Search results

Search for "nanostructures" in Full Text gives 787 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Plasmonic nanotechnology for photothermal applications – an evaluation

  • A. R. Indhu,
  • L. Keerthana and
  • Gnanaprakash Dharmalingam

Beilstein J. Nanotechnol. 2023, 14, 380–419, doi:10.3762/bjnano.14.33

Graphical Abstract
  • tunability of optothermal properties and enhanced stability, these nanostructures show a wide range of applications in optical sensors, steam generation, water desalination, thermal energy storage, and biomedical applications such as photothermal (PT) therapy. The PT effect, that is, the conversion of
  • prior to making the final choice. We conclude with a broad perspective on current research, challenges that remain to be solved, as well as prospects in terms of material design and deployment for better exploitation of such nanostructures for PT energy conversion. 2 Plasmonics in PT conversion Of the
  • extinction spectra of nanostructures. Illustrative examples of the absorbance spectra for different morphologies of Ag nanoparticles are shown in Figure 2, elucidating the influence of the same. The extinction spectra (the summation of absorption and scattering spectra) from which the shape effects of
PDF
Album
Review
Published 27 Mar 2023

New trends in nanobiotechnology

  • Pau-Loke Show,
  • Kit Wayne Chew,
  • Wee-Jun Ong,
  • Sunita Varjani and
  • Joon Ching Juan

Beilstein J. Nanotechnol. 2023, 14, 377–379, doi:10.3762/bjnano.14.32

Graphical Abstract
  • morphology, yield and monodispersity. The introduction of a deep eutectic solvent as a cost-effective and green solvent was reviewed, where the usage of these solvents enabled the extraction and formation of desired nanostructures. The work also records the advantages and disadvantages of wet chemical
PDF
Editorial
Published 27 Mar 2023

Quercetin- and caffeic acid-functionalized chitosan-capped colloidal silver nanoparticles: one-pot synthesis, characterization, and anticancer and antibacterial activities

  • Akif Hakan Kurt,
  • Elif Berna Olutas,
  • Fatma Avcioglu,
  • Hamza Karakuş,
  • Mehmet Ali Sungur,
  • Cansu Kara Oztabag and
  • Muhammet Yıldırım

Beilstein J. Nanotechnol. 2023, 14, 362–376, doi:10.3762/bjnano.14.31

Graphical Abstract
  • at the higher energy side of the SPR peak of the Ch/CA-Ag NPs while its absorption tail overlaps with that of the SPR peak. These partial matches in the absorption features might be due to the molecular interactions between caffeic acid and chitosan/silver nanostructures [63]. FTIR spectroscopy
  • Figure 4a and Figure 4b, the Ag NPs covered by chitosan layers comprising quercetin or caffeic acid have mostly spherical shapes. However, both samples also include nanostructures with different shapes, such as rods and triangles, in smaller numbers than the spherical particles. This also resulted in
PDF
Album
Supp Info
Full Research Paper
Published 20 Mar 2023

Quasi-guided modes resulting from the band folding effect in a photonic crystal slab for enhanced interactions of matters with free-space radiations

  • Kaili Sun,
  • Yangjian Cai,
  • Uriel Levy and
  • Zhanghua Han

Beilstein J. Nanotechnol. 2023, 14, 322–328, doi:10.3762/bjnano.14.27

Graphical Abstract
  • . Plasmonic nanoantennas [3], although with relatively low Q-factors resulting from material dissipation, still provide a large level of field enhancement due to the deep-subwavelength level of mode confinement. As new alternatives to plasmonic nanostructures, all-dielectric nanostructures supporting Mie
  • have been demonstrated in all aspects of light–matter interactions, ranging from optical generation [6], propagation [7], nonlinear processes [8] to signal detection [9] and collection, to name a few. Although QBIC resonances in all-dielectric nanostructures have become a popular and mainstream
PDF
Album
Full Research Paper
Published 06 Mar 2023

Bismuth-based nanostructured photocatalysts for the remediation of antibiotics and organic dyes

  • Akeem Adeyemi Oladipo and
  • Faisal Suleiman Mustafa

Beilstein J. Nanotechnol. 2023, 14, 291–321, doi:10.3762/bjnano.14.26

Graphical Abstract
  • d10 configuration (6s26p3) in the sixth period of group V of the periodic table. Because of their intriguing optical, catalytic, electrical, ferroelectric, and piezoelectric properties, bismuth-based nanostructures are used in several significant fields, including optoelectronics, pollutant sensing
  • nanostructures with oriented carrier transport, high optical performance, and a short carrier diffusion length, for instance, were prepared by Li and co-workers [42]. The photodegradation rates of ciprofloxacin and tetracycline were, respectively, 94.8% and 81.1% after 1 h. Additionally, Lin et al. [122
  • techniques have been developed to synthesise 3-D Bi-based nanostructures with different morphologies, including solvothermal/hydrothermal and sol–gel processes, mechanical exfoliation, solid-state reactions, chemical vapour deposition, and microwave-assisted techniques [106]. These 3-D photocatalysts have
PDF
Album
Review
Published 03 Mar 2023

Biocatalytic synthesis and ordered self-assembly of silica nanoparticles via a silica-binding peptide

  • Mustafa Gungormus

Beilstein J. Nanotechnol. 2023, 14, 280–290, doi:10.3762/bjnano.14.25

Graphical Abstract
  • and proteins, have been demonstrated to be useful in the synthesis and self-assembly of inorganic nanostructures. Herein, we describe a simple Stöber-based method wherein both the synthesis and the self-assembly of SiO2 nanoparticles can be facilitated by a silica-binding peptide (SiBP). We
  • structures, high cost, labor-intensiveness, resolution limits, and high throughput time limit the scalability [8]. Self-assembly allows to circumvent some of the constraints of the top-down techniques to obtain ordered 2D or 3D nanostructures. Self-assembly, however, presents challenges of its own. One major
  • achieve ordered nanostructures [9][10][11][12][13][14]. Although these methods can increase the efficiency of the self-assembly, they can also complicate the fabrication process further, sometimes even more than the top-down approaches. Therefore, there is still a need for simple methods to synthesize
PDF
Album
Supp Info
Full Research Paper
Published 28 Feb 2023

Spin dynamics in superconductor/ferromagnetic insulator hybrid structures with precessing magnetization

  • Yaroslav V. Turkin and
  • Nataliya Pugach

Beilstein J. Nanotechnol. 2023, 14, 233–239, doi:10.3762/bjnano.14.22

Graphical Abstract
  • -15-2022-1108. The calculations of the non-equilibrium spin current were supported by the Russian Science Foundation project 23-72-00018 “Study of non-equilibrium and boundary phenomena in superconducting hybrid nanostructures”. Investigation of the quasiparticle distribution and dynamics was
PDF
Album
Full Research Paper
Published 21 Feb 2023

Cyclodextrins as eminent constituents in nanoarchitectonics for drug delivery systems

  • Makoto Komiyama

Beilstein J. Nanotechnol. 2023, 14, 218–232, doi:10.3762/bjnano.14.21

Graphical Abstract
  • construct a variety of nanostructures. The cylindrical structures are stabilized by rings of intramolecular hydrogen bonds between adjacent glucose units. The internal diameters of the cavities of α-, β-, and γ-CyDs (composed of six, seven, and eight ᴅ-glucose units) are about 4.5–6, 6–8, and 8–9.5 Å
  • developments in nanoarchitectonics, these excellent properties of CyDs have been further extended to the construction of well-designed nanostructures for advanced drug delivery systems (DDSs). In some nanoarchitectures, their physicochemical and biological properties are successfully modulated by using CyDs as
PDF
Album
Review
Published 09 Feb 2023

A novel approach to pulsed laser deposition of platinum catalyst on carbon particles for use in polymer electrolyte membrane fuel cells

  • Bogusław Budner,
  • Wojciech Tokarz,
  • Sławomir Dyjak,
  • Andrzej Czerwiński,
  • Bartosz Bartosewicz and
  • Bartłomiej Jankiewicz

Beilstein J. Nanotechnol. 2023, 14, 190–204, doi:10.3762/bjnano.14.19

Graphical Abstract
  • cost of PEMFCs depend on the materials used to construct their major components, which are anode, cathode, and polymer electrolyte membranes [3][6]. Therefore, supplying good-performance materials with controlled nanostructures to fuel cell technology is a crucial issue [7]. One solution to this
  • [12][13][14]. Recently, nanoarchitectonics approaches have been used to fabricate various materials for energy-related applications, including carbon-based composites [15][16], Pt-based nanostructures and composites with carbon materials [17][18][19], and metal alloys deposited on TiO2 [20]. The most
PDF
Album
Supp Info
Full Research Paper
Published 02 Feb 2023

Formation of nanoflowers: Au and Ni silicide cores surrounded by SiOx branches

  • Feitao Li,
  • Siyao Wan,
  • Dong Wang and
  • Peter Schaaf

Beilstein J. Nanotechnol. 2023, 14, 133–140, doi:10.3762/bjnano.14.14

Graphical Abstract
  • to developing different kinds of nanofabrication methods during the past decades. For example, silicon oxide (SiOx) nanostructures can be grown by the catalyzing effect of Au nanoparticles based on the vapor–liquid–solid (VLS) mechanism [1][2][3][4]. Au–SiOx nanoflowers consisting of Au nanoparticles
PDF
Album
Supp Info
Full Research Paper
Published 20 Jan 2023

Combining physical vapor deposition structuration with dealloying for the creation of a highly efficient SERS platform

  • Adrien Chauvin,
  • Walter Puglisi,
  • Damien Thiry,
  • Cristina Satriano,
  • Rony Snyders and
  • Carla Bittencourt

Beilstein J. Nanotechnol. 2023, 14, 83–94, doi:10.3762/bjnano.14.10

Graphical Abstract
  • due to their interconnected nanostructures and large surface areas [17][18][19]. A myriad of techniques is available for the synthesis of porous nanostructures [20][21]. Among them, dealloying has received particular attention due to its simple methodology [17][22]. This method involves the leaching
  • effect is highly dependent on the distance between nanostructures [10]. In fact, the electromagnetic enhancement observed between two close NPs or in metallic nanotips exponentially decays when the distance to the metal surface increases [10]. In other words, only analytes that are very close (i.e., less
  • lower than the maximum allowable residue limit for RhB in food fixed by the European Union standard (1.09 × 10−9 mol·L−1) [52]. Besides a lower LoD for RhB reported for complex nanostructures with grafted molecules (10−12 mol·L−1) [53], or prepared from colloidal solutions (10−13 mol·L−1) [8][54], the
PDF
Album
Supp Info
Full Research Paper
Published 11 Jan 2023

Frontiers of nanoelectronics: intrinsic Josephson effect and prospects of superconducting spintronics

  • Anatolie S. Sidorenko,
  • Horst Hahn and
  • Vladimir Krasnov

Beilstein J. Nanotechnol. 2023, 14, 79–82, doi:10.3762/bjnano.14.9

Graphical Abstract
  • : artificial neural networks; functional nanostructures; intrinsic Josephson effect; nanoelectronics; spintronics; The twenty-first century is marked by an explosive growth in the flow of information, which is necessary to process, archive, and transmit data through communication systems. For that purpose
  • energy for cryogenic cooling of superconducting circuits is considered [9][10][11][12]. Important and promising applications of the Josephson effect are its implementation in superconducting high-frequency electronics, spintronics, and nanostructures for supercomputers. In the last decade, a very rapid
  • development in superconducting spintronics, based on functional nanostructures and Josephson junctions, has taken place [13][14]. The implementation of such devices in building blocks for quantum computers and for novel computers using non-von Neumann architecture with brain-like artificial neural networks
PDF
Editorial
Published 10 Jan 2023

Cooper pair splitting controlled by a temperature gradient

  • Dmitry S. Golubev and
  • Andrei D. Zaikin

Beilstein J. Nanotechnol. 2023, 14, 61–67, doi:10.3762/bjnano.14.7

Graphical Abstract
  • for developing quantum communication technologies. One way to identify Cooper pair splitting is to analyze long-range cross correlations of fluctuating currents in three-terminal hybrid normal–superconducting–normal nanostructures. Here, we theoretically investigate non-trivial behavior of cross
  • -correlated non-local shot noise in the presence of a temperature gradient. We suggest that applying a temperature gradient may serve as an extra tool to control the phenomenon of Cooper pair splitting. Keywords: Cooper pair splitting; entanglement; quantum shot noise; superconducting hybrid nanostructures
PDF
Album
Full Research Paper
Published 09 Jan 2023

Gap-directed chemical lift-off lithographic nanoarchitectonics for arbitrary sub-micrometer patterning

  • Chang-Ming Wang,
  • Hong-Sheng Chan,
  • Chia-Li Liao,
  • Che-Wei Chang and
  • Wei-Ssu Liao

Beilstein J. Nanotechnol. 2023, 14, 34–44, doi:10.3762/bjnano.14.4

Graphical Abstract
  • with sharp edges originating from mathematical geometry designs, the results of this study are expected to have deep implications in the facile fabrication of plasmonic structures, waveguides, and diverse nanostructures. Experimental Materials and chemicals 11-Mercaptoundecanol (MCU), triethylene
PDF
Album
Full Research Paper
Published 04 Jan 2023

Atmospheric water harvesting using functionalized carbon nanocones

  • Fernanda R. Leivas and
  • Marcia C. Barbosa

Beilstein J. Nanotechnol. 2023, 14, 1–10, doi:10.3762/bjnano.14.1

Graphical Abstract
  • occurs due to the presence of hydrophilic sites at the nanocone entrance. The functionalization, together with the high mobility of water inside nanostructures, leads to a fast water flow through the nanostructure. We show using molecular dynamics simulations that this device is able to collect water if
  • super flow in nanostructures has been explored in processes of separating water from salt or from other contaminants. This high mobility of water under nanoconfinement requires huge pressure and, consequently, a lot of energy [27][28]. In order to help water entrance and decrease the amount of required
  • pressure, nanotubes have been functionalized with hydrophilic groups [29][30]. The addition of hydrophilic regions in small diameter environments, however, decreases the velocity of water molecules [31]. The high flow of water in nanostructures is also useful for capturing water from the atmosphere
PDF
Album
Full Research Paper
Published 02 Jan 2023

Density of states in the presence of spin-dependent scattering in SF bilayers: a numerical and analytical approach

  • Tairzhan Karabassov,
  • Valeriia D. Pashkovskaia,
  • Nikita A. Parkhomenko,
  • Anastasia V. Guravova,
  • Elena A. Kazakova,
  • Boris G. Lvov,
  • Alexander A. Golubov and
  • Andrey S. Vasenko

Beilstein J. Nanotechnol. 2022, 13, 1418–1431, doi:10.3762/bjnano.13.117

Graphical Abstract
  • behavior of DOS dependencies on magnetic and spin–orbit scattering times is discussed. Keywords: density of states; Josephson junctions; proximity effect; superconductivity; superconductor/ferromagnet hybrid nanostructures; Introduction It is well-known that superconductivity can be induced in a non
PDF
Album
Full Research Paper
Published 01 Dec 2022

LED-light-activated photocatalytic performance of metal-free carbon-modified hexagonal boron nitride towards degradation of methylene blue and phenol

  • Nirmalendu S. Mishra and
  • Pichiah Saravanan

Beilstein J. Nanotechnol. 2022, 13, 1380–1392, doi:10.3762/bjnano.13.114

Graphical Abstract
  • crystallographic characterization. The morphology of the obtained nanostructures was captured by high-resolution transmission electron microscopy (HRTEM, Talos F200X G2, Thermo Scientific). The optical properties were characterized with a Shimadzu UV 2600 UV–vis spectrophotometer with an integrating sphere
PDF
Album
Full Research Paper
Published 22 Nov 2022

Supramolecular assembly of pentamidine and polymeric cyclodextrin bimetallic core–shell nanoarchitectures

  • Alexandru-Milentie Hada,
  • Nina Burduja,
  • Marco Abbate,
  • Claudio Stagno,
  • Guy Caljon,
  • Louis Maes,
  • Nicola Micale,
  • Massimiliano Cordaro,
  • Angela Scala,
  • Antonino Mazzaglia and
  • Anna Piperno

Beilstein J. Nanotechnol. 2022, 13, 1361–1369, doi:10.3762/bjnano.13.112

Graphical Abstract
  • nanostructures endowed with unique physicochemical properties. Recently, we have proposed a straightforward synthetic strategy that exploits the properties of polymeric β-cyclodextrin (PolyCD) to act as both the reducing and stabilizing agent to produce monodispersed and stable gold-based NPs either as
PDF
Album
Supp Info
Full Research Paper
Published 18 Nov 2022

Recent trends in Bi-based nanomaterials: challenges, fabrication, enhancement techniques, and environmental applications

  • Vishal Dutta,
  • Ankush Chauhan,
  • Ritesh Verma,
  • C. Gopalkrishnan and
  • Van-Huy Nguyen

Beilstein J. Nanotechnol. 2022, 13, 1316–1336, doi:10.3762/bjnano.13.109

Graphical Abstract
  • making nanostructures of functional materials. However, templates were chosen rather based on utility than on cost. The self-template technology does not require additional templates, which leads to less expensive production and increased efficiency. This makes the approach more realistic for practical
  • regular structures. The aqueous NH3 solution provided OH− ions for the successful exchange of I−, and the result was the synthesis of Bi7O9I3. The Bi7O9I3/NTC has evenly distributed Bi7O9I3 nanostructures in the shape of lanterns formed of extremely thin nanosheets with a thickness of less than 10 nm on
  • plasmonic photocatalyst. Nanospheres, nanorods, and nanosheets can be synthesized using various techniques. Hydrothermal calcination, template synthesis, precipitation, reverse micro-emulsion, sonochemical procedures, and microwave methods are typical techniques for fabricating Bi-based nanostructures [77
PDF
Album
Review
Published 11 Nov 2022

Bending and punching characteristics of aluminum sheets using the quasi-continuum method

  • Man-Ping Chang,
  • Shang-Jui Lin and
  • Te-Hua Fang

Beilstein J. Nanotechnol. 2022, 13, 1303–1315, doi:10.3762/bjnano.13.108

Graphical Abstract
  • , nanoelectromechanical systems (NEMS), environmental science, and semiconductors [1][2][3][4][5][6][7][8][9][10]. The increased requirements for advanced nanostructures simultaneously give rise to extensive researches in precision machining techniques, including nanoimprinting lithography (NIL) [11][12], mechanical nano
PDF
Album
Full Research Paper
Published 10 Nov 2022

Enhanced electronic transport properties of Te roll-like nanostructures

  • E. R. Viana,
  • N. Cifuentes and
  • J. C. González

Beilstein J. Nanotechnol. 2022, 13, 1284–1291, doi:10.3762/bjnano.13.106

Graphical Abstract
  • work, the electronic transport properties of Te roll-like nanostructures were investigated in a broad temperature range by fabricating single-nanostructure back-gated field-effect-transistors via photolithography. These one-dimensional nanostructures, with a unique roll-like morphology, were produced
  • by a facile synthesis and extensively studied by scanning and transmission electron microscopy. The nanostructures are made of pure and crystalline Tellurium with trigonal structure (t-Te), and exhibit p-type conductivity with enhanced field-effect hole mobility between 273 cm2/Vs at 320 K and 881
  • electrical properties of these nanostructures, with a small disorder, and superior quality for nanodevice applications. Keywords: electrical characterization; field-effect transistors; hopping conduction; nanobelts; tellurium; Introduction The chalcogen tellurium (Te) is a rare element (0.002 ppm) in the
PDF
Album
Supp Info
Full Research Paper
Published 08 Nov 2022

Laser-processed antiadhesive bionic combs for handling nanofibers inspired by nanostructures on the legs of cribellate spiders

  • Sebastian Lifka,
  • Kristóf Harsányi,
  • Erich Baumgartner,
  • Lukas Pichler,
  • Dariya Baiko,
  • Karsten Wasmuth,
  • Johannes Heitz,
  • Marco Meyer,
  • Anna-Christin Joel,
  • Jörn Bonse and
  • Werner Baumgartner

Beilstein J. Nanotechnol. 2022, 13, 1268–1283, doi:10.3762/bjnano.13.105

Graphical Abstract
  • ; nanostructures; Introduction Nanofibers have a diameter of approximately 10 to 800 nm, whereas their length is much greater than their diameter, which is why the term fiber or thread is used. These fibers are constantly drawing the attention of engineers because their surface-to-volume ratio is favorable for
  • titanium alloy samples in Figure 9. Thus, the force measured for peel-off from the polished surface is not the force needed to detach the fibers from the surface, but to tear a superficial fiber layer from the rest of the nonwoven. Conclusion Mimicking the principle of nanostructures on the calamistrum of
PDF
Album
Supp Info
Full Research Paper
Published 07 Nov 2022

Studies of probe tip materials by atomic force microscopy: a review

  • Ke Xu and
  • Yuzhe Liu

Beilstein J. Nanotechnol. 2022, 13, 1256–1267, doi:10.3762/bjnano.13.104

Graphical Abstract
  • cutting process. Complex nanostructures with high spreading chord ratios can be scanned using carbon nanotube probes, thus solving the long-standing problem of mapping complex nanostructures. A colloidal probe [12][13] consists of colloidal particles attached to an AFM cantilever to measure the
  • aspect ratios. The imaging results showed higher spatial resolution and prominent tips with CNTs with aspect ratios greater than 10 compared to standard AFM probes. Using such CNT probes for scanning complex nanostructures could solve the long-standing problem of mapping complex nanostructures. Composite
  • future, such probes will enable previously unexplored conductivity measurements, such as measurements of semiconductor nanostructures or electrical conductivity on insulating substrates. Conductive atomic force microscopy (C-AFM) can be used to characterize the electrical properties of semi-conductive
PDF
Album
Review
Published 03 Nov 2022

Roll-to-roll fabrication of superhydrophobic pads covered with nanofur for the efficient clean-up of oil spills

  • Patrick Weiser,
  • Robin Kietz,
  • Marc Schneider,
  • Matthias Worgull and
  • Hendrik Hölscher

Beilstein J. Nanotechnol. 2022, 13, 1228–1239, doi:10.3762/bjnano.13.102

Graphical Abstract
  • sandblasted steel-plates as mold inserts. It is an interesting feature of this procedure that a surface with nanostructures is realized without elaborate and costly lithography. Nanofur can be hot-pulled from several types of polymers [16]. Nonetheless, the surface area per process step is limited to some
PDF
Album
Supp Info
Full Research Paper
Published 31 Oct 2022

Design of surface nanostructures for chirality sensing based on quartz crystal microbalance

  • Yinglin Ma,
  • Xiangyun Xiao and
  • Qingmin Ji

Beilstein J. Nanotechnol. 2022, 13, 1201–1219, doi:10.3762/bjnano.13.100

Graphical Abstract
  • design of the recognition layers. Various strategies have been employed for studying the relationship between the structural features and the specific detection of chiral isomers. This review provides an overview of the construction of chiral sensing layers by various nanostructures and materials in the
  • QCM system, which include organic molecules, supermolecular assemblies, inorganic nanostructures, and metal surfaces. The sensing mechanisms based on these surface nanostructures and the related potentials for chiral detection by the QCM system are also summarized. Keywords: assembled nanostructure
  • sensors is always based on aspects of effective chiral host molecules, proper chiral surface functions, and suitable host nanostructures. To achieve high chiral selectivity and sensitivity, it is also essential to understand the basis of the interactions for the formation of transient diastereomeric
PDF
Album
Review
Published 27 Oct 2022
Other Beilstein-Institut Open Science Activities