Search results

Search for "measurement" in Full Text gives 1177 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Graphical Abstract
  • was obtained from Cao et al. [26], where the zeta potential of MeOx NPs was measured in a cell culture of 20% fetal bovine complete medium. Dataset II was taken from Toropova et al. [27], where cell damage measurement was performed based on the uptake of propidium iodide (PI). The dataset is related
PDF
Album
Supp Info
Full Research Paper
Published 12 Mar 2024

Determining by Raman spectroscopy the average thickness and N-layer-specific surface coverages of MoS2 thin films with domains much smaller than the laser spot size

  • Felipe Wasem Klein,
  • Jean-Roch Huntzinger,
  • Vincent Astié,
  • Damien Voiry,
  • Romain Parret,
  • Houssine Makhlouf,
  • Sandrine Juillaguet,
  • Jean-Manuel Decams,
  • Sylvie Contreras,
  • Périne Landois,
  • Ahmed-Azmi Zahab,
  • Jean-Louis Sauvajol and
  • Matthieu Paillet

Beilstein J. Nanotechnol. 2024, 15, 279–296, doi:10.3762/bjnano.15.26

Graphical Abstract
  • SiO2 on Si substrates. Then, we discuss the applicability of the same criteria for significantly different DLI-PP-CVD MoS2 samples with average thicknesses ranging from sub-monolayer up to three layers. Finally, an original procedure based on the measurement of the intensity of the layer breathing
  • , different information can be derived from the measurement of the Raman features (frequencies, linewidths, and intensities) of intralayer phonon modes as well as those of the interlayer modes, the so-called layer breathing (LB) modes and shear (S) modes. Recently, we have developed the reproducible direct
  • underneath the MoS2 flake, A2D(Si) [28]; (iii) on the precise measurement of the A2D(Si)/A0(Si) intensity ratio [31]; and (iv) on the measurement of ultralow-frequency modes, the so-called breathing modes and shear modes. The frequencies and the number of LB and S modes allow one to identify the number of
PDF
Album
Supp Info
Full Research Paper
Published 07 Mar 2024

Ultrasensitive and ultrastretchable metal crack strain sensor based on helical polydimethylsiloxane

  • Shangbi Chen,
  • Dewen Liu,
  • Weiwei Chen,
  • Huajiang Chen,
  • Jiawei Li and
  • Jinfang Wang

Beilstein J. Nanotechnol. 2024, 15, 270–278, doi:10.3762/bjnano.15.25

Graphical Abstract
  • reduction of current paths between the Au islands. This reduction in the number of effective Au bridges that can electrically connect the ruptured film portions under high strain results in a rapid increase in total resistance. Figure S3 (Supporting Information File 1) illustrates the measurement of
PDF
Album
Supp Info
Full Research Paper
Published 01 Mar 2024

Design, fabrication, and characterization of kinetic-inductive force sensors for scanning probe applications

  • August K. Roos,
  • Ermes Scarano,
  • Elisabet K. Arvidsson,
  • Erik Holmgren and
  • David B. Haviland

Beilstein J. Nanotechnol. 2024, 15, 242–255, doi:10.3762/bjnano.15.23

Graphical Abstract
  • power spectral density of fluctuations in force (force noise) SFF(ω), which sets a minimum detectable force (signal-to-noise ratio equals one) in a given measurement bandwidth, that is, signal integration time. The fluctuation–dissipation theorem applied to the harmonic oscillator gives where Tm is the
  • proportionality factor, which depends on the excitation power, the resonator parameters, and the measurement line. If the motional sideband is larger than the noise floor of the detector, then force sensitivity is set by the properties of the mechanical resonator. First in the hierarchy of design constraints
  • the resonant frequency ωc and the linewidth κ of the microwave resonator used to detect cantilever motion. A practical consideration is that our multifrequency measurement apparatus works in the frequency band of 4–8 GHz. This frequency range constrains the possible values of the circuit’s inductance
PDF
Album
Full Research Paper
Published 15 Feb 2024

Quantitative wear evaluation of tips based on sharp structures

  • Ke Xu and
  • Houwen Leng

Beilstein J. Nanotechnol. 2024, 15, 230–241, doi:10.3762/bjnano.15.22

Graphical Abstract
  • nanotechnology [1][2][3][4][5]. Compared to optical and electron microscopy, AFM enables three-dimensional (3D) measurements of nanostructures in air and liquid environments [6]. The interaction between the tip and sample influences the measurement results of AFM by convoluting the tip topography with the sample
  • the reconstructed nanoparticle. Zhang et al. [16] developed a 2 µm lattice sample with uniformity and consistency to reconstruct the AFM tip, thus mitigating the impact of tip effects on measurement results. Onishi et al. [17] proposed a technique to extract the probe shape function from AFM
  • may harm the tip and impact the tip morphology measurement. In contrast, there were no substantial changes in the ETD in the morphology characterization results using the TipCheck sample. The outcomes from TipCheck sample imaging present considerable benefits. This approach significantly reduces the
PDF
Album
Full Research Paper
Published 14 Feb 2024

Ion beam processing of DNA origami nanostructures

  • Leo Sala,
  • Agnes Zerolová,
  • Violaine Vizcaino,
  • Alain Mery,
  • Alicja Domaracka,
  • Hermann Rothard,
  • Philippe Boduch,
  • Dominik Pinkas and
  • Jaroslav Kocišek

Beilstein J. Nanotechnol. 2024, 15, 207–214, doi:10.3762/bjnano.15.20

Graphical Abstract
  • was set to 2.5 × 108 ions·cm−2·s−1. The ion flux was deduced from the measurement of the beam intensity using a detector based on secondary electron emission from a thin Fe foil placed inside the IRABAT vacuum chamber which allows for online monitoring during the irradiation of the samples. This
PDF
Album
Supp Info
Full Research Paper
Published 12 Feb 2024

Modification of graphene oxide and its effect on properties of natural rubber/graphene oxide nanocomposites

  • Nghiem Thi Thuong,
  • Le Dinh Quang,
  • Vu Quoc Cuong,
  • Cao Hong Ha,
  • Nguyen Ba Lam and
  • Seiichi Kawahara

Beilstein J. Nanotechnol. 2024, 15, 168–179, doi:10.3762/bjnano.15.16

Graphical Abstract
  • with HITACHI S-4800. The measurement was performed at room temperature. The tensile properties of the composite samples were measured with a Tokyo Instron 5300 (Japan). The graft copolymer films (thickness of 1 mm) were cut in a dumbbell shape described in JIS K6251. Tensile measurements were done at
  • the attachment of the sample to the measuring system. The frequency-dependent measurement was performed at an initial strain of 1% and at an angular frequency of 0.1–100 rad/s at 30 °C. The number of data points collected was 31. Results and Discussion Characterization of GO-VTES XRD Figure 3 shows
  • -VTES samples. Acknowledgements We acknowledge the Center for Rubber Science and Technology (Hanoi University of Science and Technology, Vietnam) for kindly providing us with experimental equipments and measurement of tensile test. We also thank the Falculty of Engineering (Nagaoka University of
PDF
Album
Full Research Paper
Published 05 Feb 2024

CdSe/ZnS quantum dots as a booster in the active layer of distributed ternary organic photovoltaics

  • Gabriela Lewińska,
  • Piotr Jeleń,
  • Zofia Kucia,
  • Maciej Sitarz,
  • Łukasz Walczak,
  • Bartłomiej Szafraniak,
  • Jerzy Sanetra and
  • Konstanty W. Marszalek

Beilstein J. Nanotechnol. 2024, 15, 144–156, doi:10.3762/bjnano.15.14

Graphical Abstract
  • spectra of a solid were studied as a thin film deposited on quartz, and measurements in solution were obtained in chloroform. The wavelength ranged from 250 to 1000 nm. A Woolam M-2000 ellipsometer was used for spectroscopic ellipsometry analysis. The measurement range was 350–1650 nm. The measurement was
PDF
Album
Supp Info
Full Research Paper
Published 02 Feb 2024

In situ optical sub-wavelength thickness control of porous anodic aluminum oxide

  • Aleksandrs Dutovs,
  • Raimonds Popļausks,
  • Oskars Putāns,
  • Vladislavs Perkanuks,
  • Aušrinė Jurkevičiūtė,
  • Tomas Tamulevičius,
  • Uldis Malinovskis,
  • Iryna Olyshevets,
  • Donats Erts and
  • Juris Prikulis

Beilstein J. Nanotechnol. 2024, 15, 126–133, doi:10.3762/bjnano.15.12

Graphical Abstract
  • within 1–2 nm standard deviation on all samples. There was a linear relation between thickness measurement during anodization and post-production analysis using SE, with a slope coefficient of 1.1 and a constant offset of 5.4 nm (Figure 4f). The deviation from the ideal 1:1 relation can be explained by
  • post-production analysis (Figure 4f). The potential extension of the interferometric thickness measurement method to thinner PAAO layers could involve the utilization of a shorter-wavelength light source and UV-compatible optical components. In such a scenario, considerations should be made for the
  • other anodization voltages. The current flow through the Pt cathode could be established or interrupted automatically through a relay switch triggered by the thickness measurement software upon reaching the predefined threshold value. The anode current was monitored using a current-to-voltage (I/U
PDF
Album
Full Research Paper
Published 31 Jan 2024

Development and characterization of potential larvicidal nanoemulsions against Aedes aegypti

  • Jonatas L. Duarte,
  • Leonardo Delello Di Filippo,
  • Anna Eliza Maciel de Faria Mota Oliveira,
  • Rafael Miguel Sábio,
  • Gabriel Davi Marena,
  • Tais Maria Bauab,
  • Cristiane Duque,
  • Vincent Corbel and
  • Marlus Chorilli

Beilstein J. Nanotechnol. 2024, 15, 104–114, doi:10.3762/bjnano.15.10

Graphical Abstract
  • the release of cymene and myrcene from the nanoemulsions was performed at specific time intervals: 30 min and 1, 2, 4, 6, 8, 12, and 24 h. Each measurement was repeated six times to ensure reliability. The released compounds were quantified by high-performance liquid chromatography, following a
PDF
Album
Supp Info
Full Research Paper
Published 18 Jan 2024

New application of bimetallic Ag/Pt nanoplates in a colorimetric biosensor for specific detection of E. coli in water

  • Azam Bagheri Pebdeni,
  • Mohammad N. AL-Baiati and
  • Morteza Hosseini

Beilstein J. Nanotechnol. 2024, 15, 95–103, doi:10.3762/bjnano.15.9

Graphical Abstract
  • lambda 25 UV–vis spectrometer was employed for UV–vis absorption measurement in the range of 200–800 nm. The morphology and shape of NPLs were studied using a field-emission scanning electron microscope (Supra 400VP, Zeiss, Oberkochen, Germany). Dynamic light scattering experiments were carried out at
PDF
Album
Supp Info
Full Research Paper
Published 17 Jan 2024

Study of the reusability and stability of nylon nanofibres as an antibody immobilisation surface

  • Inés Peraile,
  • Matilde Gil-García,
  • Laura González-López,
  • Nushin A. Dabbagh-Escalante,
  • Juan C. Cabria-Ramos and
  • Paloma Lorenzo-Lozano

Beilstein J. Nanotechnol. 2024, 15, 83–94, doi:10.3762/bjnano.15.8

Graphical Abstract
  • clinical applications. Immunoassay devices have been used not only for the detection of bacteria and viruses [7], but also for the measurement of drugs [8] and hormones [9], or for the determination of glucose in urine [10]. The specificity of antigen–antibody binding and how the antibody is attached to
  • contrast, a polypropylene microplate specifically designed to optimise an enzyme-linked immunosorbent assay showed a decreasing immunocapture capability such that seven days after the immunocapture system was assembled, only 44.6% of ricin was immunocaptured compared to the initial measurement result (day
  • determination of exogenously produced biotoxins and virulence factors, as well as for the detection of viruses and biomarkers in clinical samples (e.g., hormones and biomolecules). (4) The data could be generalised not only for the measurement of warfare agents, but also for the diagnosis of water and food
PDF
Album
Full Research Paper
Published 15 Jan 2024

Influence of conductive carbon and MnCo2O4 on morphological and electrical properties of hydrogels for electrochemical energy conversion

  • Sylwia Pawłowska,
  • Karolina Cysewska,
  • Yasamin Ziai,
  • Jakub Karczewski,
  • Piotr Jasiński and
  • Sebastian Molin

Beilstein J. Nanotechnol. 2024, 15, 57–70, doi:10.3762/bjnano.15.6

Graphical Abstract
  • based on EIS measurements using a VersaSTAT 4 potentiostat. For the measurements, a hydrogel in the form of a disc was placed between two nickel plates (2 × 15 × 15 mm) connected with the impedance analyser (2-probe measurement) (Figure 7). The impedance spectrum was acquired in the frequency range of
PDF
Album
Supp Info
Full Research Paper
Published 11 Jan 2024

Measurements of dichroic bow-tie antenna arrays with integrated cold-electron bolometers using YBCO oscillators

  • Leonid S. Revin,
  • Dmitry A. Pimanov,
  • Alexander V. Chiginev,
  • Anton V. Blagodatkin,
  • Viktor O. Zbrozhek,
  • Andrey V. Samartsev,
  • Anastasia N. Orlova,
  • Dmitry V. Masterov,
  • Alexey E. Parafin,
  • Victoria Yu. Safonova,
  • Anna V. Gordeeva,
  • Andrey L. Pankratov,
  • Leonid S. Kuzmin,
  • Anatolie S. Sidorenko,
  • Silvia Masi and
  • Paolo de Bernardis

Beilstein J. Nanotechnol. 2024, 15, 26–36, doi:10.3762/bjnano.15.3

Graphical Abstract
  • results. Measurement results of samples of receiving systems with CEBs Measurements of samples from the LSPE VB 210/240 SINS1 series, deposited at NNSTU, were performed in a sorption 3He cryostat at a temperature of 300 mK. Current–voltage (I–V) characteristics (Figure 5), frequency response (Figure 6
  • measured in the current bias mode with a readout scheme based on AD745 low-noise JFET operational amplifiers working at room temperature of 300 K. The estimated NEP for this measurement setup is about 5 × 10−16 W/√Hz with further improvement down to 1 × 10−16 W/√Hz in the voltage bias mode [24]. Discussion
  • capacitance deviated from the calculated values. This latter deviation might directly affect the peak widths of measured frequency responses. The other controversial part is the current bias measurement system, which is not optimal for such parallel arrays. Now we are working on a voltage bias scheme with low
PDF
Album
Full Research Paper
Published 04 Jan 2024

TEM sample preparation of lithographically patterned permalloy nanostructures on silicon nitride membranes

  • Joshua Williams,
  • Michael I. Faley,
  • Joseph Vimal Vas,
  • Peng-Han Lu and
  • Rafal E. Dunin-Borkowski

Beilstein J. Nanotechnol. 2024, 15, 1–12, doi:10.3762/bjnano.15.1

Graphical Abstract
  • in Py nanodisks [1][2] with independent polarity and helicity [3]. Since then, many studies have been done on manipulating magnetic vortices inside Py nanodisks using micromagnetic simulations [4][5][6] and a variety of magnetic measurement techniques including magnetic force microscopy [7
PDF
Album
Supp Info
Full Research Paper
Published 02 Jan 2024

unDrift: A versatile software for fast offline SPM image drift correction

  • Tobias Dickbreder,
  • Franziska Sabath,
  • Lukas Höltkemeier,
  • Ralf Bechstein and
  • Angelika Kühnle

Beilstein J. Nanotechnol. 2023, 14, 1225–1237, doi:10.3762/bjnano.14.101

Graphical Abstract
  • for drift during the measurement (online drift correction) or afterwards (offline drift correction). With the currently available software tools, however, offline drift correction of SPM data is often a tedious and time-consuming task. This is particularly disadvantageous when analyzing long image
  • scanning process, recording an entire image takes at least several milliseconds in case of video-rate scanning [23][24]. Most SPM images, however, are measured at a much lower scan rate on the timescale of seconds to minutes. During this measurement time, the temperature in the SPM instrument can fluctuate
  • , inducing thermal expansion or contraction of the instrument’s components [5]. As a consequence, sample and probe experience an unintended movement relative to each other, that is, the thermal drift. This drift is not included in the measurement data, so the recorded SPM images appear distorted [5][6]. An
PDF
Album
Supp Info
Full Research Paper
Published 28 Dec 2023

Fluorescent bioinspired albumin/polydopamine nanoparticles and their interactions with Escherichia coli cells

  • Eloïse Equy,
  • Jordana Hirtzel,
  • Sophie Hellé,
  • Béatrice Heurtault,
  • Eric Mathieu,
  • Morgane Rabineau,
  • Vincent Ball and
  • Lydie Ploux

Beilstein J. Nanotechnol. 2023, 14, 1208–1224, doi:10.3762/bjnano.14.100

Graphical Abstract
  • dialysate. The same procedure was used to prepare RhBITC-BSA/PDA NPs, except that FITC was replaced by RhBITC. The concentrated solution of RhBITC (8.25 mM) was prepared by dissolving 4.4 mg in 1 mL of DMSO. Characterization of the BSA/polydopamine nanoparticles Size measurement The diameter of the NPs was
PDF
Album
Supp Info
Full Research Paper
Published 22 Dec 2023

Determination of the radii of coated and uncoated silicon AFM sharp tips using a height calibration standard grating and a nonlinear regression function

  • Perawat Boonpuek and
  • Jonathan R. Felts

Beilstein J. Nanotechnol. 2023, 14, 1200–1207, doi:10.3762/bjnano.14.99

Graphical Abstract
  • force curves with contact mechanics models and extracting the adhesion and friction forces [5][6]. If we do not know the exact value of the tip radius, the sample image with the observation of scanning frequency and the calculation results are not accurate. This indicates that the measurement results
  • tips (silicon nitride, silicon, and high-aspect-ratio tips) were scanned over the calibration pattern. Simultaneously, the AFM measurement signal showed the tip path profile as the real geometry of a fabricated microstructure. The tip radius was obtained from the curvature radius of the curve profile
  • addition, those studies are limited to the use of uncoated AFM tips with reflectively coated cantilevers. Here, we present the actual measurement of the radius of coated and uncoated AFM tips using the contact scan mode with sub-nanonewton normal load on a height calibration standard grating. The round
PDF
Album
Supp Info
Full Research Paper
Published 15 Dec 2023

Spatial variations of conductivity of self-assembled monolayers of dodecanethiol on Au/mica and Au/Si substrates

  • Julian Skolaut,
  • Jędrzej Tepper,
  • Federica Galli,
  • Wulf Wulfhekel and
  • Jan M. van Ruitenbeek

Beilstein J. Nanotechnol. 2023, 14, 1169–1177, doi:10.3762/bjnano.14.97

Graphical Abstract
  • topographic information, which we represent here as a yellow–blue color map. During the whole measurement, a bias voltage Ubias is applied between tip and sample. Simultaneously to the force–distance curve, the current is acquired. As it can be seen from the example curves in Figure 1, the extremal current is
  • as a compromise between bandwidth distortion and total measurement time. Plotting the extremal current yields the current maps shown here in gray scale and provides a measure to compare the conductive properties in different areas of the surface. Using the QI mode is particularly advantageous in our
  • lower topography and increased current to a thinning of the SAM by pushing aside molecules with the probe. Another effect contributing to the thinning of the SAM is molecules being picked up by the probe during the measurement. The effect we observe here is most likely a combination of both processes
PDF
Album
Supp Info
Full Research Paper
Published 05 Dec 2023

Hierarchically patterned polyurethane microgrooves featuring nanopillars or nanoholes for neurite elongation and alignment

  • Lester Uy Vinzons,
  • Guo-Chung Dong and
  • Shu-Ping Lin

Beilstein J. Nanotechnol. 2023, 14, 1157–1168, doi:10.3762/bjnano.14.96

Graphical Abstract
  • uncrosslinked PDMS monomers (Supporting Information File 1, Figure S3C). Atomic force microscopy (AFM) scans of the samples (Figure 1F–H) show that the nanopillars and nanoholes have sub-micrometer feature sizes and a periodicity of around 1.2 µm. Due to AFM measurement artifacts, especially for lateral
PDF
Album
Supp Info
Full Research Paper
Published 29 Nov 2023

Elasticity, an often-overseen parameter in the development of nanoscale drug delivery systems

  • Agnes-Valencia Weiss and
  • Marc Schneider

Beilstein J. Nanotechnol. 2023, 14, 1149–1156, doi:10.3762/bjnano.14.95

Graphical Abstract
  • article, we discuss examples highlighting the influence of elasticity in nanoscale biological interactions focusing on mucosal delivery and on tumor targeting. Besides this, we discuss the influence of different measurement settings using atomic force microscopy for the determination of mechanical
  • properties of drug carriers. Keywords: atomic force microscopy; drug delivery; elasticity; mechanical properties; nanomedicine; nanoparticles; stiffness measurement; tissue/body distribution; Introduction Drug delivery systems are developed with the aim to transport a given drug to the site of action
  • determined by the Young’s modulus, bulk modulus or shear modulus, viscoelastic properties or deformability) as well as the measurement method to quantify these properties. Anselmo et al. as well as Nie et al. gave comprehensive overviews and definitions of different measurements of mechanical properties [16
PDF
Album
Perspective
Published 23 Nov 2023

A multi-resistance wide-range calibration sample for conductive probe atomic force microscopy measurements

  • François Piquemal,
  • Khaled Kaja,
  • Pascal Chrétien,
  • José Morán-Meza,
  • Frédéric Houzé,
  • Christian Ulysse and
  • Abdelmounaim Harouri

Beilstein J. Nanotechnol. 2023, 14, 1141–1148, doi:10.3762/bjnano.14.94

Graphical Abstract
  • work, we demonstrate the development of a multi-resistance reference sample for calibrating resistance measurements in conductive probe atomic force microscopy (C-AFM) covering the range from 100 Ω to 100 GΩ. We present a comprehensive protocol for in situ calibration of the whole measurement circuit
  • : calibration; conductive probe atomic force microscopy; measurement protocol; nanoscale; resistance reference; Introduction Since its introduction thirty years ago by Murrell et al. [1], conductive probe atomic force microscopy (C-AFM) has evolved into a unique and powerful technique for measuring local
  • commonly observed in C-AFM because of highly localized electric fields at the tip apex leading to structural damage considerably affecting the measurement reliability. These effects are further amplified during scanning in contact mode due to shear forces and strong mechanical stress imposed on the tip
PDF
Album
Supp Info
Full Research Paper
Published 22 Nov 2023

Dual-heterodyne Kelvin probe force microscopy

  • Benjamin Grévin,
  • Fatima Husainy,
  • Dmitry Aldakov and
  • Cyril Aumaître

Beilstein J. Nanotechnol. 2023, 14, 1068–1084, doi:10.3762/bjnano.14.88

Graphical Abstract
  • bending can significantly modify (depending on the optical power) the tip–surface distance during the spectroscopic measurement (which has to be performed in open z-loop). Whenever possible, it is preferable to investigate the photoresponse of the sample under modulated or pulsed illumination. Provided
  • measurement, quantities that are directly proportional to the Fourier coefficients of the time-periodic surface photovoltage. Unfortunately, the translation of this promising technique from ambient conditions – where it has proven its worth – to ultra-high vacuum poses significant challenges. This is mainly
  • due to the enhanced quality factors under vacuum, which severely limits the frequency window available to increase the amplitude of the intermodulation products (for a more detailed discussion, see [14]). In this work, we propose to approach the measurement of intermodulation products with non-contact
PDF
Album
Supp Info
Full Research Paper
Published 07 Nov 2023

Spatial mapping of photovoltage and light-induced displacement of on-chip coupled piezo/photodiodes by Kelvin probe force microscopy under modulated illumination

  • Zeinab Eftekhari,
  • Nasim Rezaei,
  • Hidde Stokkel,
  • Jian-Yao Zheng,
  • Andrea Cerreta,
  • Ilka Hermes,
  • Minh Nguyen,
  • Guus Rijnders and
  • Rebecca Saive

Beilstein J. Nanotechnol. 2023, 14, 1059–1067, doi:10.3762/bjnano.14.87

Graphical Abstract
  • indicates the temporal evolution of this timeline throughout the measurement process. These scans indicate the reproducibility of acquired displacement and photovoltage under modulated illumination at a single point. To analyze them, we extracted 10 line profiles depicted in blue and red for topography and
  • for the micrometric measurement is comparable to the locally measured photovoltage. However, we were not able to quantify precisely the displacement of the membrane by conventional imaging since a temperature-induced drift occurs under illumination. Therefore, we modified the method in the point scan
  • cantilever or the AFM head does not block the light from reaching the sample, the sample was manually rotated, and the measurement was performed on the second quarter of the device using the same procedure. As all four quadrants of the sample surface were mapped, the points located at the quadrant boundaries
PDF
Album
Supp Info
Full Research Paper
Published 06 Nov 2023

Experimental investigation of usage of POE lubricants with Al2O3, graphene or CNT nanoparticles in a refrigeration compressor

  • Kayhan Dağıdır and
  • Kemal Bilen

Beilstein J. Nanotechnol. 2023, 14, 1041–1058, doi:10.3762/bjnano.14.86

Graphical Abstract
  • measurement devices were placed to control operating conditions at the inlet and outlet of the compressor. Pressure and temperature values were measured at the inlet and outlet to ensure safe operation of the refrigeration compressor. Piezoresistive pressure transmitters (PPT) and resistance temperature
  • ambient temperature was also controlled during the experiments using a negative temperature coefficient (NTC) thermistor. The technical specifications of the measurement devices used in the experiments are given in Table 2. Preparation of the nanolubricant In this study, nanoparticles of Al2O3, graphene
  • , the uncertainty of R is expressed as Equation 2. The only magnitude calculated based on the measurement data within the scope of this study is the kinematic viscosity value. Other magnitudes were determined by direct measurement, and the uncertainty of the measurement devices was considered in the
PDF
Album
Full Research Paper
Published 02 Nov 2023
Other Beilstein-Institut Open Science Activities