Search results

Search for "zeta potential" in Full Text gives 218 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Coating of upconversion nanoparticles with silica nanoshells of 5–250 nm thickness

  • Cynthia Kembuan,
  • Maysoon Saleh,
  • Bastian Rühle,
  • Ute Resch-Genger and
  • Christina Graf

Beilstein J. Nanotechnol. 2019, 10, 2410–2421, doi:10.3762/bjnano.10.231

Graphical Abstract
  • remain constant. Hence, the number of micelles stays constant, and their size is increased to accommodate the growing core–shell particles. Consequently, the formation of core-free silica particles is suppressed. When the negative zeta potential of the particles, which continuously decreased during the
  • shell followed by the Stöber-like regrowth. Similar findings were also obtained for larger UCNP. It turned out in several preliminary experiments conducted by the same procedure that the zeta potential of the particles after the initial silica growth in the reverse microemulsion was always only around
  • significantly alter their zeta potential. For this reason, further silica shell growth was performed in a reverse microemulsion. For this procedure, initially, the concept for growing larger silica shells on oleate-coated iron oxide NPs introduced by Ding et al. was adapted for the UCNPs [36] and used for a
PDF
Album
Supp Info
Full Research Paper
Published 09 Dec 2019

The role of Ag+, Ca2+, Pb2+ and Al3+ adions in the SERS turn-on effect of anionic analytes

  • Stefania D. Iancu,
  • Andrei Stefancu,
  • Vlad Moisoiu,
  • Loredana F. Leopold and
  • Nicolae Leopold

Beilstein J. Nanotechnol. 2019, 10, 2338–2345, doi:10.3762/bjnano.10.224

Graphical Abstract
  • − showing a high affinity for the silver surface. The colloidal nanoparticles used here are surrounded by citrate anions in an electrostatic interaction with the silver surface, which confer the nanoparticles a negative zeta potential and thus electrostatically stabilize the AgNPs and prevent aggregation
PDF
Album
Supp Info
Full Research Paper
Published 27 Nov 2019

Incorporation of doxorubicin in different polymer nanoparticles and their anticancer activity

  • Sebastian Pieper,
  • Hannah Onafuye,
  • Dennis Mulac,
  • Jindrich Cinatl Jr.,
  • Mark N. Wass,
  • Martin Michaelis and
  • Klaus Langer

Beilstein J. Nanotechnol. 2019, 10, 2062–2072, doi:10.3762/bjnano.10.201

Graphical Abstract
  • comparatively simple preparation methods. The resulting nanoparticles were compared by particle diameter, polydispersity index, zeta potential, drug load, and drug release behaviour. Preliminary results on the preparation of doxorubicin-loaded PLGA nanoparticles have been previously published [34]. Selected
  • had no influence on the nanoparticle characteristics such as particle diameter, PDI, and zeta potential (Table 2). However, loading efficiency and drug load increased. The drug load raised from 6.7 ± 0.3 µg doxorubicin/mg nanoparticle (44.8 ± 5.8% loading efficiency) without pH adjustment to 7.9 ± 0.8
  • particle size, size distribution and zeta potential Average particle size and the polydispersity were measured by photon correlation spectroscopy (PCS) using a Malvern zetasizer nano (Malvern Instruments, Herrenberg, Germany). The resulting particle suspensions were diluted 1:100 with purified water and
PDF
Album
Full Research Paper
Published 29 Oct 2019

Gold-coated plant virus as computed tomography imaging contrast agent

  • Alaa A. A. Aljabali,
  • Mazhar S. Al Zoubi,
  • Khalid M. Al-Batanyeh,
  • Ali Al-Radaideh,
  • Mohammad A. Obeid,
  • Abeer Al Sharabi,
  • Walhan Alshaer,
  • Bayan AbuFares,
  • Tasnim Al-Zanati,
  • Murtaza M. Tambuwala,
  • Naveed Akbar and
  • David J. Evans

Beilstein J. Nanotechnol. 2019, 10, 1983–1993, doi:10.3762/bjnano.10.195

Graphical Abstract
  • correlogram generated by the DLS instruments, that measures the time at which the correlation starts to significantly decay, gave a slope of 85.3° consistent with a monodisperse distribution. The steeper the line (closer to 90°) the more monodisperse the particles are. The zeta potential cannot be measured
  • directly, rather it is deduced from the electrophoretic mobility of the charged NPs under an applied electric field. The electrophoretic mobility toward the positive or the negative electrode determines the zeta potential values as negative or positive. The zeta potential values for Au-CPMV particles of
  • different suspensions are summarized in Table 1. The zeta potential is consistent, in each case, with the formation of a similar layer deposited on the surface of the Au-CPMV particles [34]. The zeta potential values of unfunctionalized Au-CPMV agrees with previously reported values [35] ranging between
PDF
Album
Full Research Paper
Published 07 Oct 2019

Synthesis and potent cytotoxic activity of a novel diosgenin derivative and its phytosomes against lung cancer cells

  • Liang Xu,
  • Dekang Xu,
  • Ziying Li,
  • Yu Gao and
  • Haijun Chen

Beilstein J. Nanotechnol. 2019, 10, 1933–1942, doi:10.3762/bjnano.10.189

Graphical Abstract
  • sterol structure similarly to cholesterol, P2 phytosomes (P2Ps) were prepared to further improve the water solubility of P2. The P2Ps exhibited a particle size of 53.6 ± 0.3 nm with oval shape and a zeta potential of −4.0 ± 0.7 mV. P2Ps could inhibit the proliferation of lung cancer cells more
  • , Di phytosomes (DiP) and P2 phytosomes (P2P) were prepared by a thin-film rehydration method (Figure 3A). Blank lipid nanoparticles without drugs (P) were also prepared with the same process. Particle size and zeta potential of the phytosomes were measured by dynamic light scattering (DLS). The
  • of liposomal membranes [34]. The existence of cholesterol analogues Di and P2 in phytosomes could improve the structural stability of phytosomes. The zeta potential values of DiP and P2P were −6.4 and −4.0 mV, respectively. Because the negatively charged particles interact weakly with negatively
PDF
Album
Supp Info
Full Research Paper
Published 24 Sep 2019

Preservation of rutin nanosuspensions without the use of preservatives

  • Pascal L. Stahr and
  • Cornelia M. Keck

Beilstein J. Nanotechnol. 2019, 10, 1902–1913, doi:10.3762/bjnano.10.185

Graphical Abstract
  • changes the charge of the particles (zeta potential) and forces agglomeration of the nanocrystals. To avoid instabilities of nanosuspensions only very hydrophilic and non-charged preservatives, which will not interact with the nanocrystals, should be used. Due to the above-mentioned reasons, only a few
  • stability than the Plantacare-stabilized formulations. Upon the addition of the preservatives only very minor changes in size were observed for both formulations (Table 1) and for the Plantacare-stabilized formulation even a slight deagglomeration was determined (Table 2). Also the zeta potential values did
  • should become visible in the zeta potential values. However, this was not the case in this study (Figure 8). Therefore, the observed destabilization at elevated temperatures of the non-preserved nanosuspensions might be more related to Ostwald ripening. The assumption is also underlined by the fact that
PDF
Album
Full Research Paper
Published 19 Sep 2019

Engineered superparamagnetic iron oxide nanoparticles (SPIONs) for dual-modality imaging of intracranial glioblastoma via EGFRvIII targeting

  • Xianping Liu,
  • Chengjuan Du,
  • Haichun Li,
  • Ting Jiang,
  • Zimiao Luo,
  • Zhiqing Pang,
  • Daoying Geng and
  • Jun Zhang

Beilstein J. Nanotechnol. 2019, 10, 1860–1872, doi:10.3762/bjnano.10.181

Graphical Abstract
  • ), followed by negative staining with 2% phosphotungstic acid. The mean hydrodynamic diameter and zeta potential of the nanoprobes were measured with a Malvern Zetasizer Nano ZS (Malvern, UK) instrument. The quantitative measurement of the Fe content in PNPs was conducted by inductively coupled plasma
  • accumulate in tumor tissue under the influence of enhanced permeability and retention (EPR) as previously discussed in the literature [43][44]. The zeta potential of the NPs and PNPs was found to be around −35.6 mV and −26.2 mV, respectively. The less negative value of the PNP zeta potential as compared to
  • the NP zeta potential confirmed the successful conjugation of the positive-valued targeting peptide PEPHC1 (Figure 1d). High-performance liquid chromatography (HPLC) determination (results not shown) further supported the successful conjugation of PEPHC1 where the conjugation efficiency of the PEPHC1
PDF
Album
Full Research Paper
Published 11 Sep 2019

Nanoarchitectonics meets cell surface engineering: shape recognition of human cells by halloysite-doped silica cell imprints

  • Elvira Rozhina,
  • Ilnur Ishmukhametov,
  • Svetlana Batasheva,
  • Farida Akhatova and
  • Rawil Fakhrullin

Beilstein J. Nanotechnol. 2019, 10, 1818–1825, doi:10.3762/bjnano.10.176

Graphical Abstract
  • media supplemented with yeast cells. HeLa cells (having originally a negative zeta potential of ca. −10 mV) were first coated with a single layer of poly(acrylamide-co-diallyldimethylammonium chloride (P(AAm-co-DADMAC)) to reverse the surface charge of HeLa cells (the zeta potential after P(AAm-co
PDF
Album
Letter
Published 04 Sep 2019

Toxicity and safety study of silver and gold nanoparticles functionalized with cysteine and glutathione

  • Barbara Pem,
  • Igor M. Pongrac,
  • Lea Ulm,
  • Ivan Pavičić,
  • Valerije Vrček,
  • Darija Domazet Jurašin,
  • Marija Ljubojević,
  • Adela Krivohlavek and
  • Ivana Vinković Vrček

Beilstein J. Nanotechnol. 2019, 10, 1802–1817, doi:10.3762/bjnano.10.175

Graphical Abstract
  • biothiols (GSH and CYS) bind to the NP surfaces in their oxidized form, which supports some earlier reports [51][69]. A detailed characterization of the prepared NPs dispersed in ultrapure water (UPW) revealed a negative surface charge. The observed zeta-potential values (Table 1) were indicative of a high
  • NP stability, as the NPs are generally considered electrostatically stabilized when the absolute values of the zeta potential exceed 30 mV [70]. The size distribution of all NPs was bimodal and the AgNPs were generally smaller than the AuNPs (Table 1). TEM experiments showed a spherical shape for all
  • measuring the electrophoretic mobility, which was converted to zeta potential (ζ) values using the Henry equation with the Smoluchowski approximation. The measurements were repeated five times. The DLS and ELS data processing was performed using Zetasizer software 6.32 (Malvern Instruments, Malvern, UK
PDF
Album
Supp Info
Full Research Paper
Published 02 Sep 2019

Doxorubicin-loaded human serum albumin nanoparticles overcome transporter-mediated drug resistance in drug-adapted cancer cells

  • Hannah Onafuye,
  • Sebastian Pieper,
  • Dennis Mulac,
  • Jindrich Cinatl Jr.,
  • Mark N. Wass,
  • Klaus Langer and
  • Martin Michaelis

Beilstein J. Nanotechnol. 2019, 10, 1707–1715, doi:10.3762/bjnano.10.166

Graphical Abstract
  • stabilised by a 100% cross-linking degree (Figure 1). For these nanoparticles a zeta potential of −12.5 ± 1.8 mV (n = 6) was detected, indicating only a moderate stabilisation by electrostatic repulsion. While HSA (40%), HSA (100%), and HSA (200%) nanoparticles displayed similar drug loads between 152 and
  • suspensions were diluted 1:100 with purified water and measured at a temperature of 22 °C using a backscattering angle of 173°. The zeta potential was measured in the same instrument by laser Doppler microelectrophoresis to provide information about the surface charge of the nanoparticles. Thus, the
PDF
Album
Supp Info
Full Research Paper
Published 14 Aug 2019

Effects of surface charge and boundary slip on time-periodic pressure-driven flow and electrokinetic energy conversion in a nanotube

  • Mandula Buren,
  • Yongjun Jian,
  • Yingchun Zhao,
  • Long Chang and
  • Quansheng Liu

Beilstein J. Nanotechnol. 2019, 10, 1628–1635, doi:10.3762/bjnano.10.158

Graphical Abstract
  • concentration and z is the valence of ions. Taking the Debye–Hückel approximation for low zeta potential, i.e., sinh(ezφ/(kBT)) ≈ ezφ/(kBT), and utilizing Equation 3 and Equation 4 we obtain the linearized Poisson–Boltzmann equation The electric potential distribution φ satisfies where ρe = −εκ2φ is used, ζ is
  • the zeta potential, and κ = [εkBT/(2z2e2n0)]−1/2 is the Debye–Hückel parameter and represents the inverse of the characteristic EDL thickness. A unidirectional flow along the z-direction is generated by a time-periodic pressure gradient cos(ωt)dp0/dz independent of position, where ω is the frequency
  • governing equations and their boundary conditions: where λ = εζ2/(µD), B2 = iRe, and Re = ωa2ρ/μ is the nondimensional frequency. Using numerical methods, Erickson and Li [32] verified that the linearized Equation 17 and Equation 19 are also valid for large zeta potential values up to 100 mV. Analytical
PDF
Album
Full Research Paper
Published 06 Aug 2019

Janus-micromotor-based on–off luminescence sensor for active TNT detection

  • Ye Yuan,
  • Changyong Gao,
  • Daolin Wang,
  • Chang Zhou,
  • Baohua Zhu and
  • Qiang He

Beilstein J. Nanotechnol. 2019, 10, 1324–1331, doi:10.3762/bjnano.10.131

Graphical Abstract
  • surface charge of the UCNPs before and after modification was measured. As shown in Figure 1d, the zeta potential changed from −22.08 to 17.3 mV, indicating the successful surface amine group functionalization. Moreover, the fluorescence emission spectrum shows that the surface functionalization did not
  • spectra, (d) zeta potential and (e) fluorescence emission spectrum of UNCPs with different surface functional groups. TEM images of UCNP-modified capsule (f) and Janus UCNP capsule motor (g). (h) SEM image of the Janus UCNP capsule motor. (i) Fluorescence microscope image of the Janus UCNP capsule motors
PDF
Album
Supp Info
Full Research Paper
Published 28 Jun 2019

Tailoring the stability/aggregation of one-dimensional TiO2(B)/titanate nanowires using surfactants

  • Atiđa Selmani,
  • Johannes Lützenkirchen,
  • Kristina Kučanda,
  • Dario Dabić,
  • Engelbert Redel,
  • Ida Delač Marion,
  • Damir Kralj,
  • Darija Domazet Jurašin and
  • Maja Dutour Sikirić

Beilstein J. Nanotechnol. 2019, 10, 1024–1037, doi:10.3762/bjnano.10.103

Graphical Abstract
  • point, pHiep of the TNWs determined from the zeta potential measurements was found to be pH 3.2, as shown in Figure 2. This means that in the investigated pH region (pH > 3.2) bare TNWs are negatively charged. Stability of TNWs and TNW/surfactant dispersions The stability of the materials is of utmost
  • repulsive double layer interaction potential (overlapping EDL) and the attractive van der Walls force [53][54]. The average hydrodynamic diameter can be reduced as the zeta potential increases, due to enhanced repulsive electrostatic force and particle stabilization. Effect of TNW concentration on the
  • stability of TNW dispersions In this study the stability was followed in dispersions at three different TNW concentrations (γ/g dm−3 = 1 × 10−2 (CS1), 5 × 10−2 (CS2), 1 × 10−1 (CS3)) by monitoring changes in size (dh) and zeta potential (ζ) over 24 h as represented in Table 1 and Figure S8a–d, Supporting
PDF
Album
Supp Info
Full Research Paper
Published 13 May 2019

Serum type and concentration both affect the protein-corona composition of PLGA nanoparticles

  • Katrin Partikel,
  • Robin Korte,
  • Dennis Mulac,
  • Hans-Ulrich Humpf and
  • Klaus Langer

Beilstein J. Nanotechnol. 2019, 10, 1002–1015, doi:10.3762/bjnano.10.101

Graphical Abstract
  • assay, zeta potential measurements, and liquid chromatography–mass spectrometry/mass spectrometry (LC–MS/MS). Additionally, the time-dependent cell interaction of PLGA NPs in the absence or presence of a preformed protein corona was assessed by in vitro incubation experiments with the human liver cancer
  • complexes from excess serum proteins we used sodium dodecylsulfate polyacrylamide gel electrophoresis (SDS-PAGE), zeta potential measurements, and liquid chromatography–mass spectrometry/mass spectrometry (LC–MS/MS) to study the composition of adsorbed proteins in detail. A quantitative analysis of corona
  • easily trackable in cell culture experiments. Prior to NP incubation with increasing amounts of serum (FBS, human serum) and protein corona analysis the NPs were characterized accurately by PCS and zeta potential measurements. The obtained NPs showed a diameter of approximately 200 nm and a monodisperse
PDF
Album
Supp Info
Full Research Paper
Published 06 May 2019

Effects of gold and PCL- or PLLA-coated silica nanoparticles on brain endothelial cells and the blood–brain barrier

  • Aniela Bittner,
  • Angélique D. Ducray,
  • Hans Rudolf Widmer,
  • Michael H. Stoffel and
  • Meike Mevissen

Beilstein J. Nanotechnol. 2019, 10, 941–954, doi:10.3762/bjnano.10.95

Graphical Abstract
  • enter the brain and cause or worsen diseases of the central nervous system [16] that NPs might contribute to [17]. Coated or uncoated mesoporous Si-NPs of different size and zeta potential did not elicit considerable cytotoxicity in MDCK II kidney epithelial cells or RBE4 rat brain ECs but were taken up
  • different shape, size (50 to 240 nm) and zeta potential (negative to neutral) did not elicit cytotoxicity in MDCK II kidney epithelial cells and RBE4 ECs at concentrations of up to [50 µg/mL] [18]. As the highest concentration for polymer-coated Si-NPs used in our study was half ([24.9 µg/mL]), the
  • of a silica-core doped with rhodamine to enable visualization via fluorescence microscopy, followed by a layer of PCL/ICG and a surface coating with either PCL or PLLA. Characterization of these particle types showed a size of 90 nm for PCL-NPs and 95 nm for PLLA-NPs. The zeta potential was −25.4 mV
PDF
Album
Full Research Paper
Published 25 Apr 2019

Tungsten disulfide-based nanocomposites for photothermal therapy

  • Tzuriel Levin,
  • Hagit Sade,
  • Rina Ben-Shabbat Binyamini,
  • Maayan Pour,
  • Iftach Nachman and
  • Jean-Paul Lellouche

Beilstein J. Nanotechnol. 2019, 10, 811–822, doi:10.3762/bjnano.10.81

Graphical Abstract
  • sample on a square piece of a clean silicon wafer and drying overnight at ambient temperature. Zeta potential measurements were performed using a Zetasizer Nano-ZS device (Malvern Instruments Ltd., Worcestershire, UK). Samples for zeta potential measurements were dispersed in water (ca. 0.5 mg/mL
  • in TEM, and bright in SEM. A possible reason for this is that CAN-mag composite has a strong positive surface charge (see zeta potential results below in Figure 7), causing electrostatic repulsion forces that prevent a denser coverage. Another point that the electron microscope images show (see
  • , namely increased cancerous-cell death and better targeting. Figure 7 shows zeta potential averages and distribution curves for WS2-NTs, CAN-mag, and their composites. The values for WS2-NT and CAN-mag are consistent with previous works [52][65][66]. For each composite, the zeta values reflect the
PDF
Album
Supp Info
Full Research Paper
Published 02 Apr 2019

Polydopamine-coated Au nanorods for targeted fluorescent cell imaging and photothermal therapy

  • Boris N. Khlebtsov,
  • Andrey M. Burov,
  • Timofey E. Pylaev and
  • Nikolai G. Khlebtsov

Beilstein J. Nanotechnol. 2019, 10, 794–803, doi:10.3762/bjnano.10.79

Graphical Abstract
  • applications, the stability of nanocomposites under ambient conditions is a key factor. Here, we measured zeta potential and the particle-size distribution for all stages of nanocomposite synthesis. The measurements were made in citric buffer (pH 4.4), in water (pH 6.2), and Tris buffer (pH 8.5) (Figure 1E
  • ). The CTAB-coated AuNRs were positively charged (zeta potential of about +45 mV) independently of the pH value. The replacement of CTAB with PEG at the first synthetic stage resulted in an almost neutral particle charge (zeta potential varied from −2 to −4 mV). PDA-coated particles have a strong
  • negative zeta potential of about −40 mV at neutral and alkaline pH values, whereas resuspension in acidic buffer leads to a recharging of particles, up to +35 mV. This process can be accompanied by particle aggregation when their charge is close to zero (see Figure S2 in Supporting Information File 1
PDF
Album
Supp Info
Full Research Paper
Published 01 Apr 2019

Characterization and influence of hydroxyapatite nanopowders on living cells

  • Przemyslaw Oberbek,
  • Tomasz Bolek,
  • Adrian Chlanda,
  • Seishiro Hirano,
  • Sylwia Kusnieruk,
  • Julia Rogowska-Tylman,
  • Ganna Nechyporenko,
  • Viktor Zinchenko,
  • Wojciech Swieszkowski and
  • Tomasz Puzyn

Beilstein J. Nanotechnol. 2018, 9, 3079–3094, doi:10.3762/bjnano.9.286

Graphical Abstract
  • , specific surface area, crystallinity, phase purity, stoichiometry, zeta potential and pH value were chosen for correlating the parameters with biological activity. Density measurements Density (ρ) measurements were performed using a helium pycnometer (AccuPyc II, model 1340; Micromeritics, Australia) using
  • The average size of HAp nanoobjects in water (L), pH value and zeta potential (ζ) of particles were determined by using dynamic light scattering (DLS, Malvern Instruments Zetasizer Ltd, Spectris). Samples were prepared in 0.02% water solutions with addition of 0.1% Pluronic (used in cell assays, Sigma
  • setting of an arbitrary phase-contrast base value for one sample image size. Physicochemical evaluation of nanoparticles Interactions between particles in suspension depend strongly on their zeta potential. Particles having zeta potential values below ±10 mV are considered neutral, with a strong tendency
PDF
Album
Full Research Paper
Published 27 Dec 2018

Colloidal chemistry with patchy silica nanoparticles

  • Pierre-Etienne Rouet,
  • Cyril Chomette,
  • Laurent Adumeau,
  • Etienne Duguet and
  • Serge Ravaine

Beilstein J. Nanotechnol. 2018, 9, 2989–2998, doi:10.3762/bjnano.9.278

Graphical Abstract
  • carboxylic acid groups. The grafting efficiency was evidenced by zeta potential measurements and diffuse reflectance infrared Fourier-transform (DRIFT) spectroscopy. Figure 2b shows that after treatment of the silica surface by APTES, the so-aminated nanoparticles display a quite high zeta potential value of
  • about 23 mV at pH 7.0. The isoelectric point (IEP) at pH 8.4 is close to the pKa value of the primary amine groups attesting to their efficient grafting and correct orientation on the silica surface. The carboxylated particles possess a zeta potential of about −43 mV at pH 7.0 and an isoelectric point
  • potential of the multipods before and after the chloromethylation/amination of the PS chains (Figure 2e). The comparison of the zeta potential curves shows that the modification stages of the PS residues induce a shift of the IEP to pH 5.3 attesting to the efficient grafting of amine groups. Assembly of
PDF
Album
Full Research Paper
Published 06 Dec 2018

The nanoscaled metal-organic framework ICR-2 as a carrier of porphyrins for photodynamic therapy

  • Jan Hynek,
  • Sebastian Jurík,
  • Martina Koncošová,
  • Jaroslav Zelenka,
  • Ivana Křížová,
  • Tomáš Ruml,
  • Kaplan Kirakci,
  • Ivo Jakubec,
  • František Kovanda,
  • Kamil Lang and
  • Jan Demel

Beilstein J. Nanotechnol. 2018, 9, 2960–2967, doi:10.3762/bjnano.9.275

Graphical Abstract
  • dynamic light scattering (DLS, Figure S3A, Supporting Information File 1). In water, nanoICR-2 forms aggregates with a mean value of the size distribution of 87 ± 31 nm (by number, Z-average = 136 nm, PDI = 0.12). The zeta potential of nanoICR-2 in water is slightly positive with an average of 5 ± 5 mV
  • (Figure S3, Supporting Information File 1). These values are somewhat bigger than the size of the parent nanoICR-2 aggregates in water (87 ± 31 nm). Importantly, the zeta potential of the nanoICR-2/porphyrin aggregates switched to negative values: −20 ± 4 mV, −25 ± 5 mV, and −28 ± 5 mV for TPPPi(Me
PDF
Album
Supp Info
Full Research Paper
Published 30 Nov 2018

Hybrid Au@alendronate nanoparticles as dual chemo-photothermal agent for combined cancer treatment

  • Anouchka Plan Sangnier,
  • Romain Aufaure,
  • Laurence Motte,
  • Claire Wilhelm,
  • Erwann Guenin and
  • Yoann Lalatonne

Beilstein J. Nanotechnol. 2018, 9, 2947–2952, doi:10.3762/bjnano.9.273

Graphical Abstract
  • negative zeta potential, equal to −37.5 ± 9.1 mV confirms the presence of alendronate on the surface providing negative charges, which allow colloid stabilization despite the presence of ammonium cations. Au@alendronate NPs as NIR photothermal nano-heater Since gold NPs bring their own therapeutic asset
  • ) Hydrodynamic diameter distribution (in volume, left) and zeta potential (right) of Au@alendronate NPs. (a) Temperature increase and corresponding typical IR image and (b) SAR (W/g) as a function of the gold concentration under laser irradiation (1.7 W/cm2, 680 nm). Metabolic activity of PC3 cells incubated (a
PDF
Album
Supp Info
Letter
Published 27 Nov 2018

Comparative biological effects of spherical noble metal nanoparticles (Rh, Pd, Ag, Pt, Au) with 4–8 nm diameter

  • Alexander Rostek,
  • Marina Breisch,
  • Kevin Pappert,
  • Kateryna Loza,
  • Marc Heggen,
  • Manfred Köller,
  • Christina Sengstock and
  • Matthias Epple

Beilstein J. Nanotechnol. 2018, 9, 2763–2774, doi:10.3762/bjnano.9.258

Graphical Abstract
  • to each run. A sample volume of 100 μL was used. Dynamic light scattering (DLS) for particle size analysis and zeta potential determination was carried out on a Malvern Zetasizer Nano ZS ZEN 3600 instrument (25 °C, laser wavelength 633 nm). The scattering was monitored at a fixed angle of 173° in
  • ), analytical disc centrifugation (differential centrifugal sedimentation, DCS), ultraviolet (UV) spectroscopy, and high-resolution transmission electron microscopy (HRTEM). All characterization data are summarized in Table 2. All nanoparticles have a neutral or negative zeta potential. This is probably due to
PDF
Album
Full Research Paper
Published 29 Oct 2018

Non-agglomerated silicon–organic nanoparticles and their nanocomplexes with oligonucleotides: synthesis and properties

  • Asya S. Levina,
  • Marina N. Repkova,
  • Nadezhda V. Shikina,
  • Zinfer R. Ismagilov,
  • Svetlana A. Yashnik,
  • Dmitrii V. Semenov,
  • Yulia I. Savinovskaya,
  • Natalia A. Mazurkova,
  • Inna A. Pyshnaya and
  • Valentina F. Zarytova

Beilstein J. Nanotechnol. 2018, 9, 2516–2525, doi:10.3762/bjnano.9.234

Graphical Abstract
  • groups in oligonucleotides. The Si–NH2 nanoparticles and Si–NH2·ODN nanocomplexes were characterized by transmission electron microscopy, atomic force microscopy and IR and electron spectroscopy. The size and zeta potential values of the prepared nanoparticles and nanocomplexes were evaluated
  • agglomeration of the particles). The zeta potential of the studied samples was evaluated by phase analysis light scattering. The value of zeta potential of Si–NH2 is positive due to positively charged amino groups in neutral medium. When the nanoparticles were bound to an oligonucleotide, the zeta potential
  • . The spectrum was recorded with absorption compensation relative to water in the range 11000–54000 cm−1 in a quartz cuvette with an optical path length of 1 mm (Figure 2b). The size and zeta potential values of Si–NH2 and Si–NH2·ODN were measured at 5–50 mM concentration (for Si) in physiological
PDF
Album
Full Research Paper
Published 21 Sep 2018

Enhanced antineoplastic/therapeutic efficacy using 5-fluorouracil-loaded calcium phosphate nanoparticles

  • Shanid Mohiyuddin,
  • Saba Naqvi and
  • Gopinath Packirisamy

Beilstein J. Nanotechnol. 2018, 9, 2499–2515, doi:10.3762/bjnano.9.233

Graphical Abstract
  • TEM and SEM analysis. Zeta potential analysis The magnitude of the surface charge of the synthesized CaP@5-FU NPs was characterized by zeta potential analysis. The increased electrostatic repulsion between particles corresponding to a higher magnitude of the zeta potential results in reduced
  • agglomeration and enhanced colloidal stability [29]. Since the particle stability mainly depends on the electrical charge of the surface, properties such as cellular uptake, rate of drug release, and blood retention time are directly correlated with the zeta potential value. Furthermore, the zeta potential
  • value of calcium phosphate nanoparticles was found to have a direct association with Ca/P molar ratio [30]. The molar ratio of the formed nanoparticles in the current study was 3.88. The synthesized CaP@5-FU NPs were found to have a zeta potential of −25.5 mV (Figure 2B). This confirms the nanoparticle
PDF
Album
Supp Info
Full Research Paper
Published 20 Sep 2018

Nanocellulose: Recent advances and its prospects in environmental remediation

  • Katrina Pui Yee Shak,
  • Yean Ling Pang and
  • Shee Keat Mah

Beilstein J. Nanotechnol. 2018, 9, 2479–2498, doi:10.3762/bjnano.9.232

Graphical Abstract
PDF
Album
Review
Published 19 Sep 2018
Other Beilstein-Institut Open Science Activities