Search results

Search for "sulfur" in Full Text gives 185 result(s) in Beilstein Journal of Nanotechnology.

Zn/F-doped tin oxide nanoparticles synthesized by laser pyrolysis: structural and optical properties

  • Florian Dumitrache,
  • Iuliana P. Morjan,
  • Elena Dutu,
  • Ion Morjan,
  • Claudiu Teodor Fleaca,
  • Monica Scarisoreanu,
  • Alina Ilie,
  • Marius Dumitru,
  • Cristian Mihailescu,
  • Adriana Smarandache and
  • Gabriel Prodan

Beilstein J. Nanotechnol. 2019, 10, 9–21, doi:10.3762/bjnano.10.2

Graphical Abstract
  • of the simultaneous doping with both cations and anions. In the case of a high aluminum and lower sulfur co-doped film made by spray pyrolysis at 480 °C, the transparency increased and the grain size was significantly reduced for the optimal composition [22]. This approach benefits from the reduction
  • decomposition of SF6. The elemental analysis reveals that the laser pyrolysis method can be used to synthesize nanoparticles with a large variation of Zn doping (from 4 to 0.1 atom %), by controlling only the SnMe4 to ZnEt2 ratio in the reagent mixture. Also, there is no clear evidence of sulfur in any of the
  • , 95% purity) liquids from Sigma and sulfur hexafluoride (SF6), oxygen (O2), argon (Ar) (99.99999 vol %) and ethylene (C2H4) (99.999 vol %) bottled gases from Linde. The reactive precursors used to obtain zinc-doped tin nanopowders, SnMe4 and ZnEt2, have no infrared absorption bands around the CO2
PDF
Album
Full Research Paper
Published 02 Jan 2019

Electrospun one-dimensional nanostructures: a new horizon for gas sensing materials

  • Muhammad Imran,
  • Nunzio Motta and
  • Mahnaz Shafiei

Beilstein J. Nanotechnol. 2018, 9, 2128–2170, doi:10.3762/bjnano.9.202

Graphical Abstract
PDF
Album
Supp Info
Review
Published 13 Aug 2018

Spin-coated planar Sb2S3 hybrid solar cells approaching 5% efficiency

  • Pascal Kaienburg,
  • Benjamin Klingebiel and
  • Thomas Kirchartz

Beilstein J. Nanotechnol. 2018, 9, 2114–2124, doi:10.3762/bjnano.9.200

Graphical Abstract
  • , spin-coating of different antimony- and sulfur-containing precursors was proposed [29][36][37]. A metal-organic complex is formed in solution which is then spin-coated and afterwards thermally decomposed. Just like for CBD [2][41] or ALD [22][32] the resulting amorphous film needs to be annealed at
  • device efficiency of 2.7% was obtained for Sb/TU ratios that imply a strongly sulfur-deficient stoichiometry according to the previously mentioned study [29]. However, Gil et al. [38] performed crystallization in an H2S atmosphere which could increase the sulfur content in the film. In a follow up work
  • Experimental section. It is noteworthy that both processes use an excess of the sulfur precursors. For the case of Sb-TU it was shown that stoichiometric crystalline Sb2S3 with an S/Sb ratio of 3/2 = 1.5 in the resulting film, which showed the best performance in an ETA solar cell, requires this initial excess
PDF
Album
Supp Info
Full Research Paper
Published 08 Aug 2018

Metal-free catalysis based on nitrogen-doped carbon nanomaterials: a photoelectron spectroscopy point of view

  • Mattia Scardamaglia and
  • Carla Bittencourt

Beilstein J. Nanotechnol. 2018, 9, 2015–2031, doi:10.3762/bjnano.9.191

Graphical Abstract
  • graphene, modify its morphology and, in addition, activate its surface. Heteroatom, or substitutional, doping is obtained when a foreign atom replaces a carbon atom in the hexagonal lattice; typical heteroatoms are nitrogen [37][38][39][40][41], boron [42][43][44], sulfur [39][45][46], and phosphorous [47
  • . explained the interesting interaction between oxygen and boron-containing carbon nanomaterials: because it is an electron acceptor, B easily oxidizes carbon atoms in a site-dependent way [62]. Besides boron [61][63][64], other elements that have been co-doped with nitrogen are sulfur [65] and phosphorus [66
PDF
Album
Review
Published 18 Jul 2018

Synthesis of rare-earth metal and rare-earth metal-fluoride nanoparticles in ionic liquids and propylene carbonate

  • Marvin Siebels,
  • Lukas Mai,
  • Laura Schmolke,
  • Kai Schütte,
  • Juri Barthel,
  • Junpei Yue,
  • Jörg Thomas,
  • Bernd M. Smarsly,
  • Anjana Devi,
  • Roland A. Fischer and
  • Christoph Janiak

Beilstein J. Nanotechnol. 2018, 9, 1881–1894, doi:10.3762/bjnano.9.180

Graphical Abstract
  • Figure S7b, Supporting Information File 1) gave the expected bands for Gd and Er. The small fluorine and sulfur peaks are due to residual IL around the nanoparticles (Figure S3, Supporting Information File 1). We suggest that the residual IL coverage of the RE-NPs also prevents their oxidation during the
PDF
Album
Supp Info
Full Research Paper
Published 28 Jun 2018

SO2 gas adsorption on carbon nanomaterials: a comparative study

  • Deepu J. Babu,
  • Divya Puthusseri,
  • Frank G. Kühl,
  • Sherif Okeil,
  • Michael Bruns,
  • Manfred Hampe and
  • Jörg J. Schneider

Beilstein J. Nanotechnol. 2018, 9, 1782–1792, doi:10.3762/bjnano.9.169

Graphical Abstract
  • found to dominate the adsorption behavior in activated carbon, SO2 adsorption on carbon nanomaterials occurs by a physisorption mechanism. Keywords: adsorption; carbon nanohorns; carbon nanotubes; heat of adsorption; sulfur dioxide; vertically aligned carbon nanotubes; Introduction Compared to the
  • setup IsoSORP Series SC-HP Static (Rubotherm, Bochum, Germany), in combination with an automatic gas-dosing system (in operation for blank and buoyancy measurements with helium and a manual gas dosing system, in operation for measurements with sulfur dioxide (both from Rubotherm, Bochum, Germany). The
PDF
Album
Supp Info
Full Research Paper
Published 13 Jun 2018

Toward the use of CVD-grown MoS2 nanosheets as field-emission source

  • Geetanjali Deokar,
  • Nitul S. Rajput,
  • Junjie Li,
  • Francis Leonard Deepak,
  • Wei Ou-Yang,
  • Nicolas Reckinger,
  • Carla Bittencourt,
  • Jean-Francois Colomer and
  • Mustapha Jouiad

Beilstein J. Nanotechnol. 2018, 9, 1686–1694, doi:10.3762/bjnano.9.160

Graphical Abstract
  • , followed by continuous Ar flow for 1 h was performed. This reduces the oxygen content in the reactor prior to the sulfurization process. The growth conditions were taken and improved from our previously reported MoS2 NS synthesis method [18]. In a typical sulfurization process, 220 g sulfur powder was
PDF
Album
Supp Info
Full Research Paper
Published 07 Jun 2018

Nitrogen-doped carbon nanotubes coated with zinc oxide nanoparticles as sulfur encapsulator for high-performance lithium/sulfur batteries

  • Yan Zhao,
  • Zhengjun Liu,
  • Liancheng Sun,
  • Yongguang Zhang,
  • Yuting Feng,
  • Xin Wang,
  • Indira Kurmanbayeva and
  • Zhumabay Bakenov

Beilstein J. Nanotechnol. 2018, 9, 1677–1685, doi:10.3762/bjnano.9.159

Graphical Abstract
  • carbon nanotubes coated with zinc oxide nanoparticles (ZnO@NCNT) were prepared via a sol–gel route as sulfur encapsulator for lithium/sulfur (Li/S) batteries. The electrochemical properties of the S/ZnO@NCNT composite cathode were evaluated in Li/S batteries. It delivered an initial capacity of 1032
  • bonds in the composite. This indicates that an enhanced cycling and rate capability of the S/ZnO@NCNT composite could be ascribed to advantages of the ZnO@NCNT matrix. In the composite, the active ZnO-rich surfaces offer a high sulfur-bonding capability and the NCNT core acts as a conductive framework
  • providing pathways for ion and electron transport. The as-prepared S/ZnO@NCNT composite is a promising cathode material for Li/S batteries. Keywords: batteries; nanocomposites; sol–gel processes; sulfur; zinc oxide (ZnO); Introduction Due to its high theoretical specific capacity of 1672 mAh·g−1 and
PDF
Album
Full Research Paper
Published 06 Jun 2018

Sulfur-, nitrogen- and platinum-doped titania thin films with high catalytic efficiency under visible-light illumination

  • Boštjan Žener,
  • Lev Matoh,
  • Giorgio Carraro,
  • Bojan Miljević and
  • Romana Cerc Korošec

Beilstein J. Nanotechnol. 2018, 9, 1629–1640, doi:10.3762/bjnano.9.155

Graphical Abstract
  • (ammonium nitrate, urea), sulfur (thiourea) and platinum (chloroplatinic acid), coated onto glass substrates by dip-coating, and thermally treated in a muffle furnace to promote crystallization. The resulting thin films were then characterized by various techniques (i.e., TGA-DSC-MS, XRD, BET, XPS, SEM
  • the conduction band. Sulfur doping has also been shown to enhance the photocatalytic activity under visible-light illumination. Sulfur can be doped as an anion (S2−), replacing oxygen, or as a cation (S6+), thus replacing titanium [37][38]. Substitutional doping of sulfur in TiO2 narrows the band gap
  • , water (m/z = 18) evolves, whereas in the third (510–560 °C) step, sulfur oxides (m/z = 48 and 64) evolve. Exothermic peaks, due to to the process of crystallization are overlapped by endothermic peaks, originating from the evolution of sulfates. Based on these results and the results of XRD measurements
PDF
Album
Full Research Paper
Published 04 Jun 2018

Cr(VI) remediation from aqueous environment through modified-TiO2-mediated photocatalytic reduction

  • Rashmi Acharya,
  • Brundabana Naik and
  • Kulamani Parida

Beilstein J. Nanotechnol. 2018, 9, 1448–1470, doi:10.3762/bjnano.9.137

Graphical Abstract
  • , sodium pyro-sulfite, hydrazine hydrate or sulfur dioxide [22][23][24][25]. In contrast, semiconductor-based photocatalysis has received considerable attention worldwide for its diversified potential applications to solve the global energy crisis and environmental issues in a sustainable and ecologically
PDF
Album
Review
Published 16 May 2018

Synthesis and characterization of two new TiO2-containing benzothiazole-based imine composites for organic device applications

  • Anna Różycka,
  • Agnieszka Iwan,
  • Krzysztof Artur Bogdanowicz,
  • Michal Filapek,
  • Natalia Górska,
  • Damian Pociecha,
  • Marek Malinowski,
  • Patryk Fryń,
  • Agnieszka Hreniak,
  • Jakub Rysz,
  • Paweł Dąbczyński and
  • Monika Marzec

Beilstein J. Nanotechnol. 2018, 9, 721–739, doi:10.3762/bjnano.9.67

Graphical Abstract
  • heterocycles with electron-rich sulfur atoms and electron-withdrawing nitrogen atoms, exhibit good hole transporting properties with a low ionization potential, making them widely used electron-accepting materials in organic solar cells [15][16][17]. Nowadays, imines (azomethines), being condensation products
PDF
Album
Full Research Paper
Published 26 Feb 2018

Tuning adhesion forces between functionalized gold colloidal nanoparticles and silicon AFM tips: role of ligands and capillary forces

  • Sven Oras,
  • Sergei Vlassov,
  • Marta Berholts,
  • Rünno Lõhmus and
  • Karine Mougin

Beilstein J. Nanotechnol. 2018, 9, 660–670, doi:10.3762/bjnano.9.61

Graphical Abstract
  • organosulfur (thiol) molecules having different tail groups ranging from a highly hydrophilic (–OH, –COOH, –SH, –NH2) to a partially hydrophilic (–O–CH3) and to a more hydrophobic group (–CH3). A covalent bond between the sulfur head group (–SH) and the Au atoms ensured the strong anchorage of the organosulfur
PDF
Album
Supp Info
Full Research Paper
Published 20 Feb 2018

Sensing behavior of flower-shaped MoS2 nanoflakes: case study with methanol and xylene

  • Maryam Barzegar,
  • Masoud Berahman and
  • Azam Iraji zad

Beilstein J. Nanotechnol. 2018, 9, 608–615, doi:10.3762/bjnano.9.57

Graphical Abstract
  • model. Then, a sulfur atom at the center of the model was removed and fully relaxed to study the sulfur vacancy. After that, the detection of xylene and methanol with these models were studied. Density functional theory in the local-density approximation with a Perdew–Zunger correlation function was
  • sulfur vacancies in the samples. The previous report shows that sulfur vacancies can increase the possibility of charge transfer in MoS2 nanoflakes which may act as the main reason to alter the conductivity [35]. It has been also reported that the crystal phase and edge play a significant role in the
  • electro-activity of MoS2 nanosheets. Furthermore, sulfur vacancies contribute significantly to the electronic properties of MoS2 [36][37]. Hence, such sulfur vacancy is desirable for the gas sensing properties of MoS2. To study the application of the flower-shaped MoS2 for gas sensing, the Brunauer–Emmett
PDF
Album
Full Research Paper
Published 16 Feb 2018

Single-step process to improve the mechanical properties of carbon nanotube yarn

  • Maria Cecilia Evora,
  • Xinyi Lu,
  • Nitilaksha Hiremath,
  • Nam-Goo Kang,
  • Kunlun Hong,
  • Roberto Uribe,
  • Gajanan Bhat and
  • Jimmy Mays

Beilstein J. Nanotechnol. 2018, 9, 545–554, doi:10.3762/bjnano.9.52

Graphical Abstract
  • intensity for the C–O peak (see Figure 1). As also illustrated in Table 1, some traces of contaminant elements (sulfur (S), iron (Fe) and aluminum (Al)) were observed in XPS spectra of all samples, which can be attributed to traces of the inhibitor metal salt, FeSO4 and other contaminants. The samples
PDF
Album
Full Research Paper
Published 13 Feb 2018

Review: Electrostatically actuated nanobeam-based nanoelectromechanical switches – materials solutions and operational conditions

  • Liga Jasulaneca,
  • Jelena Kosmaca,
  • Raimonds Meija,
  • Jana Andzane and
  • Donats Erts

Beilstein J. Nanotechnol. 2018, 9, 271–300, doi:10.3762/bjnano.9.29

Graphical Abstract
  • nanowires’ surface [10][13]. Molybdenum–sulfur–iodine: Excellent functional properties of nanowires based on transition metal chalcogenide-halides, combined with easy synthesis and intrinsic absence of impurities make them attractive NEM switch elements. The properties of these materials include high
  • electrical conductivity [134], good thermal and mechanical stability and ability to withstand high (up to 50 V) operational voltages [8]. Molybdenum–sulfur–iodine (Mo6S3I6) molecular wire bundles were investigated as NEM switching elements and as a contact material employing combined in situ TEM
PDF
Album
Review
Published 25 Jan 2018

Synthesis and characterization of electrospun molybdenum dioxide–carbon nanofibers as sulfur matrix additives for rechargeable lithium–sulfur battery applications

  • Ruiyuan Zhuang,
  • Shanshan Yao,
  • Maoxiang Jing,
  • Xiangqian Shen,
  • Jun Xiang,
  • Tianbao Li,
  • Kesong Xiao and
  • Shibiao Qin

Beilstein J. Nanotechnol. 2018, 9, 262–270, doi:10.3762/bjnano.9.28

Graphical Abstract
  • ) surface area measurements, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). MoO2–CNFs with an average diameter of 425–575 nm obtained after heat treatment were used as a matrix to prepare sulfur/MoO2–CNF cathodes for lithium–sulfur (Li–S) batteries. The polysulfide adsorption
  • sulfur/MoO2–CNFs electrodes was examined, and the data showed that MoO2–CNFs calcined at 850 °C delivered optimal performance with an initial capacity of 1095 mAh g−1 and 860 mAh g−1 after 50 cycles. The results demonstrated that sulfur/MoO2–CNF composites display a remarkably high lithium–ion diffusion
  • coefficient, low interfacial resistance and much better electrochemical performance than pristine sulfur cathodes. Keywords: electrochemical performance; electrospinning; lithium–sulfur batteries; MoO2–CNFs; sulfur matrix; Introduction Lithium–sulfur (Li–S) batteries are considered to be the most promising
PDF
Album
Supp Info
Full Research Paper
Published 24 Jan 2018

Ab initio study of adsorption and diffusion of lithium on transition metal dichalcogenide monolayers

  • Xiaoli Sun and
  • Zhiguo Wang

Beilstein J. Nanotechnol. 2017, 8, 2711–2718, doi:10.3762/bjnano.8.270

Graphical Abstract
  • MoS2 with other materials, such as carbon-based materials and non-carbonaceous materials, can enhance the electromechanical properties of MoS2. Wang et al. [21] utilized a beneficial "bridging effect" of sulfur atoms to bind few-layered MoS2 with graphene, which provided fast electron conductivity and
PDF
Album
Full Research Paper
Published 15 Dec 2017

One-step chemical vapor deposition synthesis and supercapacitor performance of nitrogen-doped porous carbon–carbon nanotube hybrids

  • Egor V. Lobiak,
  • Lyubov G. Bulusheva,
  • Ekaterina O. Fedorovskaya,
  • Yury V. Shubin,
  • Pavel E. Plyusnin,
  • Pierre Lonchambon,
  • Boris V. Senkovskiy,
  • Zinfer R. Ismagilov,
  • Emmanuel Flahaut and
  • Alexander V. Okotrub

Beilstein J. Nanotechnol. 2017, 8, 2669–2679, doi:10.3762/bjnano.8.267

Graphical Abstract
  • nickel hydroxide in hydrogen atmosphere [15]. The hybrid showed improved cycling stability in lithium–sulfur batteries as compared to the electrode made from porous carbon only. Cai et al. have synthesized N-doped hierarchical porous carbon–CNT hybrids using a melamine-formaldehyde resin, Fe/Co catalyst
PDF
Album
Supp Info
Full Research Paper
Published 12 Dec 2017

Patterning of supported gold monolayers via chemical lift-off lithography

  • Liane S. Slaughter,
  • Kevin M. Cheung,
  • Sami Kaappa,
  • Huan H. Cao,
  • Qing Yang,
  • Thomas D. Young,
  • Andrew C. Serino,
  • Sami Malola,
  • Jana M. Olson,
  • Stephan Link,
  • Hannu Häkkinen,
  • Anne M. Andrews and
  • Paul S. Weiss

Beilstein J. Nanotechnol. 2017, 8, 2648–2661, doi:10.3762/bjnano.8.265

Graphical Abstract
  • an ideal fcc Au{111} surface. During lift-off, some Au surface atoms remain attached to the lifting sulfur atoms, breaking the Au surface symmetry and causing reconstruction of the remaining Au surface layer. As lifting continues, some Au atoms move between the sulfur atoms, forming RS–Au–SR
  • structures that are still able to bond to additional Au atoms. Before complete separation, a chain consisting of two or three Au atoms between each thiol and the Au surface is formed and finally ruptures, usually after the first or second Au atom has attached to each sulfur atom. As a consequence of lift-off
  • to interrogate the structure and stoichiometry of the lifted-off Au monolayer further. The potential to lift-off Au via PDMS contact is consistent with the discovery that Au–thiolate complexes are the mobile species in SAM diffusion [2][50]. The electronegative sulfur atoms (thiol head groups
PDF
Album
Supp Info
Full Research Paper
Published 08 Dec 2017

The role of ligands in coinage-metal nanoparticles for electronics

  • Ioannis Kanelidis and
  • Tobias Kraus

Beilstein J. Nanotechnol. 2017, 8, 2625–2639, doi:10.3762/bjnano.8.263

Graphical Abstract
  • of 10 nm average diameter with a conjugated copolymer comprising bithiazole and benzothiazole. The sulfur and nitrogen atoms in the blocks interacted with the metal surface, providing stability to the nanoparticles. The nanoparticles with the chemisorbed polymer acted as a template for the self
  • to twelve times higher than in the unfilled polymer (Figure 8) [141]. Semaltianos et al. prepared ligand-free silver nanoparticles in deionized water by laser ablation. Their colloidal solution was mixed with the polymer mixture PEDOT:PSS, which coated the metal surface. The sulfur atom of the
PDF
Album
Review
Published 07 Dec 2017

Inelastic electron tunneling spectroscopy of difurylethene-based photochromic single-molecule junctions

  • Youngsang Kim,
  • Safa G. Bahoosh,
  • Dmytro Sysoiev,
  • Thomas Huhn,
  • Fabian Pauly and
  • Elke Scheer

Beilstein J. Nanotechnol. 2017, 8, 2606–2614, doi:10.3762/bjnano.8.261

Graphical Abstract
  • elongated junctions with the lowest conductance values correspond to the molecule being completely stretched and suspended between the electrodes, i.e., being connected to gold through the sulfur binding groups. Hence, the most probable conductance is found to be (1.4 ± 1.0) × 10−7 G0 and (8.3 ± 4.5) × 10−7
  • HOMO energy is closer to the Fermi energy than the LUMO level, as typical for sulfur anchoring groups [37]. In Figure 2c, we show the wavefunctions of the dominant eigenchannel at EF for the closed and open forms for electrons that enter from the left side. The electric transport mainly proceeds
  • coupling between the rings is suppressed for the open form. In this case, the molecular orbitals localize on the left and right side. The incoming electron waves from the left lead couple through the sulfur atom into the π-electron system of the left side, but in the middle of the molecule at the core unit
PDF
Album
Full Research Paper
Published 06 Dec 2017

Amplified cross-linking efficiency of self-assembled monolayers through targeted dissociative electron attachment for the production of carbon nanomembranes

  • Sascha Koch,
  • Christopher D. Kaiser,
  • Paul Penner,
  • Michael Barclay,
  • Lena Frommeyer,
  • Daniel Emmrich,
  • Patrick Stohmann,
  • Tarek Abu-Husein,
  • Andreas Terfort,
  • D. Howard Fairbrother,
  • Oddur Ingólfsson and
  • Armin Gölzhäuser

Beilstein J. Nanotechnol. 2017, 8, 2562–2571, doi:10.3762/bjnano.8.256

Graphical Abstract
  • that the radical sites generated in the DEA process substantially stimulate the cross-linking process and that the very effective iodine loss in the DEA process should thus be reflected in the cross-linking efficiency. The decrease of the intensity maximum of the thiol sulfur S 2p3/2 peak at a binding
  • energy (BE) of 162 eV and a formation and increase of a new sulfur species with a S 2p3/2 peak at BE = 163.5 eV due to radiation-induced formation of new sulfur species, such as disulfides and/or thioethers [2]. This may be regarded as an indirect indicator for the transition of SAMs into CNMs and for
  • respective halogenated biphenyls as a function of the irradiation time and thus the electron dose. Figure 3 shows the XPS data of the sulfur S 2p region for SAMs from 2-Cl-BPT, 2-Br-BPT and 2-I-BPT. For reference, XPS data for the SAMs from native non-halogenated BPT are also shown. Similar to Figure 2, the
PDF
Album
Full Research Paper
Published 30 Nov 2017

Synthesis of metal-fluoride nanoparticles supported on thermally reduced graphite oxide

  • Alexa Schmitz,
  • Kai Schütte,
  • Vesko Ilievski,
  • Juri Barthel,
  • Laura Burk,
  • Rolf Mülhaupt,
  • Junpei Yue,
  • Bernd Smarsly and
  • Christoph Janiak

Beilstein J. Nanotechnol. 2017, 8, 2474–2483, doi:10.3762/bjnano.8.247

Graphical Abstract
  • nanocomposite materials in ionic liquids (ILs) to yield selectively phase-pure metal-fluoride nanoparticles (MFx-NPs) supported on the TRGO as stable colloids (Scheme 1). The used TRGO starting materials differed in the temperatures at which they were reduced (300, 400 or 750 °C) and in the presence of sulfur
  • TRGO-400 by reaction with lithium diisopropylamide (LDA) and propylene sulfide. Subsequently, the TRGO-SH carries sulfur functionalities on the surface that were intended to increase the interactions with the nanoparticles (see Scheme S2, Supporting Information File 1) [7]. Also, from cobalt amidinate
  • presence of sulfur functionalities. The nanoparticles exhibited mostly diameters of less than 30 nm. For cobalt it was only possible to support non-aggregated CoF2 particles on TRGO-SH. The results support the advantages of the metal-organic precursor concept based on metal amidinates together with non
PDF
Album
Supp Info
Full Research Paper
Published 22 Nov 2017

Imidazolium-based ionic liquids used as additives in the nanolubrication of silicon surfaces

  • Patrícia M. Amorim,
  • Ana M. Ferraria,
  • Rogério Colaço,
  • Luís C. Branco and
  • Benilde Saramago

Beilstein J. Nanotechnol. 2017, 8, 1961–1971, doi:10.3762/bjnano.8.197

Graphical Abstract
  • improvement of the tribological behavior of the same type of sliding pairs when 1-ethyl-3-methylimidazolium octylsulfate was added to the model lubricant fluid (glycerol). They attributed this to sulfur species in the tribofilm. Gusain et al. [15] synthesized bis-imidazolium ILs that proved to be efficient as
  • -like contaminations on the Si surface. In the case of the IL mixtures, no important differences exist among the C 1s signals: Two peaks may be fitted in the same positions, the intensity of the aliphatic carbon being lower in the PEG + [EMIM][EtSO4] sample. The most intense XPS sulfur peak is the S 2p
  • , while the Si-OH groups were not found to give a significant contribution [37]. In this case, the positive role of the [EtSO4] anion seems to overlap the poor efficiency of the [EMIM] cation. Other authors [38][39] tested the frictional behavior of ILs composed of the cation [EMIM] and the sulfur-based
PDF
Album
Full Research Paper
Published 20 Sep 2017

Intercalation of Si between MoS2 layers

  • Rik van Bremen,
  • Qirong Yao,
  • Soumya Banerjee,
  • Deniz Cakir,
  • Nuri Oncel and
  • Harold J. W. Zandvliet

Beilstein J. Nanotechnol. 2017, 8, 1952–1960, doi:10.3762/bjnano.8.196

Graphical Abstract
  • the deposition of ca. 0.2 monolayers of Si at room temperature are shown. The pristine MoS2 surface appears very smooth. Usually only the top sulfur layer is resolved, resulting in a lattice with hexagonal symmetry and a lattice constant of 3.16 Å (see Figure 1b,c). The pristine MoS2 contains some
PDF
Album
Supp Info
Full Research Paper
Published 19 Sep 2017
Other Beilstein-Institut Open Science Activities