamagnetic iron oxide; Introduction Nanotechnology is an increasingly integral part of modern medicine, predominantly in the fields of
  • iron oxide nanoparticles (IPC-SPIOs). Nanophotonic force microscopy pushes particles against a waveguide surface, optically trapping the particles by light confinement [10][19][20]. The evanescent fields are created by the waveguide, and there are four forces operating on the field: the gradient force
PDF
Album
Full Research Paper
Published 18 Apr 2018

Understanding the performance and mechanism of Mg-containing oxides as support catalysts in the thermal dry reforming of methane

  • Nor Fazila Khairudin,
  • Mohd Farid Fahmi Sukri,
  • Mehrnoush Khavarian and
  • Abdul Rahman Mohamed

Beilstein J. Nanotechnol. 2018, 9, 1162–1183, doi:10.3762/bjnano.9.108

Graphical Abstract
  • to form iron oxide (Fe3O4). Next, the lattice oxygen (OL) obtained from the reduction of Fe3O4 was pooled with carbon deposited on the metal (Cm) to form CO. However, carbon located far from the active sites (Cs) does not directly intermingle with CO2. Based on the results of this study, the
PDF
Album
Review
Published 13 Apr 2018

Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations

  • Jaison Jeevanandam,
  • Ahmed Barhoum,
  • Yen S. Chan,
  • Alain Dufresne and
  • Michael K. Danquah

Beilstein J. Nanotechnol. 2018, 9, 1050–1074, doi:10.3762/bjnano.9.98

Graphical Abstract
  • ]. Generally, biocompatible magnetite (Fe3O4), iron oxide, iron sulfides and maghemite (Fe2O3) are synthesized using magnetotactic bacteria [156][157] that helps in targeted cancer treatment via magnetic hyperthermia, magnetic resonance imaging (MRI), DNA analysis and gene therapy [158]. Moreover, surface
PDF
Album
Review
Published 03 Apr 2018

Anchoring Fe3O4 nanoparticles in a reduced graphene oxide aerogel matrix via polydopamine coating

  • Błażej Scheibe,
  • Radosław Mrówczyński,
  • Natalia Michalak,
  • Karol Załęski,
  • Michał Matczak,
  • Mateusz Kempiński,
  • Zuzanna Pietralik,
  • Mikołaj Lewandowski,
  • Stefan Jurga and
  • Feliks Stobiecki

Beilstein J. Nanotechnol. 2018, 9, 591–601, doi:10.3762/bjnano.9.55

Graphical Abstract
  • ][34], gas sensors [18] or even nanoswitches/actuators [22]. The magnetic properties of hybrid aerogels are related to the presence of magnetic nanoparticles (MNPs) which can be in ferromagnetic or superparamagnetic state and are embedded in aerogel matrix. Iron oxide nanoparticles, such as magnetite
  • (Fe3O4) or maghemite (γ-Fe2O3), are common functional additives widely applied in many different branches of science [35][36]. This is mainly thanks to their low price, simplicity of production, biocompatibility and environmental friendliness. There are two commonly used methods of iron oxide MNPs
  • introduction into aerogel. The first method is based on the addition of iron precursors to GO water dispersion and “in situ” synthesis of iron oxide MNPs during hydrothermal hydrogel formation in autoclave. The precipitated nanoparticles are anchored to GO structure via Fe–C–O bonds or confined between GO
PDF
Album
Supp Info
Full Research Paper
Published 15 Feb 2018

Atomic layer deposition and properties of ZrO2/Fe2O3 thin films

  • Kristjan Kalam,
  • Helina Seemen,
  • Peeter Ritslaid,
  • Mihkel Rähn,
  • Aile Tamm,
  • Kaupo Kukli,
  • Aarne Kasikov,
  • Joosep Link,
  • Raivo Stern,
  • Salvador Dueñas,
  • Helena Castán and
  • Héctor García

Beilstein J. Nanotechnol. 2018, 9, 119–128, doi:10.3762/bjnano.9.14

Graphical Abstract
  • oxidizer. Nitrogen, N2 (99.999% purity, AGA), was applied as the carrier and purging gas. At the temperature chosen (400 °C) the ZrO2 grows efficiently from ZrCl4 and O3 [14], and this temperature is also sufficiently high to ensure efficient growth also for iron oxide from cyclopentadienyls and ozone [23
  • stoichiometry of ZrFe2O5, the synthesis of ZrFe2O5 has not been convincingly completed. Instead, one can believe that the solubility of iron oxide in zirconia is rather low and, in addition, it requires rather aggressive heat treatments. No crystallographic traces of ternary ZrFe2O5 have been registered, and
  • recorded, whereby the saturation magnetization was positively correlated with the amount of metastable tetragonal/cubic zirconia in relation to the stable monoclinic phase in the films [6]. Conclusion Zirconium oxide mixed with iron oxide thin films with various cycle ratios of constituent oxides were
PDF
Album
Full Research Paper
Published 10 Jan 2018
Other Beilstein-Institut Open Science Activities