Search results

Search for "water" in Full Text gives 1465 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Formation of nanoflowers: Au and Ni silicide cores surrounded by SiOx branches

  • Feitao Li,
  • Siyao Wan,
  • Dong Wang and
  • Peter Schaaf

Beilstein J. Nanotechnol. 2023, 14, 133–140, doi:10.3762/bjnano.14.14

Graphical Abstract
  • . A 300 nm oxide layer was thermally grown to prevent interactions between Si and the subsequently deposited layer materials, and after that, the wafer was cut into small squares of approximately 1 cm × 1 cm. After cleaning in acetone, isopropanol, and deionized water and drying with nitrogen gas, the
PDF
Album
Supp Info
Full Research Paper
Published 20 Jan 2023

Combining physical vapor deposition structuration with dealloying for the creation of a highly efficient SERS platform

  • Adrien Chauvin,
  • Walter Puglisi,
  • Damien Thiry,
  • Cristina Satriano,
  • Rony Snyders and
  • Carla Bittencourt

Beilstein J. Nanotechnol. 2023, 14, 83–94, doi:10.3762/bjnano.14.10

Graphical Abstract
  • rhodamine B. Keywords: dealloying; magnetron sputtering; nanoporous thin film; nanostructuring; SERS; Introduction Pollutant residues are strictly regulated in most countries to ensure water and food safety. In this context, there is an increasing demand for pollutant analysis tools with practical and
  • deposition time was fixed to 12 min to reach a thin film with a thickness of 700 ± 40 nm. Dealloying of Ag–Al thin films The dealloying of Ag–Al thin films was carried out in HCl (1 wt %), NaOH (30 wt %), and H3PO4 (10 wt %). The samples were immersed for the desired time and dipped into deionized water for
  • B was chosen as the SERS probe molecule. Prior to experiments, porous silver samples were dipped into ultrapure water and dried. The samples were then immersed for 24 h into a solution of ultrapure water solution containing RhB with concentration values varying from 10−7 to 10−11 mol·L−1, enabling
PDF
Album
Supp Info
Full Research Paper
Published 11 Jan 2023

Liquid phase exfoliation of talc: effect of the medium on flake size and shape

  • Samuel M. Sousa,
  • Helane L. O. Morais,
  • Joyce C. C. Santos,
  • Ana Paula M. Barboza,
  • Bernardo R. A. Neves,
  • Elisângela S. Pinto and
  • Mariana C. Prado

Beilstein J. Nanotechnol. 2023, 14, 68–78, doi:10.3762/bjnano.14.8

Graphical Abstract
  • the talc concentration was also diminished to keep the mass ratio between surfactant and talc constant, the effect must be due to the surfactant arrangement (i.e., the presence or absence of molecular aggregates) and a higher relative amount of dispersion medium (the water-to-talc ratio is larger in
  • 2D shape, that is, the flakes are more plate-like than those of all other samples. All this makes this sample appropriate for applications in which monolayers and bilayers are required and flakes are all similar in a narrow range of 2D shapes. The SC1 sample with more water added to the sample
  • was manually milled to a fine powder. Sodium cholate and Triton-X100 were purchased from Sigma-Aldrich and used as received. All organic solvents were of analytical grade and used as received. Deionized water (resistivity 18.2 MΩ·cm) from a milliQ system was used for solution preparation. AFM
PDF
Album
Full Research Paper
Published 09 Jan 2023

Solvent-induced assembly of mono- and divalent silica nanoparticles

  • Bin Liu,
  • Etienne Duguet and
  • Serge Ravaine

Beilstein J. Nanotechnol. 2023, 14, 52–60, doi:10.3762/bjnano.14.6

Graphical Abstract
  • ., salty water). We show that only dimers or trimers can be obtained due to steric hindrance induced by the large silica cap of the patchy nanoparticles. The present study also extends the insights we recently gained about the capability of using 1-PSN with a PPSR of 0.60 as chain stoppers [31]. We show
  • by using pure water (Figure 4b) or salty water (Figure 4c) instead of ethanol in different fractions. We observed that, except for 1-PSN with PPSR ≤ 0.3, assembly was possible and led to dimers and possibly to clusters of low aggregation number for the highest PPSR values. These results first
  • g·mol−1 [33], can no longer interact because they are too far from each other. A closer examination of Figure 4b,c shows that water, and even more so salty water, is more efficient than ethanol to promote 1-PSN assembly. This is probably because salty water reduces both the electrostatic repulsions
PDF
Album
Full Research Paper
Published 06 Jan 2023

Gap-directed chemical lift-off lithographic nanoarchitectonics for arbitrary sub-micrometer patterning

  • Chang-Ming Wang,
  • Hong-Sheng Chan,
  • Chia-Li Liao,
  • Che-Wei Chang and
  • Wei-Ssu Liao

Beilstein J. Nanotechnol. 2023, 14, 34–44, doi:10.3762/bjnano.14.4

Graphical Abstract
  • ., Ltd. (Taipei, Taiwan). T238 developer was purchased from Control Chemitech Inc. (Taoyuan, Taiwan). Silicon wafers were obtained from Mustec Corp. (Hsinchu, Taiwan). SYLGARD 184 silicone elastomer base and curing agent were purchased from Dow Corning Corp. (Midland, MI, USA). Deionized water (>18 MΩ·cm
  • (10 μg/mL in PBS buffer) incubation for 20 min to complete the biorecognition process. Finally, the substrate was gently rinsed by deionized water, immersed in PBS buffer solution, and stored at 4 °C in the dark before further characterization. Fluorescence and bright filed microscopic images were
  • to etch the exposed underlying Au film. After 30 min of etching, the substrate was rinsed with deionized water and blown dry with nitrogen gas. The transferred metal structures were then characterized by optical microscopy, scanning election microscopy (SEM, JEOL JSM-7600F, Tokyo, Japan) and atomic
PDF
Album
Full Research Paper
Published 04 Jan 2023

Atmospheric water harvesting using functionalized carbon nanocones

  • Fernanda R. Leivas and
  • Marcia C. Barbosa

Beilstein J. Nanotechnol. 2023, 14, 1–10, doi:10.3762/bjnano.14.1

Graphical Abstract
  • Fernanda R. Leivas Marcia C. Barbosa Instituto de Física, Universidade Federal do Rio Grande do Sul, CP 15051, 91501-970, Porto Alegre, RS, Brazil 10.3762/bjnano.14.1 Abstract In this work, we propose a method to harvest liquid water from water vapor using carbon nanocones. The condensation
  • occurs due to the presence of hydrophilic sites at the nanocone entrance. The functionalization, together with the high mobility of water inside nanostructures, leads to a fast water flow through the nanostructure. We show using molecular dynamics simulations that this device is able to collect water if
  • the surface functionalization is properly selected. Keywords: atmospheric water harvesting; hydrophilicity; hydrophobicity; nanocones; nanotechnology; Introduction Despite water being abundant on Earth, there are at least four billion people suffering from water scarcity [1]. The lack of potable
PDF
Album
Full Research Paper
Published 02 Jan 2023

Electrical and optical enhancement of ITO/Mo bilayer thin films via laser annealing

  • Abdelbaki Hacini,
  • Ahmad Hadi Ali,
  • Nurul Nadia Adnan and
  • Nafarizal Nayan

Beilstein J. Nanotechnol. 2022, 13, 1589–1595, doi:10.3762/bjnano.13.133

Graphical Abstract
  • pieces and cleaned to suit the characterization equipment. The Si substrates were ultrasonically cleaned using acetone, isopropyl alcohol, and distilled water. The glass substrates were cleaned using Decon-90 cleaner. The glass and Si samples were dried with nitrogen gas and treated for 10 min in a
PDF
Album
Full Research Paper
Published 28 Dec 2022

Single-step extraction of small-diameter single-walled carbon nanotubes in the presence of riboflavin

  • Polina M. Kalachikova,
  • Anastasia E. Goldt,
  • Eldar M. Khabushev,
  • Timofei V. Eremin,
  • Timofei S. Zatsepin,
  • Elena D. Obraztsova,
  • Konstantin V. Larionov,
  • Liubov Yu. Antipina,
  • Pavel B. Sorokin and
  • Albert G. Nasibulin

Beilstein J. Nanotechnol. 2022, 13, 1564–1571, doi:10.3762/bjnano.13.130

Graphical Abstract
  • SWCNTs occurs due to the adsorption of π-conjugated isoalloxazine moieties on the surface of small-diameter nanotubes and interactions between hydroxy groups of ribityl chains with water. During the SWCNT extraction, specific adsorption of riboflavin to SWCNTs leads to the minimization of interactions
  • another class of biomolecules that can be potentially utilized as a surfactant for dispersing SWCNTs. Having relatively low solubility in water, flavins are generally innocuous for living cells. Riboflavin (also known as vitamin B2) is a precursor of such coenzymes as flavin mononucleotide phosphate and
  • added to a 2 mM riboflavin solution in deionized water and stored for 14 days at room temperature in a dry chamber without exposure to direct sunlight. The final concentration of SWCNTs in dispersion was 1 mg/mL. Then, the dispersions were processed with ultrasonic treatment using Branson 450 digital
PDF
Album
Supp Info
Full Research Paper
Published 22 Dec 2022

Utilizing the surface potential of a solid electrolyte region as the potential reference in Kelvin probe force microscopy

  • Nobuyuki Ishida

Beilstein J. Nanotechnol. 2022, 13, 1558–1563, doi:10.3762/bjnano.13.129

Graphical Abstract
  • 30 min using a hot plate in the glove box to remove a water layer that might be present on the surface. (a) Schematic diagram of the sample structure. Two Au electrodes and one metallic Li electrode are placed on the solid electrolyte sample (Li-ion conducting glass ceramic, LICGCTM). A poly(ethylene
PDF
Album
Full Research Paper
Published 19 Dec 2022

Induced electric conductivity in organic polymers

  • Konstantin Y. Arutyunov,
  • Anatoli S. Gurski,
  • Vladimir V. Artemov,
  • Alexander L. Vasiliev,
  • Azat R. Yusupov,
  • Danfis D. Karamov and
  • Alexei N. Lachinov

Beilstein J. Nanotechnol. 2022, 13, 1551–1557, doi:10.3762/bjnano.13.128

Graphical Abstract
  • without exposure to room atmosphere between cycles of formation of different layers. Glass or oxidized silicon were used as substrates. The substrates were preliminarily cleaned in ethanol and distilled water in an ultrasonic bath. The surfaces were hydrophilized by treating the substrates with
PDF
Album
Full Research Paper
Published 19 Dec 2022

Photoelectrochemical water oxidation over TiO2 nanotubes modified with MoS2 and g-C3N4

  • Phuong Hoang Nguyen,
  • Thi Minh Cao,
  • Tho Truong Nguyen,
  • Hien Duy Tong and
  • Viet Van Pham

Beilstein J. Nanotechnol. 2022, 13, 1541–1550, doi:10.3762/bjnano.13.127

Graphical Abstract
  • Province, Vietnam 10.3762/bjnano.13.127 Abstract TiO2 nanotube arrays (TNAs) have been studied for photoelectrochemical (PEC) water splitting. However, there are two major barriers of TNAs, including a low photo-response and the fast charge carrier recombination in TNAs, leading to poor photocatalytic
  • . The stability of the MoS2/TNAs heterojunction is higher than that of g-C3N4/TNAs. Keywords: band structure; g-C3N4/TiO2; MoS2/TiO2; photoelectrochemical; water splitting; Introduction Hydrogen energy has become a target pursued in the energy development strategies of many countries and regions
  • . Hydrogen is often synthesized via hydrocarbon compounds or water electrolysis [1]. Methods to produce hydrogen via electrochemical or photo-electrochemical (PEC) water splitting are considered a future direction of renewable fuel development [2][3][4]. The use of solar energy to activate catalytic
PDF
Album
Supp Info
Full Research Paper
Published 16 Dec 2022

Non-stoichiometric magnetite as catalyst for the photocatalytic degradation of phenol and 2,6-dibromo-4-methylphenol – a new approach in water treatment

  • Joanna Kisała,
  • Anna Tomaszewska and
  • Przemysław Kolek

Beilstein J. Nanotechnol. 2022, 13, 1531–1540, doi:10.3762/bjnano.13.126

Graphical Abstract
  • the available electrons, and, as a result, bromide ions can be released. The results confirm that magnetite is an effective photocatalyst in the degradation of halogenated aromatic pollutants. Keywords: magnetite; ozonolysis; persistent organic pollutants; photocatalysis; water treatment
  • ; Introduction Water is one of the most important natural resources on Earth. It helps to maintain environmental balance, but most of all, it is essential for human life and health. Although water covers more than 70% of our planet’s surface, only 2.5% is freshwater and less than 1% is accessible [1][2]. In the
  • context of water consumption, there is an environmental indicator called the water footprint, which represents the sum of direct water consumption and virtual consumption (i.e., the amount of water needed to produce food and other consumer goods) [3]. Water consumption calculated in this way may amount to
PDF
Album
Supp Info
Full Research Paper
Published 15 Dec 2022

A TiO2@MWCNTs nanocomposite photoanode for solar-driven water splitting

  • Anh Quynh Huu Le,
  • Ngoc Nhu Thi Nguyen,
  • Hai Duy Tran,
  • Van-Huy Nguyen and
  • Le-Hai Tran

Beilstein J. Nanotechnol. 2022, 13, 1520–1530, doi:10.3762/bjnano.13.125

Graphical Abstract
  • -603103, Tamil Nadu, India 10.3762/bjnano.13.125 Abstract A TiO2@MWCNTs (multi-wall carbon nanotubes) nanocomposite photoanode is prepared for photoelectrochemical water splitting in this study. The physical and photoelectrochemical properties of the photoanode are characterized using field emission
  • . The average STH conversion efficiency of the TiO2@MWCNTs electrode under solar exposure from 6 AM to 5 PM is 11.1%, 8.88 times higher than that of a TiO2 electrode. The findings suggested TiO2@MWCNTs is a feasible nanomaterial to fabricate the photoanode using photoelectrochemical water splitting
  • under solar irradiation. Keywords: multi-wall carbon nanotubes (MWCNTs); nanomaterials; photoelectrochemical; TiO2; water splitting; Introduction TiO2 is an excellent photochemical catalyst for environmental and chemical applications due to its good activity regarding numerous reduction and oxidation
PDF
Album
Full Research Paper
Published 14 Dec 2022

In search of cytotoxic selectivity on cancer cells with biogenically synthesized Ag/AgCl nanoparticles

  • Mitzi J. Ramírez-Hernández,
  • Mario Valera-Zaragoza,
  • Omar Viñas-Bravo,
  • Ariana A. Huerta-Heredia,
  • Miguel A. Peña-Rico,
  • Erick A. Juarez-Arellano,
  • David Paniagua-Vega,
  • Eduardo Ramírez-Vargas and
  • Saúl Sánchez-Valdes

Beilstein J. Nanotechnol. 2022, 13, 1505–1519, doi:10.3762/bjnano.13.124

Graphical Abstract
  • weighed and put into a coffee filter. Subsequently, an infusion was made with 1 L of distilled water in a Oster® brand coffee maker. The solution obtained was vacuum filtered and concentrated in a rotary evaporator at 50 °C, 250 rpm, and 42 mbar. Biosynthesis of Ag/AgCl nanoparticles Quantification of
  • biosynthesis of Ag/AgCl nanoparticles was carried out in a reflux system with a water bath at a controlled temperature. A proportion of 90% of AgNO3 salt (at a concentration of 10 mM) and 10% of pineapple peel extract (at a concentration of 10% w/v) was used. The synthesis was performed under constant stirring
PDF
Album
Full Research Paper
Published 13 Dec 2022

Hydroxyapatite–bioglass nanocomposites: Structural, mechanical, and biological aspects

  • Olga Shikimaka,
  • Mihaela Bivol,
  • Bogdan A. Sava,
  • Marius Dumitru,
  • Christu Tardei,
  • Beatrice G. Sbarcea,
  • Daria Grabco,
  • Constantin Pyrtsac,
  • Daria Topal,
  • Andrian Prisacaru,
  • Vitalie Cobzac and
  • Viorel Nacu

Beilstein J. Nanotechnol. 2022, 13, 1490–1504, doi:10.3762/bjnano.13.123

Graphical Abstract
  • one hour boiling of the samples in water was made. The samples were weighted in air before boiling, in air after boiling, and in water after boiling with a precision of 0.0006 g. The apparent density was calculated using the formula where ρa is the apparent density in g/cm3, m0 is the initial mass of
  • the samples in g, m2 is the mass of the samples in air after boiling in g, and m1 is the mass of the samples in water after boiling in g. The following formula was used for the calculation of the apparent porosity (open porosity), Pa: using the above annotations. The errors of measurement for density
PDF
Full Research Paper
Published 12 Dec 2022

Structural studies and selected physical investigations of LiCoO2 obtained by combustion synthesis

  • Monika Michalska,
  • Paweł Ławniczak,
  • Tomasz Strachowski,
  • Adam Ostrowski and
  • Waldemar Bednarski

Beilstein J. Nanotechnol. 2022, 13, 1473–1482, doi:10.3762/bjnano.13.121

Graphical Abstract
  • . Cobalt and lithium acetate salts were dissolved separately in small amounts of deionized water. Then, the solutions were mixed together and a solution of ᴅ-(+)-glucose was added. The prepared solutions were then evaporated until a gel was obtained. The resulting gel precursor was heated from 450 to 900
PDF
Album
Full Research Paper
Published 07 Dec 2022

Rapid and sensitive detection of box turtles using an electrochemical DNA biosensor based on a gold/graphene nanocomposite

  • Abu Hashem,
  • M. A. Motalib Hossain,
  • Ab Rahman Marlinda,
  • Mohammad Al Mamun,
  • Khanom Simarani and
  • Mohd Rafie Johan

Beilstein J. Nanotechnol. 2022, 13, 1458–1472, doi:10.3762/bjnano.13.120

Graphical Abstract
  • experiment, pH 7.4 was chosen, which is close to physiological pH, and a similar pH value was reported by Kusnin et al. [57] in hybridisation biosensing experiments. Selectivity of the electrochemical biosensor Electrodes with hybridised DNA were incubated in MB for 30 min, washed with deionised water, and
  • ssDNA (CK): 5′-TGTAGAATCAAGCATACTCCTAGTAAGGATC-3′ Non complementary (NC): 5′-CAGGAAGCCGAATGAACATTCGACGGCAGCT-3′ Management and storage of the probe and other synthetic DNA sequences The lyophilised DNA powder (obtained from the manufacturer) was processed and diluted with autoclaved deionised water to
  • make a 100 μM stock. The stock and diluted solutions were kept at −40 °C. For the preparation of a 10 μM reduced probe solution, 100 μL of the 100 μM thiol-modified probe solution was placed into 850 μL of autoclaved deionised water and mixed well. Then, 50 μL of 20 mM TCEP was added to the solution
PDF
Album
Supp Info
Full Research Paper
Published 06 Dec 2022

Facile preparation of Au- and BODIPY-grafted lipid nanoparticles for synergized photothermal therapy

  • Yuran Wang,
  • Xudong Li,
  • Haijun Chen and
  • Yu Gao

Beilstein J. Nanotechnol. 2022, 13, 1432–1444, doi:10.3762/bjnano.13.118

Graphical Abstract
  • are hydrophobic PTAs with rigid structure and poor water solubility [11][12]. Therefore, several lipid nanoparticulate drug delivery systems have been reported to encapsulate BODIPYs to improve their water solubility and photostability while retaining their original photothermal effects [13][14
  • . BDP was first dissolved in DMSO in a centrifuge tube to a concentration of 3.38 mM. The liquor was diluted 20 times with water and then sonicated for 10 min. The AB-LNPs was prepared by simply physical complexation. The diluted BDP aqueous suspension was then added drop by drop into the Au-LNPs
  • changes of water, BDP, Au-LNPs, and AB-LNPs with a BDP concentration of 100 μM and a Au concentration of 100 μM with laser irradiation (680 nm, 0.5 W/cm2) were also recorded for 10 min. The temperature of the samples for photothermal conversion measurements was recorded by an infrared thermal camera
PDF
Album
Full Research Paper
Published 02 Dec 2022

Orally administered docetaxel-loaded chitosan-decorated cationic PLGA nanoparticles for intestinal tumors: formulation, comprehensive in vitro characterization, and release kinetics

  • Sedat Ünal,
  • Osman Doğan and
  • Yeşim Aktaş

Beilstein J. Nanotechnol. 2022, 13, 1393–1407, doi:10.3762/bjnano.13.115

Graphical Abstract
  • the proliferation of cancer cells [32][33][34]. Its potent activity against a wide spectrum of cancers such as colon cancer, gastric cancer, breast cancer, recurrent ovarian cancer, and non-small cell lung cancer has been elucidated by in vitro and in vivo studies [35]. Its poor water solubility
  • continuously for 24 h with a magnetic stirrer and the organic phase was evaporated. Then the PLGA nanoparticles were precipitated by centrifugation at 10000 rpm for 45 min and washed four times with distilled water. DCX-PLGA NPs pellets were suspended in 2 mL of solution containing 5% (w/w) mannitol, frozen at
  • -PLGA NPs was examined in a release medium with progressively changing pH, reflecting the GIT environment. The real transit periods were examined with the dialysis membrane technique at 37 °C in a shaking water bath (100 rpm) under sink circumstances [10]. Release experiments were conducted by placing 3
PDF
Album
Full Research Paper
Published 23 Nov 2022

LED-light-activated photocatalytic performance of metal-free carbon-modified hexagonal boron nitride towards degradation of methylene blue and phenol

  • Nirmalendu S. Mishra and
  • Pichiah Saravanan

Beilstein J. Nanotechnol. 2022, 13, 1380–1392, doi:10.3762/bjnano.13.114

Graphical Abstract
  • times with DI water, and dried overnight at 60 °C. The commercially available HBN was used as a control sample. Characterization techniques A Rigaku Smart Lab high-resolution X-ray diffractometer (HR-XRD) equipped with a HyPix-3000 detector and Cu anode emitting Kα radiation was employed to obtain the
PDF
Album
Full Research Paper
Published 22 Nov 2022

Dry under water: air retaining properties of large-scale elastomer foils covered with mushroom-shaped surface microstructures

  • Matthias Mail,
  • Stefan Walheim,
  • Thomas Schimmel,
  • Wilhelm Barthlott,
  • Stanislav N. Gorb and
  • Lars Heepe

Beilstein J. Nanotechnol. 2022, 13, 1370–1379, doi:10.3762/bjnano.13.113

Graphical Abstract
  • Effect, the capability to keep a stable air layer when submerged under water. Such air layers are of great importance, e.g., for drag reduction (passive air lubrication), antifouling, sensor applications or oil–water separation. Some biological models, e.g., the floating fern Salvinia or the backswimmer
  • initially developed for a different purpose, due to their specific geometry at the microscale, are capable of stable air retention under water. We present first results concerning the capabilities of mushroom-shaped surface microstructures and show that this elastomer foil is able to stabilize a permanent
  • air layer under water for more than two weeks. Further, the stability of the air layer under pressure was investigated and these results are compared with the predicted theoretical values for air retention of microstructured surfaces. Here, we could show that they fit to the theoretical predictions
PDF
Album
Full Research Paper
Published 21 Nov 2022

Supramolecular assembly of pentamidine and polymeric cyclodextrin bimetallic core–shell nanoarchitectures

  • Alexandru-Milentie Hada,
  • Nina Burduja,
  • Marco Abbate,
  • Claudio Stagno,
  • Guy Caljon,
  • Louis Maes,
  • Nicola Micale,
  • Massimiliano Cordaro,
  • Angela Scala,
  • Antonino Mazzaglia and
  • Anna Piperno

Beilstein J. Nanotechnol. 2022, 13, 1361–1369, doi:10.3762/bjnano.13.112

Graphical Abstract
  • Pent was prepared at a 1:1 molar ratio using the classical method of organic film hydration (Figure 4A). In our study we employed Pent as a free base [19][26], slightly soluble in water (i.e., ≅30 µg/mL), instead of Pent isethionate salt used in the literature for the preparation of β-CD/Pent inclusion
  • nanoGSP; iii) a hyperchromic effect of the Pent band in nanoGSP, although it appears partially overlapped with the ascorbate band at 243 nm. The changes in the UV–vis spectra suggested the interactions of Pent with nanoGS components, and the increase of Pent absorbance in water clearly indicated the
  • ultrapure water. The results are reported as the mean of three separate measurements ± the standard deviation (SD). The morphological characterization was performed using a high-resolution TecnaiG2 F20 XTWIN TEM with a 200 kV accelerating voltage. NMR spectra were recorded on a Varian 500 MHz spectrometer
PDF
Album
Supp Info
Full Research Paper
Published 18 Nov 2022

Straight roads into nowhere – obvious and not-so-obvious biological models for ferrophobic surfaces

  • Wilfried Konrad,
  • Christoph Neinhuis and
  • Anita Roth-Nebelsick

Beilstein J. Nanotechnol. 2022, 13, 1345–1360, doi:10.3762/bjnano.13.111

Graphical Abstract
  • is described that started with a posed technical problem for which seemingly obvious biological models exist. The technical problem was to devise a ferrophobic surface that prevents the contact between the copper surface of a tuyère (a water cooled aeration pipe within a blast furnace) and liquid
  • iron. Therefore, biological external surfaces that strongly repel liquids appeared to be suitable, particularly the hair cover of the water fern Salvinia molesta and the surface of Collembola (an arthropod group). It turned out, however, that it was not feasible to realise the functional structures of
  • both biological models for the tuyère problem. Instead, a seemingly not obvious biological model was identified, namely micropores within the cell walls of water-transporting conduits of plants that connect the conduits to a three-dimensional flow network. These specially shaped pores are assumed to be
PDF
Album
Perspective
Published 17 Nov 2022

Near-infrared photoactive Ag-Zn-Ga-S-Se quantum dots for high-performance quantum dot-sensitized solar cells

  • Roopakala Kottayi,
  • Ilangovan Veerappan and
  • Ramadasse Sittaramane

Beilstein J. Nanotechnol. 2022, 13, 1337–1344, doi:10.3762/bjnano.13.110

Graphical Abstract
  • blade method, which was followed by sintering at 450 °C for 30 min as described earlier [8][9][10]. The glass plate was dipped in 0.12 M of titanium tetrachloride solution at 70 °C for 30 min and was then rinsed with distilled water thoroughly and dried at 60 °C. After that, the electrode was soaked for
PDF
Album
Full Research Paper
Published 14 Nov 2022

Recent trends in Bi-based nanomaterials: challenges, fabrication, enhancement techniques, and environmental applications

  • Vishal Dutta,
  • Ankush Chauhan,
  • Ritesh Verma,
  • C. Gopalkrishnan and
  • Van-Huy Nguyen

Beilstein J. Nanotechnol. 2022, 13, 1316–1336, doi:10.3762/bjnano.13.109

Graphical Abstract
  • fabrication techniques and enhancement in Bi-based semiconductor photocatalysts. Various environmental applications, such as H2 generation and elimination of water pollutants, are also discussed in terms of semiconductor photocatalysis. Future developments will be guided by the uses, issues, and possibilities
  • catalyze chemical processes and transform constantly recoverable solar energy into productive chemical energy [1]. Various semiconductor nanoparticles have been used as effective photocatalysts in essential photocatalytic applications such as wastewater treatment, water dissociation, and energy conversion
  • analogies, and future challenges of photocatalysts derived from bismuth-based nanomaterials are also discussed. There are many review reports on synthesis and enhancement techniques of Bi-based photocatalysts and the application of these photocatalysts in hydrogen generation, CO2 reduction, and water
PDF
Album
Review
Published 11 Nov 2022
Other Beilstein-Institut Open Science Activities