Search results

Search for "deposition" in Full Text gives 1114 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Nanotechnology – a robust tool for fighting the challenges of drug resistance in non-small cell lung cancer

  • Filip Gorachinov,
  • Fatima Mraiche,
  • Diala Alhaj Moustafa,
  • Ola Hishari,
  • Yomna Ismail,
  • Jensa Joseph,
  • Maja Simonoska Crcarevska,
  • Marija Glavas Dodov,
  • Nikola Geskovski and
  • Katerina Goracinova

Beilstein J. Nanotechnol. 2023, 14, 240–261, doi:10.3762/bjnano.14.23

Graphical Abstract
  • barriers by the use of different groups of particles carrying various functional modalities. Tasciotti et al. proposed a multistage delivery system composed of stage-1 mesoporous silica particles with improved deposition in the vascular endothelium, optimized for crossing the endothelial barrier through
PDF
Album
Review
Published 22 Feb 2023

A novel approach to pulsed laser deposition of platinum catalyst on carbon particles for use in polymer electrolyte membrane fuel cells

  • Bogusław Budner,
  • Wojciech Tokarz,
  • Sławomir Dyjak,
  • Andrzej Czerwiński,
  • Bartosz Bartosewicz and
  • Bartłomiej Jankiewicz

Beilstein J. Nanotechnol. 2023, 14, 190–204, doi:10.3762/bjnano.14.19

Graphical Abstract
  • carbon substrate and the chemical synthesis of PtNPs during catalyst fabrication. Platinum was deposited on carbon particles at room temperature using a pulsed laser deposition (PLD) system equipped with an ArF excimer laser (λ = 193 nm). The uniform deposition of PtNPs on carbon supports was achieved
  • thanks to a specially designed electromechanical system that mixed the carbon support particles during platinum deposition. In the studies, Vulcan XC-72R carbon black powder, a popular material used as support in the anodes and cathodes of PEMFCs, and a porous carbon material with a high degree of
  • ; ORR; PEMFCs; PLD deposition; Pt catalyst; rotating ring-disk electrode (RRDE); SEM; TEM; XPS; Introduction Fuel cells, which cleanly and efficiently convert the chemical energy of hydrogen or other fuels to electrical energy, are a good alternative to dirty and wasteful combustion engines for
PDF
Album
Supp Info
Full Research Paper
Published 02 Feb 2023

Formation of nanoflowers: Au and Ni silicide cores surrounded by SiOx branches

  • Feitao Li,
  • Siyao Wan,
  • Dong Wang and
  • Peter Schaaf

Beilstein J. Nanotechnol. 2023, 14, 133–140, doi:10.3762/bjnano.14.14

Graphical Abstract
  • small pieces were ready for thin film deposition. Metallic bilayers of Au and Ni of three different thickness ratios and a total thickness of 20 nm were deposited onto the SiO2/Si substrate by electron beam evaporation (CS400ES, VON ARDENNE) at a working pressure of 1 × 10−6 mbar. The Au layer was
  • always deposited after the Ni layer to prevent the oxidation of the Ni layer. The bilayer thicknesses of different systems were 15 nm Au/5 nm Ni, 10 nm Au/10 nm Ni and 5 nm Au/15 nm Ni, and the thickness of each layer was controlled by a quartz balance during the deposition. Thermal annealing was carried
PDF
Album
Supp Info
Full Research Paper
Published 20 Jan 2023

Characterisation of a micrometer-scale active plasmonic element by means of complementary computational and experimental methods

  • Ciarán Barron,
  • Giulia Di Fazio,
  • Samuel Kenny,
  • Silas O’Toole,
  • Robin O’Reilly and
  • Dominic Zerulla

Beilstein J. Nanotechnol. 2023, 14, 110–122, doi:10.3762/bjnano.14.12

Graphical Abstract
  • on a sapphire substrate via physical vapour deposition (PVD). After this, two separate AFMs are used to machine channels in the silver film to create the desired constriction, which in this case measures 10 μm. The tip of the AFM is held at a set loading force in contact with the thin metal film and
  • deposition substrate for a thin silver film of 48 nm. The incident angles were referenced to the air–prism interface. The sinusoidal current was generated using a function generator with a current buffer to ensure impedance matching to the system under investigation. A transimpedance-amplified photodiode
PDF
Album
Full Research Paper
Published 16 Jan 2023

Antimicrobial and mechanical properties of functionalized textile by nanoarchitectured photoinduced Ag@polymer coating

  • Jessica Plé,
  • Marine Dabert,
  • Helene Lecoq,
  • Sophie Hellé,
  • Lydie Ploux and
  • Lavinia Balan

Beilstein J. Nanotechnol. 2023, 14, 95–109, doi:10.3762/bjnano.14.11

Graphical Abstract
  • investigated [26], with specific emphasis on AgNPs [27]. Textiles have been successfully functionalized with AgNPs using a variety of both physical and chemical deposition techniques [28]. To name a few, Mei et al. [29] used magnetic sputtering to deposit AgNPs onto polyimide textiles; OhadiFar et al. [30
  • adhesion, etc.) [32][33]. The deposition techniques are also costly, time-consuming and restrictive (under vacuum, numerous steps, toxic chemicals, etc.), which limits industrial scale-up options. Nanometal-polymer coatings offer an interesting alternative to the aforementioned metallized textiles. Such
PDF
Album
Full Research Paper
Published 12 Jan 2023

Combining physical vapor deposition structuration with dealloying for the creation of a highly efficient SERS platform

  • Adrien Chauvin,
  • Walter Puglisi,
  • Damien Thiry,
  • Cristina Satriano,
  • Rony Snyders and
  • Carla Bittencourt

Beilstein J. Nanotechnol. 2023, 14, 83–94, doi:10.3762/bjnano.14.10

Graphical Abstract
  • complexity and the high cost of gold restrict its use in devices. Here, we report on a novel two-step approach that combines the deposition of a silver–aluminum thin film with dealloying to design and fabricate efficient SERS platforms. The magnetron sputtering technique was used for the deposition of the
  • tuning deposition (i.e., the alloy chemical composition) and dealloying (i.e., dealloying media) parameters to reach the best SERS properties. These are reported for samples dealloyed in HCl and with 30 atom % of silver at the initial state with a detection limit down to 10−10 mol·L−1 for a solution of
  • resulting signal intensity tends to strongly vary due to surface contamination [30]. In this paper, a simple synthesis method to design bimodal porous silver substrate for SERS is reported. Magnetron co-sputtering of a silver and aluminum target was used for the deposition of the precursor alloy thin film
PDF
Album
Supp Info
Full Research Paper
Published 11 Jan 2023

Liquid phase exfoliation of talc: effect of the medium on flake size and shape

  • Samuel M. Sousa,
  • Helane L. O. Morais,
  • Joyce C. C. Santos,
  • Ana Paula M. Barboza,
  • Bernardo R. A. Neves,
  • Elisângela S. Pinto and
  • Mariana C. Prado

Beilstein J. Nanotechnol. 2023, 14, 68–78, doi:10.3762/bjnano.14.8

Graphical Abstract
  • acceleration and duration, and sample deposition) were kept constant. Four different media were employed to exfoliate talc. Aqueous solutions of sodium cholate at 1 and 6 mg/mL (with the talc powder concentration adapted to keep the cholate/talc ratio constant), an aqueous solution of Triton-X100, and pure
  • APTES molecules. This step is crucial to ensure that talc flakes of all sizes adhere to the substrate and do not stack. Talc deposition is achieved employing spread coating of the solution onto the functionalized substrate. A drop that covers all the substrate is deposited on the surface and allowed to
PDF
Album
Full Research Paper
Published 09 Jan 2023

Solvent-induced assembly of mono- and divalent silica nanoparticles

  • Bin Liu,
  • Etienne Duguet and
  • Serge Ravaine

Beilstein J. Nanotechnol. 2023, 14, 52–60, doi:10.3762/bjnano.14.6

Graphical Abstract
  • deposition on TEM grids. Co-assembly of one- and two-patch silica nanoparticles The incubation of the nanoparticles in a 7:3 (vol/vol) THF/salty water mixture was carried out in 15 mL tubes under rolling motion at 60 rpm and at room temperature. The composition of the mixtures is given in Table 1
PDF
Album
Full Research Paper
Published 06 Jan 2023

Upper critical magnetic field in NbRe and NbReN micrometric strips

  • Zahra Makhdoumi Kakhaki,
  • Antonio Leo,
  • Federico Chianese,
  • Loredana Parlato,
  • Giovanni Piero Pepe,
  • Angela Nigro,
  • Carla Cirillo and
  • Carmine Attanasio

Beilstein J. Nanotechnol. 2023, 14, 45–51, doi:10.3762/bjnano.14.5

Graphical Abstract
  • of 1 × 10−8 mbar. The films were deposited at room temperature from a stoichiometric NbRe (Nb0.18Re0.82) 99.95% pure target of 5 cm diameter at a power of 350 W. NbRe films, 8 nm thick, were grown at a Ar pressure of 4 μbar, which resulted in a deposition rate of 0.3 nm/s. NbReN films, 10 nm thick
PDF
Album
Full Research Paper
Published 05 Jan 2023

The influence of structure and local structural defects on the magnetic properties of cobalt nanofilms

  • Alexander Vakhrushev,
  • Aleksey Fedotov,
  • Olesya Severyukhina and
  • Anatolie Sidorenko

Beilstein J. Nanotechnol. 2023, 14, 23–33, doi:10.3762/bjnano.14.3

Graphical Abstract
  • structure close to the hexagonal close-packed crystal lattice was considered. In the second case, a cobalt nanofilm formed in the previously obtained numerical experiment of multilayer niobium–cobalt nanocomposite deposition was investigated. The sizes of the systems were the same in both cases. For both
  • that are influenced and corrected in the manufacturing process). The previously conducted studies considered the influence of sample parameters (e.g., temperature of the substrate on which the magnetron sputtering of nanofilms takes place, the intensity and deposition direction) on the final properties
  • deposition and structure formation, we considered three substrate temperatures on which the deposition took place: 300 , 500, and 800 K. These temperatures are determined by process features of niobium and cobalt-based nanocomposite fabrication and can be seen in the legend shown in Figure 2. For both
PDF
Album
Full Research Paper
Published 04 Jan 2023

Two-step single-reactor synthesis of oleic acid- or undecylenic acid-stabilized magnetic nanoparticles by thermal decomposition

  • Mykhailo Nahorniak,
  • Pamela Pasetto,
  • Jean-Marc Greneche,
  • Volodymyr Samaryk,
  • Sandy Auguste,
  • Anthony Rousseau,
  • Nataliya Nosova and
  • Serhii Varvarenko

Beilstein J. Nanotechnol. 2023, 14, 11–22, doi:10.3762/bjnano.14.2

Graphical Abstract
  • -octadecene. The stirring was continued for 30 min. The resulting reaction mass was transferred into a 250 mL reactor equipped with a mechanical stirrer and washed five times with propanone (150 mL each time) followed by nanoparticle deposition by magnetic separation on a NdFeB magnet under argon. The
PDF
Album
Supp Info
Full Research Paper
Published 03 Jan 2023

Electrical and optical enhancement of ITO/Mo bilayer thin films via laser annealing

  • Abdelbaki Hacini,
  • Ahmad Hadi Ali,
  • Nurul Nadia Adnan and
  • Nafarizal Nayan

Beilstein J. Nanotechnol. 2022, 13, 1589–1595, doi:10.3762/bjnano.13.133

Graphical Abstract
  • by many factors, such as the type of substrate [15], the deposition technique [16][17][18], the deposition conditions [19][20][21][22], and the annealing treatment [23]. Among these factors, heat treatment is a significant factor in rearranging the nanostructure, removing defects, and improving the
  • (Quorum Q300T D) at 10−4 mbar pressure. The magnetron sputter contains a double target with high purity (approx. 99.99%). The first target is for sputtering ITO (90 wt % In2O3 and 10 wt % SnO2), and the second target is for sputtering Mo. Before deposition, the Si and the glass samples were cut into
  • plasma cleaner. In the IM structure, the thickness of ITO was 125 nm while the thickness of Mo was 10 nm. The thickness was controlled by two quartz crystal balances integrated within the chamber. After deposition, the bilayer thin film was treated using a Nd:YAG pulsed laser with a wavelength of 1064 nm
PDF
Album
Full Research Paper
Published 28 Dec 2022

Single-step extraction of small-diameter single-walled carbon nanotubes in the presence of riboflavin

  • Polina M. Kalachikova,
  • Anastasia E. Goldt,
  • Eldar M. Khabushev,
  • Timofei V. Eremin,
  • Timofei S. Zatsepin,
  • Elena D. Obraztsova,
  • Konstantin V. Larionov,
  • Liubov Yu. Antipina,
  • Pavel B. Sorokin and
  • Albert G. Nasibulin

Beilstein J. Nanotechnol. 2022, 13, 1564–1571, doi:10.3762/bjnano.13.130

Graphical Abstract
  • deposition sites. Supporting Information Supporting Information features additional data on the reabsorption of photons in CoMoCat/riboflavin dispersions and Tuball/riboflavin photoluminescence spectra. Supporting Information File 82: Additional experimental data. Acknowledgements The authors are grateful
PDF
Album
Supp Info
Full Research Paper
Published 22 Dec 2022

Induced electric conductivity in organic polymers

  • Konstantin Y. Arutyunov,
  • Anatoli S. Gurski,
  • Vladimir V. Artemov,
  • Alexander L. Vasiliev,
  • Azat R. Yusupov,
  • Danfis D. Karamov and
  • Alexei N. Lachinov

Beilstein J. Nanotechnol. 2022, 13, 1551–1557, doi:10.3762/bjnano.13.128

Graphical Abstract
  • film during the thermal deposition of lead. Moreover, the PDP decomposition starts at 440 °С, which is significantly higher than the melting point of lead, 327 °C. Moreover, it cannot be ruled out that such defects as ‘collapse’ of lead electrodes (Figure 2c) are not intrinsic, and could have appeared
PDF
Album
Full Research Paper
Published 19 Dec 2022

Photoelectrochemical water oxidation over TiO2 nanotubes modified with MoS2 and g-C3N4

  • Phuong Hoang Nguyen,
  • Thi Minh Cao,
  • Tho Truong Nguyen,
  • Hien Duy Tong and
  • Viet Van Pham

Beilstein J. Nanotechnol. 2022, 13, 1541–1550, doi:10.3762/bjnano.13.127

Graphical Abstract
  • materials (Figure 1b). This agrees with the results of previous publications in which hydrothermal methods were applied [24][25][26]. The SEM image of the g-C3N4 material shows the uniform nanosheets that were fabricated by the melamine pyrolysis method (Figure 1c). After the deposition of 2D materials MoS2
PDF
Album
Supp Info
Full Research Paper
Published 16 Dec 2022

A TiO2@MWCNTs nanocomposite photoanode for solar-driven water splitting

  • Anh Quynh Huu Le,
  • Ngoc Nhu Thi Nguyen,
  • Hai Duy Tran,
  • Van-Huy Nguyen and
  • Le-Hai Tran

Beilstein J. Nanotechnol. 2022, 13, 1520–1530, doi:10.3762/bjnano.13.125

Graphical Abstract
  • via chemical vapor deposition were supplied by Vinanotech (Vietnam). Titanium tetrachloride (purity >99%) was purchased from Sigma-Aldrich (USA), and pure potassium hydroxide and potassium chloride (purity >85%) were provided from Merck (Germany). All other chemical reagents used in this study were of
PDF
Album
Full Research Paper
Published 14 Dec 2022

Supramolecular assembly of pentamidine and polymeric cyclodextrin bimetallic core–shell nanoarchitectures

  • Alexandru-Milentie Hada,
  • Nina Burduja,
  • Marco Abbate,
  • Claudio Stagno,
  • Guy Caljon,
  • Louis Maes,
  • Nicola Micale,
  • Massimiliano Cordaro,
  • Angela Scala,
  • Antonino Mazzaglia and
  • Anna Piperno

Beilstein J. Nanotechnol. 2022, 13, 1361–1369, doi:10.3762/bjnano.13.112

Graphical Abstract
  • of NPs and that this step is preparatory for the subsequent deposition of the silver shell. Conversely, in the case of monometallic Ag NPs, the reduction of silver ions (usually mediated by ascorbic acid) takes place at sites which are not involved in the nucleation/growing process leading to poorly
  • ) were synthesized under mild conditions, according to our previously reported procedures [14], as follows: a) preparation of the gold inner core (nanoG) by direct reduction of HAuCl4 using PolyCD as both reducing and capping agent and b) deposition of an outer silver layer by ascorbic acid-mediated
PDF
Album
Supp Info
Full Research Paper
Published 18 Nov 2022

Recent trends in Bi-based nanomaterials: challenges, fabrication, enhancement techniques, and environmental applications

  • Vishal Dutta,
  • Ankush Chauhan,
  • Ritesh Verma,
  • C. Gopalkrishnan and
  • Van-Huy Nguyen

Beilstein J. Nanotechnol. 2022, 13, 1316–1336, doi:10.3762/bjnano.13.109

Graphical Abstract
  • and deposition and doping of metals and non-metallic elements are the most common doping methods. Metal ions modify the crystal structure of the Bi-based semiconductor photocatalysts or induce defects. Also, the photocatalytic properties may be altered by doping or deposition of metallic components
  • Bi2WO6 photocatalysts that had been reported in the past. In addition to this, Fe-doped Bi2WO6 has a high degree of stability. The results of this study provide new information on boosting the photoactivity of Fe-doped Bi2WO6. The SPR effect can be obtained by the deposition of metallic elements on a
PDF
Album
Review
Published 11 Nov 2022

Studies of probe tip materials by atomic force microscopy: a review

  • Ke Xu and
  • Yuzhe Liu

Beilstein J. Nanotechnol. 2022, 13, 1256–1267, doi:10.3762/bjnano.13.104

Graphical Abstract
  • channel structures. A faster, one-step technique for growing gold nanowires at the tips of commercial conductive AFM is proposed compared to the above methods. Bakhti et al. [35] grew gold nanowires at the tips of conductive AFM nanoprobes by electroreduction direct deposition based on the deposition of
  • target nanotubes to Si tips under scanning electron microscopy; and attaching nanotubes to Si tips by carbon deposition. The strong adhesion of carbon deposition produces nanotube tips capable of surviving multiple surface collisions. The ability to image the fine structure of double-stranded DNA
  • assembly methods, direct growth of carbon nanotubes by chemical vapor deposition (CVD) allows for increased bond strength between CNT tips and AFM probes. A pore growth method was used by Hafner et al. [42]. The method uses AFM imaging in contact mode to flatten the silicon tip, followed by hydrogen
PDF
Album
Review
Published 03 Nov 2022

Role of titanium and organic precursors in molecular layer deposition of “titanicone” hybrid materials

  • Arbresha Muriqi and
  • Michael Nolan

Beilstein J. Nanotechnol. 2022, 13, 1240–1255, doi:10.3762/bjnano.13.103

Graphical Abstract
  • Arbresha Muriqi Michael Nolan Tyndall National Institute, University College Cork, Lee Maltings, T12 R5CP Cork, Ireland 10.3762/bjnano.13.103 Abstract The development of hybrid inorganic–organic films with well-controlled properties is important for many applications. Molecular layer deposition
  • (MLD) allows the deposition of these hybrid films using sequential, self-limiting reactions, similar to atomic layer deposition (ALD). In this paper, we use first principles density functional theory (DFT) to investigate the growth mechanism of titanium-containing hybrid organic–inorganic MLD films
  • growth could be achieved. Keywords: density functional theory (DFT) studies; double reactions; surface chemistry; titanicone; Introduction Molecular layer deposition (MLD), a thin film deposition technique, has attracted significant attention in recent years as a suitable approach for the deposition of
PDF
Album
Supp Info
Full Research Paper
Published 02 Nov 2022

Design of surface nanostructures for chirality sensing based on quartz crystal microbalance

  • Yinglin Ma,
  • Xiangyun Xiao and
  • Qingmin Ji

Beilstein J. Nanotechnol. 2022, 13, 1201–1219, doi:10.3762/bjnano.13.100

Graphical Abstract
  • -coated poly(ethylene terephthalate) (PET) layer on the surface of an electrode [48]. By controlling the deposition conditions, a stable layer with a high loading amount of MIP nanoparticles could be obtained, which would allow for the detection limit of propranolol to be 2 nmol·cm−2 or approx. 1 × 1015
  • (CH3)2}4] on SAMs of chiral molecules by using the atomic layer deposition (ALD) technique [120]. The specific selection effect was verified by QCM measurements using valine (Val) as the target analyte. The TiO2-SAMs films were shown to preferentially adsorb ᴅ-Val, suggesting a reliable chiral selector
  • deposition (MLD) using diethylzinc (DEZn) as the inorganic precursor and Cys enantiomer as the chiral organic precursor [122]. The Zn/Cys nanostructures showed a size of 15 nm and could tightly aggregate into a homogeneous and continuous film on the QCM surface. The QCM adsorption results indicated that ʟ
PDF
Album
Review
Published 27 Oct 2022

Application of nanoarchitectonics in moist-electric generation

  • Jia-Cheng Feng and
  • Hong Xia

Beilstein J. Nanotechnol. 2022, 13, 1185–1200, doi:10.3762/bjnano.13.99

Graphical Abstract
  • , photolithography, embossing, deposition, and sol–gel nanofabrication, all of which can provide high specific surface areas [19][24][25][26][27][28]. Nanomaterials can also be divided into inorganic nanomaterials and organic nanomaterials. In inorganic nanomaterials, metal nanomaterials and carbon nanomaterials
  • deposition (Figure 3a). Zhou Jun's group used this kind of carbon nanoscale network to absorb the evaporation energy of water vapor and have a stable electrical output of 1 V, 100 nA in 2017 [9][37][46]. The carbon nanoparticles are easy to obtain, and a large number of carbon nanoparticles can be collected
PDF
Album
Review
Published 25 Oct 2022

Microneedle-based ocular drug delivery systems – recent advances and challenges

  • Piotr Gadziński,
  • Anna Froelich,
  • Monika Wojtyłko,
  • Antoni Białek,
  • Julia Krysztofiak and
  • Tomasz Osmałek

Beilstein J. Nanotechnol. 2022, 13, 1167–1184, doi:10.3762/bjnano.13.98

Graphical Abstract
  • , the substrate, absorbing the laser beam, heats up and evaporates or sublimes, which yields engraved 3D patterns [150]. In the fused deposition modelling (FDM) method, the thermoplastic material is heated to its softening point, then extruded through a nozzle and applied layer by layer to the build
PDF
Album
Review
Published 24 Oct 2022

Rapid fabrication of MgO@g-C3N4 heterojunctions for photocatalytic nitric oxide removal

  • Minh-Thuan Pham,
  • Duyen P. H. Tran,
  • Xuan-Thanh Bui and
  • Sheng-Jie You

Beilstein J. Nanotechnol. 2022, 13, 1141–1154, doi:10.3762/bjnano.13.96

Graphical Abstract
  • visible light region, including nonmetal and noble-metal doping, metal deposition, and formation of heterojunctions [21][22]. The construction of heterojunction structures has shown its effectiveness in improving photocatalytic performance by enhancing the separation of charge carriers and optimizing the
PDF
Album
Supp Info
Full Research Paper
Published 18 Oct 2022

A cantilever-based, ultrahigh-vacuum, low-temperature scanning probe instrument for multidimensional scanning force microscopy

  • Hao Liu,
  • Zuned Ahmed,
  • Sasa Vranjkovic,
  • Manfred Parschau,
  • Andrada-Oana Mandru and
  • Hans J. Hug

Beilstein J. Nanotechnol. 2022, 13, 1120–1140, doi:10.3762/bjnano.13.95

Graphical Abstract
  • the deposition of atoms or molecules on the cold sample. Microscope Design We use a fiber-optical interferometer to measure the cantilever deflection. This deflection sensor type only requires placing the end of an optical fiber in close proximity to the cantilever. All electronic components remain
PDF
Album
Full Research Paper
Published 11 Oct 2022
Other Beilstein-Institut Open Science Activities