Search results

Search for "electrodes" in Full Text gives 588 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Exfoliation in a low boiling point solvent and electrochemical applications of MoO3

  • Matangi Sricharan,
  • Bikesh Gupta,
  • Sreejesh Moolayadukkam and
  • H. S. S. Ramakrishna Matte

Beilstein J. Nanotechnol. 2020, 11, 662–670, doi:10.3762/bjnano.11.52

Graphical Abstract
  • were mixed with 5 wt % of PVDF and stirred overnight in NMP to form a thick paste. The paste was used to make a thin electrode film on carbon paper (1.5 cm × 1.5 cm) and dried in an oven at 60 °C. To fabricate two-electrode supercapacitors, two such electrodes were sandwiched between battery-grade
  • properties of the exfoliated MoO3 nanosheets were evaluated using a three-electrode configuration and are shown in Figure 3. Figure 3a shows the cyclic voltammetry (CV) measurement of the electrodes recorded between −0.8 and −0.1 V with a scan rate of 50 mV/s. Initially, pristine exfoliated MoO3 sheets were
PDF
Album
Supp Info
Letter
Published 17 Apr 2020

Comparison of fresh and aged lithium iron phosphate cathodes using a tailored electrochemical strain microscopy technique

  • Matthias Simolka,
  • Hanno Kaess and
  • Kaspar Andreas Friedrich

Beilstein J. Nanotechnol. 2020, 11, 583–596, doi:10.3762/bjnano.11.46

Graphical Abstract
  • ]. Further information about the set-up with control experiments regarding the origin of the signal can be found in [34]. The ESM measurements were performed on micrometre-sized single particles of a cross-section of the electrodes cut as specified above. Results and Discussion Cell and cathode
  • capacity loss from first charge to first discharge is attributed to surface layer generation (anode: solid electrolyte interface, SEI; cathode: solid permeable interface, SPI) on both electrodes, since they were rinsed before the full-cell assembly. After the first cycle, the capacity stays constant (not
  • to visualize volume expansion of the electrodes. These results were used to link the local volume expansion of the material to its local activity. Following this assumption, a decrease of the overall ESM signal with ageing would imply a decrease of the electrochemical activity of the Li-ions in the
PDF
Album
Supp Info
Full Research Paper
Published 07 Apr 2020

Electrochemically derived functionalized graphene for bulk production of hydrogen peroxide

  • Munaiah Yeddala,
  • Pallavi Thakur,
  • Anugraha A and
  • Tharangattu N. Narayanan

Beilstein J. Nanotechnol. 2020, 11, 432–442, doi:10.3762/bjnano.11.34

Graphical Abstract
  • the surface area of the electrodes; and secondly, the Faradaic redox peaks in acidic CV curves, which is nearly absent under alkaline conditions. Under both conditions (alkaline and acidic), G-M1 shows the highest surface area and G-M4 showed the lowest. This systematic variation in the
  • Figure 3. The electrodes exhibit capacitive (double layer) behavior in N2-saturated electrolyte, while a sharp reduction peak corresponding to oxygen reduction in O2-saturated electrolyte is shown in all the cases. The intensity of the peak (peak current density) corresponds to the ORR process and varies
  • experiments were conducted using RRD electrodes where the disk current was kept at 0.358V vs RHE and the ring potential was kept at 1.5 V vs RHE. Figure 4d depicts the chronoamperograms of the ORR at the disk and H2O2 oxidation at the ring electrode for 1 h at 1600 rpm, which shows reasonable stability in the
PDF
Album
Supp Info
Full Research Paper
Published 09 Mar 2020

Implementation of data-cube pump–probe KPFM on organic solar cells

  • Benjamin Grévin,
  • Olivier Bardagot and
  • Renaud Demadrille

Beilstein J. Nanotechnol. 2020, 11, 323–337, doi:10.3762/bjnano.11.24

Graphical Abstract
  • charges. The latter can eventually reach the collection electrodes of the device. Here, the low-bandgap polymer PTB7 was used as the donor and the fullerene derivative PC71BM as the acceptor. In the BHJ configuration [26], the D and A materials should form two interpenetrated networks phase-segregated at
  • deposition system (Kurt J. Lesker) for deposition of Ca (20 nm, 1.0 Å∙s−1) and Al (100 nm, 2.0 Å∙s−1) top electrodes (10.18 ± 0.1 mm2). The electrical characterization was performed in a glovebox. Current-density–voltage (J–V) curves were measured using a Keithley 2400 source measure unit. The photocurrent
PDF
Album
Supp Info
Full Research Paper
Published 12 Feb 2020

Anomalous current–voltage characteristics of SFIFS Josephson junctions with weak ferromagnetic interlayers

  • Tairzhan Karabassov,
  • Anastasia V. Guravova,
  • Aleksei Yu. Kuzin,
  • Elena A. Kazakova,
  • Shiro Kawabata,
  • Boris G. Lvov and
  • Andrey S. Vasenko

Beilstein J. Nanotechnol. 2020, 11, 252–262, doi:10.3762/bjnano.11.19

Graphical Abstract
  • junctions. Finally we summarize the results in the last section (“Conclusion”). Model In this section we present the theoretical model we use in our studies. The geometry of the considered system is depicted in Figure 1. It consists of two superconducting electrodes and a pair of ferromagnetic interlayers
PDF
Album
Full Research Paper
Published 23 Jan 2020

High-performance asymmetric supercapacitor made of NiMoO4 nanorods@Co3O4 on a cellulose-based carbon aerogel

  • Meixia Wang,
  • Jing Zhang,
  • Xibin Yi,
  • Benxue Liu,
  • Xinfu Zhao and
  • Xiaochan Liu

Beilstein J. Nanotechnol. 2020, 11, 240–251, doi:10.3762/bjnano.11.18

Graphical Abstract
  • porous structure, the NiMoO4@Co3O4/CA ternary composite yields electrodes with an enhanced specific capacitance of 436.9 C/g at a current density of 0.5 A/g and an excellent rate capability of 70.7% capacitance retention at 5.0 A/g. Moreover, an advanced asymmetric supercapacitor (ASC) is assembled using
  • of the NiMoO4@Co3O4/CA electrode in a potential supercapacitor. The synthesized samples were used as working electrodes for electrochemical analysis. The electrochemical experiments were conducted by using a three-electrode testing system in a 2.0 M KOH solution. The reference electrode and the
  • rate (i ∼ v1/2) owing to the diffusion-controlled battery behavior. This is further confirmed by the linear change of the current of the CV redox peaks as a function of v1/2 (Figure S3, Supporting Information File 1). To further evaluate the charge storage ability of the electrodes, galvanostatic
PDF
Album
Supp Info
Full Research Paper
Published 21 Jan 2020

Nonequilibrium Kondo effect in a graphene-coupled quantum dot in the presence of a magnetic field

  • Levente Máthé and
  • Ioan Grosu

Beilstein J. Nanotechnol. 2020, 11, 225–239, doi:10.3762/bjnano.11.17

Graphical Abstract
  • transport phenomena in a quantum dot coupled to pure monolayer graphene electrodes under external magnetic fields for finite on-site Coulomb interaction. The system is described by the pseudogap Anderson Hamiltonian. We use the equation of motion technique to determine the retarded Green’s function of the
  • value even at the Dirac point. The influence of the on-site Coulomb interaction and the magnetic field on the transport properties of the system shows a tendency similar to the previous results obtained for quantum dots connected to metallic electrodes. Most remarkably, we find that the Kondo resonance
  • be realized by a molecular junction or a single quantum dot (QD) or many QDs in a particular arrangement coupled to charge reservoirs by metallic [10][11][12][13][14][15][16][17][18][19][20][21][22][23][24][25][26][27][28][29][30][31], ferromagnetic [32][33][34][35] or graphene electrodes [36][37][38
PDF
Album
Supp Info
Full Research Paper
Published 20 Jan 2020

Size effects of graphene nanoplatelets on the properties of high-density polyethylene nanocomposites: morphological, thermal, electrical, and mechanical characterization

  • Tuba Evgin,
  • Alpaslan Turgut,
  • Georges Hamaoui,
  • Zdenko Spitalsky,
  • Nicolas Horny,
  • Matej Micusik,
  • Mihai Chirtoc,
  • Mehmet Sarikanat and
  • Maria Omastova

Beilstein J. Nanotechnol. 2020, 11, 167–179, doi:10.3762/bjnano.11.14

Graphical Abstract
  • Alpha dielectric spectrometer supplied by Novocontrol Technologies GmbH. A BDS-1200 parallel-plate capacitor with two gold-plated electrodes was used as a test cell for the samples and provided by Novocontrol Technologies. The diameter and thickness of the samples was 20 mm and 0.5 mm, respectively. All
PDF
Album
Supp Info
Full Research Paper
Published 14 Jan 2020

Simple synthesis of nanosheets of rGO and nitrogenated rGO

  • Pallellappa Chithaiah,
  • Madhan Mohan Raju,
  • Giridhar U. Kulkarni and
  • C. N. R. Rao

Beilstein J. Nanotechnol. 2020, 11, 68–75, doi:10.3762/bjnano.11.7

Graphical Abstract
  • hybrid systems such as batteries [6], electrodes [7] and photodetectors [8]. In 1958, Hummer and Offeman developed a chemical method to synthesize graphene oxide by acid treatment of graphite [9]. The graphene oxide thus obtained contains oxygen functional groups (–CO–, –COC–) on the surface and edges of
  • , suggesting that the samples have ideal capacitor characteristics. However, the H-rGO sample shows a higher current density and hence a higher specific capacitance than rGO. The calculated specific capacitance values from the CV of the rGO and H-rGO electrodes at 5 mV·s−1 are 7 (not shown) and 139 F·g−1
PDF
Album
Supp Info
Full Research Paper
Published 07 Jan 2020

Antimony deposition onto Au(111) and insertion of Mg

  • Lingxing Zan,
  • Da Xing,
  • Abdelaziz Ali Abd-El-Latif and
  • Helmut Baltruschat

Beilstein J. Nanotechnol. 2019, 10, 2541–2552, doi:10.3762/bjnano.10.245

Graphical Abstract
  • use. The electrochemical deposition of antimony at the Au electrode was done in 0.25 mM Sb2O3 (99.999%, Aldrich) and 0.5 M H2SO4 electrolyte. A Au(111) electrode and an antimony-modified Au(111) electrode were used as working electrodes for Mg deposition measurements. Magnesium foil was used as a
  • cannot again be deoxidized in the potential range and time scale of the experiment. Figure 2 shows the cyclic voltammograms of Sb species on Au(111) electrodes which was induced by immersing the electrode surface into the Sb-containing electrolyte for 1, 3 and 5 min at open circuit potential in 0.1 M
  • . Magnesium deposition/dissolution on Au(111) with Sb-modified electrodes was investigated in MACC. Interestingly, at the Sb-modified Au electrode, a cathodic peak appears at 400 mV more positive than the onset potential of bulk deposition at the Au electrode. We propose that this potential shift is due to
PDF
Album
Supp Info
Full Research Paper
Published 18 Dec 2019

Synthesis and acetone sensing properties of ZnFe2O4/rGO gas sensors

  • Kaidi Wu,
  • Yifan Luo,
  • Ying Li and
  • Chao Zhang

Beilstein J. Nanotechnol. 2019, 10, 2516–2526, doi:10.3762/bjnano.10.242

Graphical Abstract
  • ). Fabrication and sensing test of gas sensors The hollow spheres of pure ZnFe2O4 or ZnFe2O4/rGO powder were mixed with deionized water to obtain a paste, which was then manually uniformly coated onto an Al2O3 ceramic plate (C-MAC Micro Technology Company, Belgium) equipped with heating electrodes (Pt) and gold
  • electrodes (Au) to fabricate sensing films. Subsequently, the sensors were dried at 120 °C for 12 h, and after further aging for 24 h at 180 °C, a series of ZnFe2O4/rGO gas sensors (different mass content of rGO: 0, 0.1, 0.25, 0.5 and 1 wt %) were obtained. Figure 1 is the schematic image of an electric
PDF
Album
Full Research Paper
Published 16 Dec 2019

Abrupt elastic-to-plastic transition in pentagonal nanowires under bending

  • Sergei Vlassov,
  • Magnus Mets,
  • Boris Polyakov,
  • Jianjun Bian,
  • Leonid Dorogin and
  • Vahur Zadin

Beilstein J. Nanotechnol. 2019, 10, 2468–2476, doi:10.3762/bjnano.10.237

Graphical Abstract
  • conductive network [14][15][16]. Ag NWs are a promising material for flexible transparent electrodes [17]. Plasmon propagation and the optical properties of Ag and Au NWs make them attractive for nanophotonics as waveguides for visible light [18][19][20][21][22][23]. In all these applications, NWs may
PDF
Album
Supp Info
Full Research Paper
Published 12 Dec 2019

Mobility of charge carriers in self-assembled monolayers

  • Zhihua Fu,
  • Tatjana Ladnorg,
  • Hartmut Gliemann,
  • Alexander Welle,
  • Asif Bashir,
  • Michael Rohwerder,
  • Qiang Zhang,
  • Björn Schüpbach,
  • Andreas Terfort and
  • Christof Wöll

Beilstein J. Nanotechnol. 2019, 10, 2449–2458, doi:10.3762/bjnano.10.235

Graphical Abstract
  • of charge carriers has been observed in field-effect transistors (FET) made from this compound [32]. Anthracene-2-thiol, obtained by functionalization of anthracene with a thiol group, was used to fabricate SAMs on the top of Au bottom electrodes, which resulted in a beneficial effect on the
PDF
Album
Supp Info
Full Research Paper
Published 11 Dec 2019

The role of Ag+, Ca2+, Pb2+ and Al3+ adions in the SERS turn-on effect of anionic analytes

  • Stefania D. Iancu,
  • Andrei Stefancu,
  • Vlad Moisoiu,
  • Loredana F. Leopold and
  • Nicolae Leopold

Beilstein J. Nanotechnol. 2019, 10, 2338–2345, doi:10.3762/bjnano.10.224

Graphical Abstract
  • +–halide–organic molecule is formed that allows a charge transfer between the metal surface and the molecule leading to a resonant Raman scattering effect [6][7][8]. Evidence for surface complexes were provided by several SERS experiments on silver electrodes [3][8], but also on colloidal silver
PDF
Album
Supp Info
Full Research Paper
Published 27 Nov 2019

Design and facile synthesis of defect-rich C-MoS2/rGO nanosheets for enhanced lithium–sulfur battery performance

  • Chengxiang Tian,
  • Juwei Wu,
  • Zheng Ma,
  • Bo Li,
  • Pengcheng Li,
  • Xiaotao Zu and
  • Xia Xiang

Beilstein J. Nanotechnol. 2019, 10, 2251–2260, doi:10.3762/bjnano.10.217

Graphical Abstract
  • construction of other high-performance metal disulfide electrodes for electrochemical energy storage. Keywords: annealing; double modification; high-performance electrodes; lithium–sulfur battery; molybdenum disulfide (MoS2); reduced graphene oxide (rGO); Introduction Lithium–sulfur (Li–S) batteries have
  • (3 mL) as the adsorbents. Ultraviolet–visible (UV–vis) absorption spectra of these diluted solutions were collected using a Shimadzu UV 2550 spectrophotometer. Cell assembly and electrochemical measurements The working electrodes were prepared by casting a slurry of 80 wt % active materials (MoS2-S
  • , C-MoS2/rGO-S, C-MoS2/rGO-4-S, C-MoS2/rGO-6-S, C-MoS2/rGO-8-S), 10 wt % acetylene black and 10 wt % polyvinylidene fiuoride (PVDF) in N-methyl-2-pyrrolidone (NMP) on an Al foil current collector. Then, the electrodes were dried in vacuum at 60 °C for 12 h. The electrode was manufactured in a coin
PDF
Album
Supp Info
Full Research Paper
Published 14 Nov 2019

Nontoxic pyrite iron sulfide nanocrystals as second electron acceptor in PTB7:PC71BM-based organic photovoltaic cells

  • Olivia Amargós-Reyes,
  • José-Luis Maldonado,
  • Omar Martínez-Alvarez,
  • María-Elena Nicho,
  • José Santos-Cruz,
  • Juan Nicasio-Collazo,
  • Irving Caballero-Quintana and
  • Concepción Arenas-Arrocena

Beilstein J. Nanotechnol. 2019, 10, 2238–2250, doi:10.3762/bjnano.10.216

Graphical Abstract
  • electrodes in dye-sensitized solar cells (DSSCs) [9][12][13], as electron acceptors or donors in inorganic or hybrid solar cells [10][14][15][16][17] and as second electron acceptors in organic photovoltaic cells (OPVs) [18]. An iron pyrite thin film used as a counter electrode showed a conversion efficiency
  • ) (PTB7) blended with [6,6]-phenyl C71-butyric acid methyl ester (PC71BM) have shown PCEs of >2% and >7%, respectively, with standard electrodes (Al, Ag) deposited through a high-vacuum evaporation process [26][27][28][29]. In our previous work [30][31][32][33], we used the eutectic Field’s metal (FM) as
  • OPV active layer, the harvesting solar energy is usually enhanced as well as the charge transport and the charge collection behavior at the electrodes, and in some cases, also the lifetime stability is increased. However, such effects depend on the type of the third compound and its concentration in
PDF
Album
Supp Info
Full Research Paper
Published 14 Nov 2019

A novel all-fiber-based LiFePO4/Li4Ti5O12 battery with self-standing nanofiber membrane electrodes

  • Li-li Chen,
  • Hua Yang,
  • Mao-xiang Jing,
  • Chong Han,
  • Fei Chen,
  • Xin-yu Hu,
  • Wei-yong Yuan,
  • Shan-shan Yao and
  • Xiang-qian Shen

Beilstein J. Nanotechnol. 2019, 10, 2229–2237, doi:10.3762/bjnano.10.215

Graphical Abstract
  • , Chongqing, 400715, China 10.3762/bjnano.10.215 Abstract Electrodes with high conductivity and flexibility are crucial to the development of flexible lithium-ion batteries. In this study, three-dimensional (3D) LiFePO4 and Li4Ti5O12 fiber membrane materials were prepared through electrospinning and directly
  • used as self-standing electrodes for lithium-ion batteries. The structure and morphology of the fibers, and the electrochemical performance of the electrodes and the full battery were characterized. The results show that the LiFePO4 and Li4Ti5O12 fiber membrane electrodes exhibit good rate and cycle
  • performance. In particular, the all-fiber-based gel-state battery composed of LiFePO4 and Li4Ti5O12 fiber membrane electrodes can be charged/discharged for 800 cycles at 1C with a retention capacity of more than 100 mAh·g−1 and a coulombic efficiency close to 100%. The good electrochemical performance is
PDF
Album
Supp Info
Full Research Paper
Published 13 Nov 2019

Ultrathin Ni1−xCoxS2 nanoflakes as high energy density electrode materials for asymmetric supercapacitors

  • Xiaoxiang Wang,
  • Teng Wang,
  • Rusen Zhou,
  • Lijuan Fan,
  • Shengli Zhang,
  • Feng Yu,
  • Tuquabo Tesfamichael,
  • Liwei Su and
  • Hongxia Wang

Beilstein J. Nanotechnol. 2019, 10, 2207–2216, doi:10.3762/bjnano.10.213

Graphical Abstract
  • ratio (active materials) of the two electrodes was determined by Equation 3 [23]: Where C+ and C− (mAh·g−1) are the mass-specific capacity of the Ni1−xCoxS2 and AC, respectively. The mass ratio was calculated of the Ni1−xCoxS2 to AC as 1:7. Energy density E (Wh·kg−1) and power density P (W·kg−1) of ASCs
  • were calculated according to Equation 4 and Equation 5 [24]: ΔV (V) and Δt (s) represent the potential range and the discharging period of the ASC, respectively. The capacitance Cm (F·g−1) is specific capacitance based on the mass loading of active materials in both electrodes. Results and Discussion
  • higher conductivity of the sulfide material [39]. Another critical parameter of supercapacitor electrodes is cycling stability. It can be seen from Figure 3d that the capacity increased in the first 50 cycles, which can be due to the wetting process of the electrode in the electrolyte [40]. After a total
PDF
Album
Supp Info
Full Research Paper
Published 11 Nov 2019

Use of data processing for rapid detection of the prostate-specific antigen biomarker using immunomagnetic sandwich-type sensors

  • Camila A. Proença,
  • Tayane A. Freitas,
  • Thaísa A. Baldo,
  • Elsa M. Materón,
  • Flávio M. Shimizu,
  • Gabriella R. Ferreira,
  • Frederico L. F. Soares,
  • Ronaldo C. Faria and
  • Osvaldo N. Oliveira Jr.

Beilstein J. Nanotechnol. 2019, 10, 2171–2181, doi:10.3762/bjnano.10.210

Graphical Abstract
  • -SPCE consists of eight working electrodes, reference and counter electrodes. On the working electrodes, magnetic nanoparticles with secondary antibodies with the enzyme horseradish peroxidase were immobilized for the indirect detection of PSA in a sandwich-type procedure. Under optimal conditions, the
  • ; nanoarchitectonics; information visualization; sandwich-type immunosensors; screen-printed electrodes; Introduction The prostate-specific antigen (PSA) used in clinical diagnosis is present in normal prostatic secretions, but its concentration is often elevated in prostate cancer patients. In spite of its lack of
  • carbon electrodes (INμ-SPCEs) showed limits of detection of 0.23 pg·mL−1 for PSA and 0.30 pg·mL−1 for IL-6, measured in the serum of prostate cancer patients [26]. Immunosensors to detect PSA include magnetic nanoparticles modified with gold [27], nitrodopamine functionalized iron oxide nanoparticles [3
PDF
Album
Supp Info
Full Research Paper
Published 06 Nov 2019

Review of advanced sensor devices employing nanoarchitectonics concepts

  • Katsuhiko Ariga,
  • Tatsuyuki Makita,
  • Masato Ito,
  • Taizo Mori,
  • Shun Watanabe and
  • Jun Takeya

Beilstein J. Nanotechnol. 2019, 10, 2014–2030, doi:10.3762/bjnano.10.198

Graphical Abstract
  • detection using clay materials intercalated with silacrown ethers, dimethylsila-14-crown-5 and dimethylsila-17-crown-6 [93]. The nanoengineered montmorillonite-based intercalation materials were included in poly(vinyl chloride)-based electrodes for potentiometric sensors towards alkali-metal ions in
  • solution. Ultrasensitive sensors for mercury ions were prepared by Li et al. who engineered suspended atomically thin black phosphorus between the source and drain electrodes [94]. Due to the avoidance of substrate scattering, the sensors with bridged black phosphorus exhibit a much improved signal-to
  • . The biocompatible nature of these nanoarchitectures is advantageous to favorably interface the bio-tissues and device electrodes. The dynamic motion of a living heart can be sensitively monitored without mechanical interference. This enables the direct evaluation of epicardial electrocardiogram
PDF
Album
Review
Published 16 Oct 2019

Facile synthesis of carbon nanotube-supported NiO//Fe2O3 for all-solid-state supercapacitors

  • Shengming Zhang,
  • Xuhui Wang,
  • Yan Li,
  • Xuemei Mu,
  • Yaxiong Zhang,
  • Jingwei Du,
  • Guo Liu,
  • Xiaohui Hua,
  • Yingzhuo Sheng,
  • Erqing Xie and
  • Zhenxing Zhang

Beilstein J. Nanotechnol. 2019, 10, 1923–1932, doi:10.3762/bjnano.10.188

Graphical Abstract
  • these two electrodes delivers a high energy density of 63.3 Wh·kg−1 at 1.6 kW·kg−1 and retains 83% of its initial capacitance after 5000 cycles. These results demonstrate that our simple aqueous reduction method to combine CNT and metal oxides reveals an exciting future in constructing high-performance
  • cathode were prepared. CNTs significantly improved the conductivity and enhanced the capacity of Fe2O3 up to 226 mAh·g−1 at 2 A·g−1, and capacity of NiO to 527 mAh·g−1 at 2 A·g−1. Furthermore, by assembling the two electrodes, an asymmetric supercapacitor (ASC) with a high energy density of 63.3 Wh·kg−1
  • membrane (140 μm thick) as the separator. To assemble the device with the best performance, charge balance between the positive and negative electrodes were considered by adjusting the mass loading of the active materials and verified by the areal ratio of CV at the same scan rate of 20 mV·s−1 (Supporting
PDF
Album
Supp Info
Full Research Paper
Published 23 Sep 2019

Oblique angle deposition of nickel thin films by high-power impulse magnetron sputtering

  • Hamidreza Hajihoseini,
  • Movaffaq Kateb,
  • Snorri Þorgeir Ingvarsson and
  • Jon Tomas Gudmundsson

Beilstein J. Nanotechnol. 2019, 10, 1914–1921, doi:10.3762/bjnano.10.186

Graphical Abstract
  • ], corrosion-resistant coatings [3][4], optically transparent conductive electrodes [5], contact devices [6], Li-storage materials [7], and as selective absorbers in solar thermal energy conversion [8]. Moreover, a number of nickel-containing alloys exploit the ferromagnetic properties of nickel such as NiTi
PDF
Album
Full Research Paper
Published 20 Sep 2019

Remarkable electronic and optical anisotropy of layered 1T’-WTe2 2D materials

  • Qiankun Zhang,
  • Rongjie Zhang,
  • Jiancui Chen,
  • Wanfu Shen,
  • Chunhua An,
  • Xiaodong Hu,
  • Mingli Dong,
  • Jing Liu and
  • Lianqing Zhu

Beilstein J. Nanotechnol. 2019, 10, 1745–1753, doi:10.3762/bjnano.10.170

Graphical Abstract
  • with twelve electrodes was used to distinguish the different wavelengths in the visible spectrum, demonstrating that 1T’-WTe2 shows promising application as an anisotropic photodetector. Results and Discussion Characterization of 1T’- WTe2 Figure 1a shows the typical orthorhombic crystalline structure
  • optical microscope. This was followed by e-beam lithography and lift-off processing, where 12 electrodes (20 nm Gr/40 nm Au) were fabricated on the same 1T’-WTe2 flake spaced at an angle of 30° along a chosen reference direction (0°) as shown in Figure 3a. Two strategies were taken to ensure consistent
  • contact resistance: 1) samples with uniform thickness were selected for device fabrication under the microscope; 2) a constant angular velocity (10 rpm) was kept when we evaporated electrodes onto the samples. To perform the angle-resolved DC conductance measurements, a fixed electrode was chosen and
PDF
Album
Correction
Full Research Paper
Published 20 Aug 2019

Tuning the performance of vanadium redox flow batteries by modifying the structural defects of the carbon felt electrode

  • Ditty Dixon,
  • Deepu Joseph Babu,
  • Aiswarya Bhaskar,
  • Hans-Michael Bruns,
  • Joerg J. Schneider,
  • Frieder Scheiba and
  • Helmut Ehrenberg

Beilstein J. Nanotechnol. 2019, 10, 1698–1706, doi:10.3762/bjnano.10.165

Graphical Abstract
  • reaction site or catalytic center in graphite is by doping it with heteroatoms such as B, N, or P. The heteroatom perturbs the electronic structure of the graphite layer subjected to doping, leading to enhanced polarization [14]. N-doped carbon-based electrodes have been successfully tested in VRFBs. For
  • especially on the positive electrode as it experiences a relatively higher potential. In fact, Derr et al. have observed an increase in the amount of functional groups on the surface of both negative and positive carbon felt electrodes after prolonged cycling [9]. Given that a higher potential is favorable
  • -treated electrode is higher than that with the heat-treated electrode. Therefore, for achieving the optimum VRFB performance, the electrodes, especially the anode, must be tuned for defects such as N-substitution as well as oxygen functionality (specifically –O–C=O groups). The present study predicts that
PDF
Album
Full Research Paper
Published 13 Aug 2019

Precise local control of liquid crystal pretilt on polymer layers by focused ion beam nanopatterning

  • Maxim V. Gorkunov,
  • Irina V. Kasyanova,
  • Vladimir V. Artemov,
  • Alena V. Mamonova and
  • Serguei P. Palto

Beilstein J. Nanotechnol. 2019, 10, 1691–1697, doi:10.3762/bjnano.10.164

Graphical Abstract
  • display-quality glass substrates covered with ca. 150 nm thin transparent ITO electrodes. Polyimide (PI) is deposited onto the substrates by a conventional routine combining a precursor spin-coating and annealing at 190 °C for 1 h, which produces a mechanically robust PI layer of 10–20 nm thickness. Next
PDF
Album
Full Research Paper
Published 12 Aug 2019
Other Beilstein-Institut Open Science Activities