Search results

Search for "ion" in Full Text gives 918 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

TEM sample preparation of lithographically patterned permalloy nanostructures on silicon nitride membranes

  • Joshua Williams,
  • Michael I. Faley,
  • Joseph Vimal Vas,
  • Peng-Han Lu and
  • Rafal E. Dunin-Borkowski

Beilstein J. Nanotechnol. 2024, 15, 1–12, doi:10.3762/bjnano.15.1

Graphical Abstract
  • using three different fabrication methods: lift-off, ion beam etching (IBE), and stencil lithography. They were further analyzed using different instruments, including scanning electron microscopy, LTEM, and electron holography. A bilayer of positive PMMA resist was utilized in the first fabrication
  • submicrometer apertures were milled on SiN membranes using a focused ion beam. Furthermore, we have developed a new TEM sample preparation method, where we fabricated Py nanostructures on a bulk substrate with a SiN buffer layer and etched the substrate to create a thin SiN membrane under the Py nanostructure
  • mode to avoid melting of the PMMA resist. The second approach involved etching a thin Py film with an ion beam while preserving the intended structure with an electron-beam-patterned negative resist mask. Redeposition of etched material was found to construct fences at the edges of the structures
PDF
Album
Supp Info
Full Research Paper
Published 02 Jan 2024

A combined gas-phase dissociative ionization, dissociative electron attachment and deposition study on the potential FEBID precursor [Au(CH3)2Cl]2

  • Elif Bilgilisoy,
  • Ali Kamali,
  • Thomas Xaver Gentner,
  • Gerd Ballmann,
  • Sjoerd Harder,
  • Hans-Peter Steinrück,
  • Hubertus Marbach and
  • Oddur Ingólfsson

Beilstein J. Nanotechnol. 2023, 14, 1178–1199, doi:10.3762/bjnano.14.98

Graphical Abstract
  • . [26] under the term focused-electron-beam-induced mass spectrometry (FEBiMS). In this approach, ion-extraction mass spectrometry, in close proximity to the forming FEBID structure, is used to analyze the charged, desorbing ligand fragments. Another approach in this direction is to combine ultrahigh
  • . According to the AES depicted in Figure 1b and Figure 5b, x can be inferred to be 1–2. Gas-phase studies Figure 6a shows a positive ion mass spectrum of [Au(CH3)2Cl]2, recorded for the m/z range from 10 to 550 at a 50 eV electron impact energy. A rich fragmentation pattern, characterized by progressive loss
  • ion yield curves for the individual fragments along with their average AEs determined from fits to 3–4 ion yield curves recorded on different days. Also shown are the respective confidence limits and the structures of the respective positive ions optimized at the PBE0-TZVP level of theory. Table 2
PDF
Album
Supp Info
Full Research Paper
Published 06 Dec 2023

Properties of tin oxide films grown by atomic layer deposition from tin tetraiodide and ozone

  • Kristjan Kalam,
  • Peeter Ritslaid,
  • Tanel Käämbre,
  • Aile Tamm and
  • Kaupo Kukli

Beilstein J. Nanotechnol. 2023, 14, 1085–1092, doi:10.3762/bjnano.14.89

Graphical Abstract
  • have been studied from many perspectives. For example, one can mention anodes for Li-ion batteries [1], gas sensors [2], catalytic activities [3], and stable buffer [4] or base [5] layers in solar cells. More applications can be found, when SnO2 is considered as constituent of a nanostructure or a
  • nanocomposite layer. ZrO2–SnO2 stacked layers have been shown to perform as mechanically elastic and magnetizable films [6]. SnO2-coated carbon nanotubes have been studied as catalysts [7] and ZnO–SnO2 as functional composite in Li-ion batteries [8]. A recent review article from 2022 lists 27 different
PDF
Album
Supp Info
Full Research Paper
Published 13 Nov 2023

Spatial mapping of photovoltage and light-induced displacement of on-chip coupled piezo/photodiodes by Kelvin probe force microscopy under modulated illumination

  • Zeinab Eftekhari,
  • Nasim Rezaei,
  • Hidde Stokkel,
  • Jian-Yao Zheng,
  • Andrea Cerreta,
  • Ilka Hermes,
  • Minh Nguyen,
  • Guus Rijnders and
  • Rebecca Saive

Beilstein J. Nanotechnol. 2023, 14, 1059–1067, doi:10.3762/bjnano.14.87

Graphical Abstract
  • finalized by etching circular holes from the backside of the wafer to obtain thin membranes. The sizes of these holes were defined by applying and patterning a photoresist on the backside of the wafer, which was then anisotropically etched by deep reactive ion etching (DRIE) using SF6, O2, and C4F8 gases
PDF
Album
Supp Info
Full Research Paper
Published 06 Nov 2023

Recognition mechanisms of hemoglobin particles by monocytes – CD163 may just be one

  • Jonathan-Gabriel Nimz,
  • Pichayut Rerkshanandana,
  • Chiraphat Kloypan,
  • Ulrich Kalus,
  • Saranya Chaiwaree,
  • Axel Pruß,
  • Radostina Georgieva,
  • Yu Xiong and
  • Hans Bäumler

Beilstein J. Nanotechnol. 2023, 14, 1028–1040, doi:10.3762/bjnano.14.85

Graphical Abstract
  • = dilution factor (2.1); molar mass of Hb (tetrameric) = 64.5; (monomer) molar extinction coefficient (ε) = 6.945). Percentage of functional hemoglobin Each hemoglobin molecule contains an Fe2+ ion on which the ability of Hb to bind oxygen is based. Methemoglobin has undergone an oxidation process. The
  • central iron ion is trivalent, and the Hb derivative has lost its ability to bind oxygen. Therefore, only bivalent Hb is functional. The “oxygen release method” was used to determine the percentage of functional hemoglobin, as previously described in detail by Kloypan and co-workers [33]. In brief, the
PDF
Album
Supp Info
Full Research Paper
Published 19 Oct 2023

Exploring internal structures and properties of terpolymer fibers via real-space characterizations

  • Michael R. Roenbeck and
  • Kenneth E. Strawhecker

Beilstein J. Nanotechnol. 2023, 14, 1004–1017, doi:10.3762/bjnano.14.83

Graphical Abstract
  • investigated the processing and properties of high-performance terpolymer fibers, much remains to be understood about the internal nano- and microstructures of these fibers, and how these morphologies relate to fiber properties. Here we use a focused ion beam notch technique and multifrequency atomic force
  • features at different length scales and verify the applicability of analytical structural models used to date. Over the last several years, a “focused ion beam (FIB) notch” technique has been developed and employed to address these gaps in understanding of the internal structures of fibers such as Kevlar
  • chamber [9]. Kevlar® K29 fibers also discussed in this report underwent the same preparation techniques. Focused ion beam notching Conductively coated fibers were cut with a FIB as discussed in detail in an earlier study [9]. In summary, 2–3 μm wide through-cuts were notched into each fiber (Figure 1b
PDF
Album
Full Research Paper
Published 05 Oct 2023

Fragmentation of metal(II) bis(acetylacetonate) complexes induced by slow electrons

  • Janina Kopyra and
  • Hassan Abdoul-Carime

Beilstein J. Nanotechnol. 2023, 14, 980–987, doi:10.3762/bjnano.14.81

Graphical Abstract
  • fragmentation arises from a resonant mechanism known as dissociative electron attachment (DEA) producing exclusively a negative fragment ion and one or more neutral counterparts, as it will be discussed below. The contribution of each of the processes may depend on the nature of the organometallic precursors
  • summarizes all the observed anion products. As the anion yields shown below in Figures 1–6 show structures characteristic of resonant mechanisms, Table 1 also reports the peak positions of the fragment anions and their branching ratios derived by integration of the ion yield over the respective peaks. At the
  • incoming scattering electron is captured by the precursor molecule to form a transient negative ion, TNI or [ML2]#−. If the electron autodetachment time of the TNI is longer than the dissociation time, the transient anion undergoes dissociation into a negative fragment and one or more neutral counterpart(s
PDF
Album
Full Research Paper
Published 26 Sep 2023

Isolation of cubic Si3P4 in the form of nanocrystals

  • Polina K. Nikiforova,
  • Sergei S. Bubenov,
  • Vadim B. Platonov,
  • Andrey S. Kumskov,
  • Nikolay N. Kononov,
  • Tatyana A. Kuznetsova and
  • Sergey G. Dorofeev

Beilstein J. Nanotechnol. 2023, 14, 971–979, doi:10.3762/bjnano.14.80

Graphical Abstract
  • precursor for diffusion doping of wafers and as anode material for Li-ion batteries. A similar method with a hydrogenation step offers the possibility to obtain other compounds, such as silicon selenides, arsenides, and sulfides. Keywords: ampoule annealing; defective zinc blende structure; DFT
  • number of potential benefits to both science and industry. These methods often employ new strategies for the synthesis of specific classes of substances. For example, the widely known development of perovskite synthesis through ion exchange reactions has attracted attention in scientific as well as
  • ) Si3P4 to be energetically favored [9][10][11][12][13][14]. The calculated lattice constant a and the ratio c/a lie within the ranges of 4.961–5.093 Å and 0.994–1.003, respectively. Among the properties of silicon-based materials, one may note a high specific capacity, which is crucial for Li-ion
PDF
Album
Supp Info
Full Research Paper
Published 26 Sep 2023

Metal-organic framework-based nanomaterials for CO2 storage: A review

  • Ha Huu Do,
  • Iqra Rabani and
  • Hai Bang Truong

Beilstein J. Nanotechnol. 2023, 14, 964–970, doi:10.3762/bjnano.14.79

Graphical Abstract
  • the linker molecules but have also involved the metal ions. For example, Lau et al. used an ion exchange strategy to boost the amount of adsorbed CO2 in UiO-66 (Figure 4) [38]. After replacing approximately 50% of the Zr4+ ions in UiO-66 with Ti4+, a significant increase in CO2 adsorption capacity (81
  • view of the channels displaying the cylindrical pores. Figure 3 was reprinted with permission from [34]. Copyright 2015 American Chemical Society. This content is not subject to CC BY 4.0. Graphic illustration of the ion exchange by Ti(IV) in UiO-66. Figure 4 was republished with permission of The
PDF
Album
Review
Published 20 Sep 2023

Ni, Co, Zn, and Cu metal-organic framework-based nanomaterials for electrochemical reduction of CO2: A review

  • Ha Huu Do and
  • Hai Bang Truong

Beilstein J. Nanotechnol. 2023, 14, 904–911, doi:10.3762/bjnano.14.74

Graphical Abstract
  • metal ion doping in ZIF-8, aiming to enhance the performance of CO2 conversion, as recently reported (Figure 4a). Cho et al. revealed that Cu-doped ZIF-8 exhibited the highest catalytic activity, surpassing both Fe- and Ni-doped ZIF-8 [44]. Specifically, Cu0.5Zn0.5/ZIF-8 yielded a large FECO of 88.5% at
  • /by/4.0/). (a) A graphic representation of the preparation of MzZny/ZIF-8, (b) Faradaic efficiency for the CO production using different materials, (c) diagram of free energy for CO2RR. Figure 4 was adapted from [44], J. H. Cho et al., “Transition Metal Ion Doping on ZIF-8 Enhances the Electrochemical
PDF
Album
Review
Published 31 Aug 2023

Ultralow-energy amorphization of contaminated silicon samples investigated by molecular dynamics

  • Grégoire R. N. Defoort-Levkov,
  • Alan Bahm and
  • Patrick Philipp

Beilstein J. Nanotechnol. 2023, 14, 834–849, doi:10.3762/bjnano.14.68

Graphical Abstract
  • , Luxembourg Thermo Fisher Scientific, Hillsboro, OR, 97124, USA 10.3762/bjnano.14.68 Abstract Ion beam processes related to focused ion beam milling, surface patterning, and secondary ion mass spectrometry require precision and control. Quality and cleanliness of the sample are also crucial factors
  • . Furthermore, several domains of nanotechnology and industry use nanoscaled samples that need to be controlled to an extreme level of precision. To reduce the irradiation-induced damage and to limit the interactions of the ions with the sample, low-energy ion beams are used because of their low implantation
  • depths. Yet, low-energy ion beams come with a variety of challenges. When such low energies are used, the residual gas molecules in the instrument chamber can adsorb on the sample surface and impact the ion beam processes. In this paper we pursue an investigation on the effects of the most common
PDF
Album
Supp Info
Full Research Paper
Published 01 Aug 2023

Silver nanoparticles loaded on lactose/alginate: in situ synthesis, catalytic degradation, and pH-dependent antibacterial activity

  • Nguyen Thi Thanh Tu,
  • T. Lan-Anh Vo,
  • T. Thu-Trang Ho,
  • Kim-Phuong T. Dang,
  • Van-Dung Le,
  • Phan Nhat Minh,
  • Chi-Hien Dang,
  • Vinh-Thien Tran,
  • Van-Su Dang,
  • Tran Thi Kim Chi,
  • Hieu Vu-Quang,
  • Radek Fajgar,
  • Thi-Lan-Huong Nguyen,
  • Van-Dat Doan and
  • Thanh-Danh Nguyen

Beilstein J. Nanotechnol. 2023, 14, 781–792, doi:10.3762/bjnano.14.64

Graphical Abstract
  • values up to 140 min. Throughout the synthesis process, the λmax values showed a slight increase, which confirms the critical role of reaction time in the synthesis of stable nanocomposites. To assess the impact of silver ion concentration, ratios of silver ions to gel in the range of 0.1–0.7 (w/w) were
  • in the absorbance value in the UV–vis spectra. Minor changes in λmax values were noted from the absorption data, indicating a slight influence of the silver-ion-to-nanocomposite ratio on the physicochemical properties of the synthesized AgNPs. Considering these findings, two ratios of silver ions to
  • (left) and plots of absorbance and wavelength (λmax) data (right) recorded as a function of temperature (A and B), reaction time (C and D) and the ratio of silver ion to blank Lac/Alg (E and F). Zeta potentials (A) and size distribution obtained from DLS measurements (B) of AgNPs@Lac/Alg with different
PDF
Album
Supp Info
Full Research Paper
Published 04 Jul 2023

In situ magnesiothermic reduction synthesis of a Ge@C composite for high-performance lithium-ion batterie anodes

  • Ha Tran Huu,
  • Ngoc Phi Nguyen,
  • Vuong Hoang Ngo,
  • Huy Hoang Luc,
  • Minh Kha Le,
  • Minh Thu Nguyen,
  • My Loan Phung Le,
  • Hye Rim Kim,
  • In Young Kim,
  • Sung Jin Kim,
  • Van Man Tran and
  • Vien Vo

Beilstein J. Nanotechnol. 2023, 14, 751–761, doi:10.3762/bjnano.14.62

Graphical Abstract
  • report an in situ magnesiothermic reduction to synthesize a composite of Ge@C as an anode material for lithium-ion batteries. The obtained electrode delivered a specific capacity of 454.2 mAh·g−1 after 200 cycles at a specific current of 1000 mA·g−1. The stable electrochemical performance and good rate
  • contact formation during in situ synthesis. Keywords: Ge anode; in situ synthesis; lithium-ion batteries; magnesiothermic reduction; Introduction The significantly increasing energy consumption leads to the exhaustion of fossil fuel sources such as coal, oil, and natural gas. Additionally, there are
  • number of electric vehicles (EVs) [5][6]. The most important component of EVs are suitable energy storage systems, the further development of which will be key to a more widespread use of this kind of transportation [7]. Commercialized first by Sony company, lithium-ion batteries (LIBs) and related
PDF
Album
Full Research Paper
Published 26 Jun 2023

The microstrain-accompanied structural phase transition from h-MoO3 to α-MoO3 investigated by in situ X-ray diffraction

  • Zeqian Zhang,
  • Honglong Shi,
  • Boxiang Zhuang,
  • Minting Luo and
  • Zhenfei Hu

Beilstein J. Nanotechnol. 2023, 14, 692–700, doi:10.3762/bjnano.14.55

Graphical Abstract
  • , making them multifunctional electronic and optical materials for applications in ion batteries [3][4], lubricants [5], gas detectors [6][7], photochromism [8][9], photocatalysis [10][11], and superconductors [12][13]. The molybdenum oxide MoO3 can crystalize into several structures, including α-MoO3 [14
PDF
Album
Supp Info
Full Research Paper
Published 07 Jun 2023

Metal-organic framework-based nanomaterials as opto-electrochemical sensors for the detection of antibiotics and hormones: A review

  • Akeem Adeyemi Oladipo,
  • Saba Derakhshan Oskouei and
  • Mustafa Gazi

Beilstein J. Nanotechnol. 2023, 14, 631–673, doi:10.3762/bjnano.14.52

Graphical Abstract
  • more accessible excited states of the ligand to the suitable metal energy level. The “antenna effect”, which is the name given to this coupling, causes a significant rise in luminescence [85]. Particularly, the lanthanide ion emits its distinctive luminescence as a result of being indirectly activated
  • behaviour [86]. The metal ion can have different levels of impact on the emission depending on the electronic structure of the metal and the relative energy of the metal and linker orbitals. To develop luminescent MOFs, a variety of transition metals have also been combined with different ligands. Note that
PDF
Album
Review
Published 01 Jun 2023

Nanoarchitectonics to entrap living cells in silica-based systems: encapsulations with yolk–shell and sepiolite nanomaterials

  • Celia Martín-Morales,
  • Jorge Fernández-Méndez,
  • Pilar Aranda and
  • Eduardo Ruiz-Hitzky

Beilstein J. Nanotechnol. 2023, 14, 522–534, doi:10.3762/bjnano.14.43

Graphical Abstract
  • culture medium and used immediately for gel synthesis. In parallel, the gel precursor was prepared from 37% (v/v) commercial sodium silicate, which was ion-exchanged using a custom-made acidic ion exchange column. After ion exchange, the resulting silica precursor was mixed with LUDOX® TMA silica
PDF
Album
Supp Info
Full Research Paper
Published 25 Apr 2023

Mixed oxides with corundum-type structure obtained from recycling can seals as paint pigments: color stability

  • Dienifer F. L. Horsth,
  • Julia de O. Primo,
  • Nayara Balaba,
  • Fauze J. Anaissi and
  • Carla Bittencourt

Beilstein J. Nanotechnol. 2023, 14, 467–477, doi:10.3762/bjnano.14.37

Graphical Abstract
  • assignment is based on the intrinsic light absorption characteristics of the pigment due to the presence of a chromophore ion [8]. Different transition metals such as V, Cr, Mn, Fe, Co, Ni, and Cu have been used for this purpose [9]. Using inorganic compounds in the synthesis tends to increase the chemical
  • to use chromium as a coloring ion to obtain the same color result, without using toxic precursors. Remarkably, iron oxide red belongs to the class of yellow, red, and brown ocher, whose color depends on the crystallographic phase [11]. The hematite phase (α-Fe2O3) is the most stable, and its shade
  • band from 600 nm. Reflection bands become more pronounced and defined with increasing colorant ion concentration (Figure S4, Supporting Information File 1). Pigment application Colorimetry The colorimetric parameters of the samples after dispersion in commercial white paint and application on plaster
PDF
Album
Supp Info
Full Research Paper
Published 05 Apr 2023

Evaluation of electrosynthesized reduced graphene oxide–Ni/Fe/Co-based (oxy)hydroxide catalysts towards the oxygen evolution reaction

  • Karolina Cysewska,
  • Marcin Łapiński,
  • Marcin Zając,
  • Jakub Karczewski,
  • Piotr Jasiński and
  • Sebastian Molin

Beilstein J. Nanotechnol. 2023, 14, 420–433, doi:10.3762/bjnano.14.34

Graphical Abstract
  • slopes reveal a similar trend as the OER η: the higher Qdep of NiFe in NiFe-GO, the lower the slope (valid for Qdep < 200 mC). Any change or deterioration of the OER catalytic activity of NiFe-GO for Qdep > 200 mC may be due to the overgrow of deposited NiFe, which begins to block the ion and electron
  • of the catalyst surface and the ion and electron transport became inhibited. The value of Cdl/ECSA for NiFe-GO(100–300 mC) progressively increased as the deposition charge of GO in NiFe-GO increased, which was a different trend compared to NiFe(50–300 mC)-GO. Because of this, the data indicate that
PDF
Album
Supp Info
Full Research Paper
Published 29 Mar 2023

New trends in nanobiotechnology

  • Pau-Loke Show,
  • Kit Wayne Chew,
  • Wee-Jun Ong,
  • Sunita Varjani and
  • Joon Ching Juan

Beilstein J. Nanotechnol. 2023, 14, 377–379, doi:10.3762/bjnano.14.32

Graphical Abstract
  • properties associated with the process and yielded products are highlighted. The self-assembly methods in focus included single amino acid self-assembly, functional amino acid self-assembly, amino acid and metal ion coordination self-assembly, and amino acid regulatory functional molecule self-assembly. Many
PDF
Editorial
Published 27 Mar 2023

Nanotechnology – a robust tool for fighting the challenges of drug resistance in non-small cell lung cancer

  • Filip Gorachinov,
  • Fatima Mraiche,
  • Diala Alhaj Moustafa,
  • Ola Hishari,
  • Yomna Ismail,
  • Jensa Joseph,
  • Maja Simonoska Crcarevska,
  • Marija Glavas Dodov,
  • Nikola Geskovski and
  • Katerina Goracinova

Beilstein J. Nanotechnol. 2023, 14, 240–261, doi:10.3762/bjnano.14.23

Graphical Abstract
  • targeting. Transient PEGylation facilitates not only the localization and interaction with the target cell but also improves ion pair formation between the ionizable lipid (which will become cationic at pH 4) and the anionic endogenous endosomal phospholipids. This will enable the fast release of the
PDF
Album
Review
Published 22 Feb 2023

A novel approach to pulsed laser deposition of platinum catalyst on carbon particles for use in polymer electrolyte membrane fuel cells

  • Bogusław Budner,
  • Wojciech Tokarz,
  • Sławomir Dyjak,
  • Andrzej Czerwiński,
  • Bartosz Bartosewicz and
  • Bartłomiej Jankiewicz

Beilstein J. Nanotechnol. 2023, 14, 190–204, doi:10.3762/bjnano.14.19

Graphical Abstract
  • [27]. Direct deposition of PtNPs can be attained by the use of various physical vapor deposition techniques such as magnetron sputtering [28], sputtering [29], e-beam evaporation [30], dual ion-beam assisted deposition [31], and pulsed laser deposition (PLD) [27][32][33]. Previously, PLD has been used
  • ™ (1100 e.w., Ion Power Inc., United States) by ultrasonic mixing. The ratio of the ionomer to the studied Pt-based catalyst mass in a dry electrode was 0.1. The disc-ring electrode surfaces were polished and checked for purity before applying the catalyst layer by cyclic voltammetry in a 0.5 M H2SO4
  • W, Cole-Parmer, United States) impulse sonication with 150 W energy for approximately 1 min by mixing Pt-coated carbon material, 5% alcohol suspension of Nafion (1100 e.w., Ion Power, United States) and double distilled water. The suspension was prepared in an airtight tube cooled with ice. The
PDF
Album
Supp Info
Full Research Paper
Published 02 Feb 2023

High–low Kelvin probe force spectroscopy for measuring the interface state density

  • Ryo Izumi,
  • Masato Miyazaki,
  • Yan Jun Li and
  • Yasuhiro Sugawara

Beilstein J. Nanotechnol. 2023, 14, 175–189, doi:10.3762/bjnano.14.18

Graphical Abstract
  • show that the analysis of electrostatic forces in the depletion region at high- and low-frequency AC bias voltages provides information about the interface state density in the semiconductor bandgap. As a preliminary experiment, high-low KPFS measurements were performed on ion-implanted silicon
PDF
Album
Full Research Paper
Published 31 Jan 2023

Combining physical vapor deposition structuration with dealloying for the creation of a highly efficient SERS platform

  • Adrien Chauvin,
  • Walter Puglisi,
  • Damien Thiry,
  • Cristina Satriano,
  • Rony Snyders and
  • Carla Bittencourt

Beilstein J. Nanotechnol. 2023, 14, 83–94, doi:10.3762/bjnano.14.10

Graphical Abstract
  • studied. For this purpose, two other solutions were selected (i.e., H3PO4 and NaOH). Undoubtedly, anions play an important role during the dealloying process due to the intricate reaction between anions and Ag or Al [47][48]. It has been reported that during dealloying in HCl, the Cl− ion accelerates the
PDF
Album
Supp Info
Full Research Paper
Published 11 Jan 2023

Upper critical magnetic field in NbRe and NbReN micrometric strips

  • Zahra Makhdoumi Kakhaki,
  • Antonio Leo,
  • Federico Chianese,
  • Loredana Parlato,
  • Giovanni Piero Pepe,
  • Angela Nigro,
  • Carla Cirillo and
  • Carmine Attanasio

Beilstein J. Nanotechnol. 2023, 14, 45–51, doi:10.3762/bjnano.14.5

Graphical Abstract
  • voltage contacts of L = 90 μm. The NbReN films were structured by using direct laser writer exposure followed by argon ion etching into constriction-type bridges with w = 2 μm and L = 700 μm. Further details on the fabrication procedure of the films are reported elsewhere [4][8]. The superconducting
PDF
Album
Full Research Paper
Published 05 Jan 2023

Observation of collective excitation of surface plasmon resonances in large Josephson junction arrays

  • Roger Cattaneo,
  • Mikhail A. Galin and
  • Vladimir M. Krasnov

Beilstein J. Nanotechnol. 2022, 13, 1578–1588, doi:10.3762/bjnano.13.132

Graphical Abstract
  • using photolithography and reactive ion etching. The JJ sensor with variable thickness and a width of ≈100 nm is made by Ga+ focused ion beam etching. The JJ is made small in order to increase its resistance Rn to approx. 50 Ω, which is needed for a good impedance matching with the antenna. In order to
PDF
Album
Full Research Paper
Published 28 Dec 2022
Other Beilstein-Institut Open Science Activities