Search results

Search for "tapping mode" in Full Text gives 181 result(s) in Beilstein Journal of Nanotechnology.

Optimization of phase contrast in bimodal amplitude modulation AFM

  • Mehrnoosh Damircheli,
  • Amir F. Payam and
  • Ricardo Garcia

Beilstein J. Nanotechnol. 2015, 6, 1072–1081, doi:10.3762/bjnano.6.108

Graphical Abstract
  • phase contrast improves by decreasing the energy of second mode relative to those of the first and third modes. Keywords: bimodal AFM; dynamic AFM; tapping mode; Introduction The atomic force microscope is a versatile and powerful tool for imaging, compositional mapping and modification of surfaces
  • map compositional variations under the influence of conservative forces is a main advantage with respect to AFM phase imaging (tapping mode AFM), where the phase contrast is related to variations in energy dissipation [33]. In AM-AFM there are two interacting regimes, attractive and repulsive [2]. The
  • ., tapping mode AFM. For this simulation the best contrast is yielded for an amplitude ratio of 250. This value is significantly larger than the values previously recommended (10–50) which were based on experiments [43][44][45]. Phase contrast in the attractive regime (dissipation): A01 > A02 To study the
PDF
Album
Full Research Paper
Published 28 Apr 2015

Automatic morphological characterization of nanobubbles with a novel image segmentation method and its application in the study of nanobubble coalescence

  • Yuliang Wang,
  • Huimin Wang,
  • Shusheng Bi and
  • Bin Guo

Beilstein J. Nanotechnol. 2015, 6, 952–963, doi:10.3762/bjnano.6.98

Graphical Abstract
  • (MultiMode III, Digital Instruments) operating in tapping mode was used for imaging the sample. A silicon rotated force-modulated etched silicon probe (RFESP, Bruker Corporation) cantilever with a tip radius of 8 nm and a stiffness of 3 N/m was used. A modified tip holder was used for tapping mode atomic
  • force microscopy (TMAFM) scanning, as was used in our previous studies [6][8][9]. In the general tapping mode operation, the whole liquid cell is excited by a piezoelectric element, which results in a multitude of spurious peaks related to the fluid cell eigenfrequencies. It is difficult to accurately
  • determine the resonance frequency of a cantilever. In this study, a tapping mode tip holder for non-fluid use in air was modified, as shown in Figure 1. A horizontal slot was carved out above the piezo element in the opening of the tip holder to insert a glass slide. When the liquid is added between the
PDF
Album
Supp Info
Full Research Paper
Published 14 Apr 2015

Mapping of elasticity and damping in an α + β titanium alloy through atomic force acoustic microscopy

  • M. Kalyan Phani,
  • Anish Kumar,
  • T. Jayakumar,
  • Walter Arnold and
  • Konrad Samwer

Beilstein J. Nanotechnol. 2015, 6, 767–776, doi:10.3762/bjnano.6.79

Graphical Abstract
  • , Russia was used in the study. A stiff cantilever with a spring constant, kc, of about 30 N/m and the first free resonance frequency f0 of about 171 kHz was used in the study. The surface topography of the specimens was obtained in tapping mode to select an area with sufficient flatness for acquiring the
PDF
Album
Full Research Paper
Published 18 Mar 2015

Self-assembled anchor layers/polysaccharide coatings on titanium surfaces: a study of functionalization and stability

  • Ognen Pop-Georgievski,
  • Dana Kubies,
  • Josef Zemek,
  • Neda Neykova,
  • Roman Demianchuk,
  • Eliška Mázl Chánová,
  • Miroslav Šlouf,
  • Milan Houska and
  • František Rypáček

Beilstein J. Nanotechnol. 2015, 6, 617–631, doi:10.3762/bjnano.6.63

Graphical Abstract
  • characterization was performed on a Dimension ICON (Bruker, USA) system in peak force tapping mode in air using silicon probes (TAP150A, Bruker, USA) with a typical force constant of 5 N∙m−1. The images were taken using a scan rate in the range of 0.5−1.2 Hz and a peak force set point of 0.02−0.2 V. Surface
PDF
Album
Supp Info
Full Research Paper
Published 02 Mar 2015

Fundamental edge broadening effects during focused electron beam induced nanosynthesis

  • Roland Schmied,
  • Jason D. Fowlkes,
  • Robert Winkler,
  • Phillip D. Rack and
  • Harald Plank

Beilstein J. Nanotechnol. 2015, 6, 462–471, doi:10.3762/bjnano.6.47

Graphical Abstract
  • Hybrid scan head and operated with a Nanoscope IV controller together with the C-AFM application module for the respective measurements. OMCL-C240-TS and ASYELEC-01 (TiIr surface coating) cantilevers have been used for AFM/KFM (2-pass tapping mode) and C-AFM (contact mode) measurements, respectively. The
PDF
Album
Supp Info
Full Research Paper
Published 16 Feb 2015

Dynamic force microscopy simulator (dForce): A tool for planning and understanding tapping and bimodal AFM experiments

  • Horacio V. Guzman,
  • Pablo D. Garcia and
  • Ricardo Garcia

Beilstein J. Nanotechnol. 2015, 6, 369–379, doi:10.3762/bjnano.6.36

Graphical Abstract
  • experiments. The simulator presents the cantilever–tip dynamics for two dynamic AFM methods, tapping mode AFM and bimodal AFM. It can be applied for a wide variety of experimental situations in air or liquid. The code provides all the variables and parameters relevant in those modes, for example, the
  • simulations. Finally, the accuracy of dForce has been tested against numerical simulations performed during the last 18 years. Keywords: bimodal AFM; dynamic AFM; nanomechanics; numerical simulations; tapping mode AFM; Introduction Numerical simulations have played a pivotal role to advance the
  • understanding and, in the process, to improve the performance of amplitude modulation atomic force microscopy (AM-AFM), usually known as tapping mode AFM. The following discussion provides some examples. Simulations provided the first estimation of the forces and deformations involved in tapping mode AFM [1][2
PDF
Album
Full Research Paper
Published 04 Feb 2015

Exploring plasmonic coupling in hole-cap arrays

  • Thomas M. Schmidt,
  • Maj Frederiksen,
  • Vladimir Bochenkov and
  • Duncan S. Sutherland

Beilstein J. Nanotechnol. 2015, 6, 1–10, doi:10.3762/bjnano.6.1

Graphical Abstract
  • wide was probed. AFM images were taken with an atomic force microscopy (AFM) from Multimode with Veeco nanoscope 5 used in tapping mode. Olympus OMCL-TR400PSA-2 cantilevers with a resonant frequency between 11 and 34 kHz and a tip radius of less than 20 nm were used. The SEM images were taken with a
PDF
Album
Supp Info
Full Research Paper
Published 02 Jan 2015

High-frequency multimodal atomic force microscopy

  • Adrian P. Nievergelt,
  • Jonathan D. Adams,
  • Pascal D. Odermatt and
  • Georg E. Fantner

Beilstein J. Nanotechnol. 2014, 5, 2459–2467, doi:10.3762/bjnano.5.255

Graphical Abstract
  • simultaneous focusing of the two laser spots. For these beam waists, we calculate Rayleigh lengths of 33 μm and 160 μm, well within the estimated 13 μm chromatic focal shift of our optical system obtained by using Zemax 13 (Radiant Zemax LLC, Redmond, WA, USA). While piezo-driven tapping mode imaging in liquid
PDF
Album
Full Research Paper
Published 22 Dec 2014

Modeling viscoelasticity through spring–dashpot models in intermittent-contact atomic force microscopy

  • Enrique A. López-Guerra and
  • Santiago D. Solares

Beilstein J. Nanotechnol. 2014, 5, 2149–2163, doi:10.3762/bjnano.5.224

Graphical Abstract
  • deformation frequencies (descriptions of tip–sample model behaviors in the context of multifrequency AFM require detailed studies and are beyond the scope of this work). Keywords: atomic force microscopy; creep; dissipated energy; multifrequency; stress relaxation; tapping mode; viscoelasticity
  • ; Introduction Atomic force microscopy (AFM) has evolved rapidly since its invention in the mid-1980s [1] and has been used since then for measuring topography and probe–sample forces on micro- and nanoscale surfaces in different environments. Tapping mode AFM (amplitude modulation, AM-AFM) is the most common
  • dynamic method and has been the subject of thorough studies [2][3][4][5][6]. In tapping mode AFM damage or wear of the tip and surface are reduced with respect to contact-mode AFM due to lower friction and lateral forces, which makes it more applicable for imaging soft samples, such as polymers and
PDF
Album
Supp Info
Full Research Paper
Published 18 Nov 2014

Effect of channel length on the electrical response of carbon nanotube field-effect transistors to deoxyribonucleic acid hybridization

  • Hari Krishna Salila Vijayalal Mohan,
  • Jianing An,
  • Yani Zhang,
  • Chee How Wong and
  • Lianxi Zheng

Beilstein J. Nanotechnol. 2014, 5, 2081–2091, doi:10.3762/bjnano.5.217

Graphical Abstract
  • for the detection studies. Specifically, only semiconducting FETs were used for the study. SEM (Jeol, JSM-7600F) was used to verify the existence of the CNTs between the electrodes. AFM (Asylum Research, Cypher AFM) in tapping mode was used to obtain the height profile, which gives the diameter of the
PDF
Album
Supp Info
Full Research Paper
Published 12 Nov 2014

Optical properties and electrical transport of thin films of terbium(III) bis(phthalocyanine) on cobalt

  • Peter Robaschik,
  • Pablo F. Siles,
  • Daniel Bülz,
  • Peter Richter,
  • Manuel Monecke,
  • Michael Fronk,
  • Svetlana Klyatskaya,
  • Daniel Grimm,
  • Oliver G. Schmidt,
  • Mario Ruben,
  • Dietrich R. T. Zahn and
  • Georgeta Salvan

Beilstein J. Nanotechnol. 2014, 5, 2070–2078, doi:10.3762/bjnano.5.215

Graphical Abstract
  • performed in AC tapping mode, which guarantees minimal contact between the AFM probe and the organic film. Ultra sharp (4–10 nm radius) Olympus cantilevers allowed high sensitivity measurements. cs-AFM measurements were performed in contact mode using special Pt-coated Si cantilevers with a spring constant
PDF
Album
Supp Info
Full Research Paper
Published 11 Nov 2014

Towards bottom-up nanopatterning of Prussian blue analogues

  • Virgile Trannoy,
  • Marco Faustini,
  • David Grosso,
  • Sandra Mazerat,
  • François Brisset,
  • Alexandre Dazzi and
  • Anne Bleuzen

Beilstein J. Nanotechnol. 2014, 5, 1933–1943, doi:10.3762/bjnano.5.204

Graphical Abstract
  • distance (WD) equal to 3.8 mm for the TiO2/PBA nanocomposite images. Tapping mode topography and phase imaging was accomplished by using an Innova AFM (Bruker) with NanoDrive v8.02 software. Tapping mode images were acquired by using silicon tips from Nanosensors (PPP NCSTR) with a resonance frequency
PDF
Album
Supp Info
Full Research Paper
Published 31 Oct 2014

Synthesis of Pt nanoparticles and their burrowing into Si due to synergistic effects of ion beam energy losses

  • Pravin Kumar,
  • Udai Bhan Singh,
  • Kedar Mal,
  • Sunil Ojha,
  • Indra Sulania,
  • Dinakar Kanjilal,
  • Dinesh Singh and
  • Vidya Nand Singh

Beilstein J. Nanotechnol. 2014, 5, 1864–1872, doi:10.3762/bjnano.5.197

Graphical Abstract
  • with Se/Sn = 1 (where maximum burrowing was seen) was also performed in order to gain quantitative information, for example, particle size, depth of burrowing, etc. The morphological changes on the surfaces were studied using a multimode Nanoscope IIIa atomic force microscopy (AFM) in tapping mode. The
PDF
Album
Supp Info
Full Research Paper
Published 24 Oct 2014

Mechanical properties of sol–gel derived SiO2 nanotubes

  • Boris Polyakov,
  • Mikk Antsov,
  • Sergei Vlassov,
  • Leonid M Dorogin,
  • Mikk Vahtrus,
  • Roberts Zabels,
  • Sven Lange and
  • Rünno Lõhmus

Beilstein J. Nanotechnol. 2014, 5, 1808–1814, doi:10.3762/bjnano.5.191

Graphical Abstract
  • and three-point bending tests were done by AFM (Dimension Edge, Bruker) under ambient conditions by using tapping mode cantilevers (PPP-NCH, Nanosensors). The built-in software force–distance spectroscopy routine was used both for nanoindentation and three-point bending tests. Radius of the AFM tip
  • tests. Prior to the three-point bending test an AFM image of a NT suspended over a trench was taken in tapping mode at low magnification (typically 10 × 10 μm, Figure 3a). In order to ensure proper tip positioning during force spectroscopy a NT was scanned sequentially at a higher magnification
PDF
Album
Supp Info
Full Research Paper
Published 20 Oct 2014

Controlling the dispersion of supported polyoxometalate heterogeneous catalysts: impact of hybridization and the role of hydrophilicity–hydrophobicity balance and supramolecularity

  • Gijo Raj,
  • Colas Swalus,
  • Eglantine Arendt,
  • Pierre Eloy,
  • Michel Devillers and
  • Eric M. Gaigneaux

Beilstein J. Nanotechnol. 2014, 5, 1749–1759, doi:10.3762/bjnano.5.185

Graphical Abstract
  • investigated as a function of the hydrophilic or hydrophobic nature of the surfaces. The height of the Keggin-POM anions, measured with tapping mode (TM-AFM) is always in good agreement with the molecular dimension of symmetric Keggin-POM anions (ca. 1 nm). However, the asymmetric WD-POM anions form monolayer
  • progress towards a wider application. In this study we, thus, systematically analyse these systems through tapping-mode atomic force microscopy (TM-AFM). First we investigated the organization of two kinds of POM anions, namely a Keggin phosphotungstic [PW12O40]3− species, and a Wells–Dawson (WD
  • . The DODA–POM hybrid films, after AFM imaging, were treated in an UV–ozone chamber (Jelight USA) for 10 min. Atomic force microscopy AFM experiments were performed by using a Nanoscope V multimode AFM (Bruker AXS) in tapping mode under ambient conditions (23 °C and 56% RH). Thin films of the POM, DODA
PDF
Album
Supp Info
Full Research Paper
Published 10 Oct 2014
Graphical Abstract
  • by using the conventional amplitude-modulation scheme (AM-AFM, tapping-mode [2]) to obtain the topography, while the second eigenmode is excited with constant drive amplitude and frequency. Compositional contrast is extracted from the response amplitude and phase of the second eigenmode (in this
  • -linear behavior of the tip–sample forces and the non-ideal shape of the tip trajectory during impact, both of which make mathematical analyses extremely difficult (these complexities are further discussed in the Results section). In amplitude modulation AFM (tapping-mode, AM-AFM), Cleveland et al. [30
PDF
Album
Full Research Paper
Published 26 Sep 2014

Multi-frequency tapping-mode atomic force microscopy beyond three eigenmodes in ambient air

  • Santiago D. Solares,
  • Sangmin An and
  • Christian J. Long

Beilstein J. Nanotechnol. 2014, 5, 1637–1648, doi:10.3762/bjnano.5.175

Graphical Abstract
  • multimodal tapping-mode atomic force microscopy driving more than three cantilever eigenmodes. We present tetramodal (4-eigenmode) imaging experiments conducted on a thin polytetrafluoroethylene (PTFE) film and computational simulations of pentamodal (5-eigenmode) cantilever dynamics and spectroscopy
  • , as in previously validated bimodal and trimodal methods [2][3][4][5][6][7][8][9]. Although the dynamics of multimodal tapping-mode AFM can be quite complex, we find that imaging can be remarkably stable and that the cantilever eigenmodes, in general, exhibit the predicted behavior [20]. We focus our
  • -frequency AFM through the inclusion of a larger number of driven eigenmodes along with the corresponding additional contrast channels. Results and Discussion Tip response in time- and frequency-space The dynamic challenges encountered in multimodal tapping-mode imaging are best appreciated by analyzing the
PDF
Album
Full Research Paper
Published 25 Sep 2014

The study of surface wetting, nanobubbles and boundary slip with an applied voltage: A review

  • Yunlu Pan,
  • Bharat Bhushan and
  • Xuezeng Zhao

Beilstein J. Nanotechnol. 2014, 5, 1042–1065, doi:10.3762/bjnano.5.117

Graphical Abstract
  • was prepared as described in the last section. The nanobubbles were imaged and recorded with a Dimension 3000 atomic force microscope (AFM) (Bruker Instruments, Santa Barbara, CA) in tapping mode. In order to image in liquid, the AFM cantilever was held by a polychlorotrifluoroethylene (PCTFE) fluid
  • cell cantilever holder (DTFML-DD), which has a piezo to drive the cantilever in tapping mode when working in fluids. A silicon nitride cantilever PNPTR (Nanoworld, Neuchâtel) was used for tapping mode. The tip radius was smaller than 15 nm, the stiffness was 0.32 N·m−1, and the cantilever is Cr/Au
PDF
Album
Review
Published 15 Jul 2014

A nanometric cushion for enhancing scratch and wear resistance of hard films

  • Katya Gotlib-Vainshtein,
  • Olga Girshevitz,
  • Chaim N. Sukenik,
  • David Barlam and
  • Sidney R. Cohen

Beilstein J. Nanotechnol. 2014, 5, 1005–1015, doi:10.3762/bjnano.5.114

Graphical Abstract
  • indenter was used to image the area after the nanomechanical tests. The modulus of the PDMS was measured using PeakForce QNM (Quantitative Nanomechanical property mapping), an extension of the Peak Force Tapping® mode, using ScanAsyst-air probes (force constant of 0.4 N/m, Digital Instruments, Santa
PDF
Album
Full Research Paper
Published 10 Jul 2014

A visible-light-driven composite photocatalyst of TiO2 nanotube arrays and graphene quantum dots

  • Donald K. L. Chan,
  • Po Ling Cheung and
  • Jimmy C. Yu

Beilstein J. Nanotechnol. 2014, 5, 689–695, doi:10.3762/bjnano.5.81

Graphical Abstract
  • field-emission scanning electron microscopy (FEI, Quanta 400 FEG). AFM images were obtained using a tapping mode with an atomic force microscope (Bruker, Dimension Icon). UV–vis spectra were recorded on a UV–vis spectrometer (Varian, Cary 100). The PL measurements were performed using a fluorescence
PDF
Album
Supp Info
Full Research Paper
Published 22 May 2014

Energy dissipation in multifrequency atomic force microscopy

  • Valentina Pukhova,
  • Francesco Banfi and
  • Gabriele Ferrini

Beilstein J. Nanotechnol. 2014, 5, 494–500, doi:10.3762/bjnano.5.57

Graphical Abstract
  • of the order of 8 eV during the impact, considering that typical tapping mode interactions release energies per tap on the order of several tens of eV [19]. Moreover, the maximum energy released in a single cycle during the impact does not exceed 1.2 eV for the second mode and 130 meV for the third
PDF
Album
Correction
Full Research Paper
Published 17 Apr 2014

Frequency, amplitude, and phase measurements in contact resonance atomic force microscopies

  • Gheorghe Stan and
  • Santiago D. Solares

Beilstein J. Nanotechnol. 2014, 5, 278–288, doi:10.3762/bjnano.5.30

Graphical Abstract
  • using the tapping-mode (amplitude modulation) technique [13], within which variations in the phase contrast can be directly related to changes in energy dissipation [14][15]. Conservative and dissipative interactions are generally expressed in terms of the virial (Vts) and the dissipated power (Pts
PDF
Album
Full Research Paper
Published 12 Mar 2014

Study of mesoporous CdS-quantum-dot-sensitized TiO2 films by using X-ray photoelectron spectroscopy and AFM

  • Mohamed N. Ghazzal,
  • Robert Wojcieszak,
  • Gijo Raj and
  • Eric M. Gaigneaux

Beilstein J. Nanotechnol. 2014, 5, 68–76, doi:10.3762/bjnano.5.6

Graphical Abstract
  • evaporated in air prior to the analysis of the samples. AFM experiments were performed analogously to [15] by using a Nanoscope V multimode AFM (NanoSurfaces Business, Bruker Corporation, Santa Barbara, CA) in tapping mode (TM-AFM). Etched Si tapping mode cantilevers (TESP type, Bruker AFM probes), with a
PDF
Album
Full Research Paper
Published 20 Jan 2014

Exploring the retention properties of CaF2 nanoparticles as possible additives for dental care application with tapping-mode atomic force microscope in liquid

  • Matthias Wasem,
  • Joachim Köser,
  • Sylvia Hess,
  • Enrico Gnecco and
  • Ernst Meyer

Beilstein J. Nanotechnol. 2014, 5, 36–43, doi:10.3762/bjnano.5.4

Graphical Abstract
  • substrate roughness, morphology and size of the particles. Keywords: AM-AFM in liquid; nanodentistry; nanoparticles; Introduction Amplitude-modulation atomic force microscopy (AM-AFM), also known as tapping mode AFM, is a variant of scanning probe microscopy. In this dynamic technique imaging is achieved
  • polymers or biomolecules. Compared to contact mode AFM the destructive lateral forces are virtually eliminated in tapping mode as the probing tip has a much lower contact time while mapping the surface, which results in a much more gentle sensing of the investigated surface [1][2]. AM-AFM has the ability
  • mica and on tooth enamel in liquid. Manipulation experiments of nanoparticles are routinely done by using the AFM in the contact mode [10][11][12]. However some studies have been reported, in which a controlled manipulation of nanoparticles in tapping mode AFM was performed. Sitti et al. used a
PDF
Album
Full Research Paper
Published 13 Jan 2014

Evolution of microstructure and related optical properties of ZnO grown by atomic layer deposition

  • Adib Abou Chaaya,
  • Roman Viter,
  • Mikhael Bechelany,
  • Zanda Alute,
  • Donats Erts,
  • Anastasiya Zalesskaya,
  • Kristaps Kovalevskis,
  • Vincent Rouessac,
  • Valentyn Smyntyna and
  • Philippe Miele

Beilstein J. Nanotechnol. 2013, 4, 690–698, doi:10.3762/bjnano.4.78

Graphical Abstract
  • properties of the ZnO films were characterized by scanning electron microscopy (SEM), ellipsometry, energy-dispersive X-ray spectroscopy (EDX), and grazing incidence X-ray diffraction (GIXRD). An Asylum Research MFP-3D atomic force microscope equipped with a commercial silicon tip was operated in the tapping
  • mode to study the surface morphology on images of the size of 3 μm × 3 μm. SEM and EDX characterization of the samples were performed by using a Hitachi S-4800 microscope and EDX on Hitachi S-4500 coupled with a Thermofisher EDX detector, respectively. Thickness of the ZnO films were measured by a
PDF
Album
Supp Info
Full Research Paper
Published 28 Oct 2013
Other Beilstein-Institut Open Science Activities