Search results

Search for "precursor" in Full Text gives 587 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Nickel nanoparticles supported on a covalent triazine framework as electrocatalyst for oxygen evolution reaction and oxygen reduction reactions

  • Secil Öztürk,
  • Yu-Xuan Xiao,
  • Dennis Dietrich,
  • Beatriz Giesen,
  • Juri Barthel,
  • Jie Ying,
  • Xiao-Yu Yang and
  • Christoph Janiak

Beilstein J. Nanotechnol. 2020, 11, 770–781, doi:10.3762/bjnano.11.62

Graphical Abstract
  • immobilized on the CTFs via the decomposition of the metal precursor in the IL (Scheme 1). The composites were designated Ni/CTF-1-400-X and Ni/CTF-1-600-X, where X represents the weight percentage of nickel in the composite material based on flame atomic absorption spectroscopy (AAS). Nickel loadings of 20
  • to 35 wt % on CTF-1 were obtained. The initial Ni/CTF mass ratios were 1:2 and 1:1. Thus, a large fraction of the nickel precursor was indeed deposited on the CTF. The starting mass ratio of 1:2 (or 33 wt % Ni) yielded 20–22 wt % Ni/CTF-1; the ratio of 1:1 (corresponding to 50 wt % Ni) gave 33–35 wt
  • in a glovebox for 12 h. The mass of the nickel precursor was set to yield 0.5 or 1.0 wt % metal nanoparticles in IL, whereas 1.0 wt % CTF was used for all syntheses in IL dispersions. This dispersion was placed in a microwave (CEM Discover) and irradiated with a power of 50 W to 230 °C for 10 min
PDF
Album
Supp Info
Full Research Paper
Published 11 May 2020

Effect of Ag loading position on the photocatalytic performance of TiO2 nanocolumn arrays

  • Jinghan Xu,
  • Yanqi Liu and
  • Yan Zhao

Beilstein J. Nanotechnol. 2020, 11, 717–728, doi:10.3762/bjnano.11.59

Graphical Abstract
  • nanocolumns was deposited (300 cycles) on the AAO template using ALD (home-built) with TiCl4 as the precursor. The preparation of Ag-filled TiO2 nanocolumns (AFT) was as follows: A sample deposited with TiO2 was placed in a vacuum evaporation apparatus (Shen Yang, LN-1004A) and subjected to Ag deposition at a
PDF
Album
Full Research Paper
Published 05 May 2020

A novel dry-blending method to reduce the coefficient of thermal expansion of polymer templates for OTFT electrodes

  • Xiangdong Ye,
  • Bo Tian,
  • Yuxuan Guo,
  • Fan Fan and
  • Anjiang Cai

Beilstein J. Nanotechnol. 2020, 11, 671–677, doi:10.3762/bjnano.11.53

Graphical Abstract
  • a sol–gel precursor by adding tetraethyl orthosilicate (TEOS) to polyvinyl pyrrolidone (PVP), and then synthesized a silica/PVP nanofiber composite by electrospinning. The content of silica nanofibers in the composite is 9.1 wt %, and the CTE was decreased by ca. 40%. Jeyranpour et al. [13] studied
PDF
Album
Full Research Paper
Published 20 Apr 2020

Exfoliation in a low boiling point solvent and electrochemical applications of MoO3

  • Matangi Sricharan,
  • Bikesh Gupta,
  • Sreejesh Moolayadukkam and
  • H. S. S. Ramakrishna Matte

Beilstein J. Nanotechnol. 2020, 11, 662–670, doi:10.3762/bjnano.11.52

Graphical Abstract
  • ]. It is also reported that the exfoliation efficiency of layered materials may differ depending on the bulk precursor. To validate this, the exfoliation of MoO3 was carried out from two different precursors procured from different manufacturers. Similar concentrations of MoO3 dispersions were obtained
PDF
Album
Supp Info
Letter
Published 17 Apr 2020

Preparation, characterization and photocatalytic performance of heterostructured CuO–ZnO-loaded composite nanofiber membranes

  • Wei Fang,
  • Liang Yu and
  • Lan Xu

Beilstein J. Nanotechnol. 2020, 11, 631–650, doi:10.3762/bjnano.11.50

Graphical Abstract
  • . Carbonized PVDF/PAN CNFs have excellent mechanical properties due to the partial melting of PVDF after carbonization leading to point bonding. Therefore, blends of these two polymers were used as precursor for preparing the heterostructured CuO–ZnO-loaded CNF membranes (CNFMs) in our studies. In our previous
PDF
Album
Full Research Paper
Published 15 Apr 2020

Silver-decorated gel-shell nanobeads: physicochemical characterization and evaluation of antibacterial properties

  • Marta Bartel,
  • Katarzyna Markowska,
  • Marcin Strawski,
  • Krystyna Wolska and
  • Maciej Mazur

Beilstein J. Nanotechnol. 2020, 11, 620–630, doi:10.3762/bjnano.11.49

Graphical Abstract
  • incorporation of [Ag(NH3)2]+ complexes, followed by the reduction of the silver precursor with polyvinylpyrrolidone [23]. The resulting composite was examined with regard to its antimicrobial properties against Escherichia coli and Staphylococcus aureus bacteria. Similarly, Liao et al. obtained polystyrene
PDF
Album
Full Research Paper
Published 14 Apr 2020

Soybean-derived blue photoluminescent carbon dots

  • Shanshan Wang,
  • Wei Sun,
  • Dong-sheng Yang and
  • Fuqian Yang

Beilstein J. Nanotechnol. 2020, 11, 606–619, doi:10.3762/bjnano.11.48

Graphical Abstract
  • ] synthesized photoluminescent CDs of 1.5–4.5 nm in diameter from orange juice at 120 °C. Liu et al. [22] produced photoluminescent polymer nanodots of 3–5 nm in diameter by using grass as a precursor at 180 °C, and Zhu et al. [10] synthesized bifunctional blue-emission carbon nanodots with diameters of 13–40
  • the fluorescent quenching to the aggregation of CDs, which increased the particle size from 2.6 ± 0.2 nm to 4.4 ± 0.2 nm. However, there are few studies in the literature focusing on the comparison of the PL behavior of CDs made from the same biomass precursor with different synthetic or processing
PDF
Album
Supp Info
Full Research Paper
Published 09 Apr 2020

Interfacial charge transfer processes in 2D and 3D semiconducting hybrid perovskites: azobenzene as photoswitchable ligand

  • Nicole Fillafer,
  • Tobias Seewald,
  • Lukas Schmidt-Mende and
  • Sebastian Polarz

Beilstein J. Nanotechnol. 2020, 11, 466–479, doi:10.3762/bjnano.11.38

Graphical Abstract
  • perovskite phase a 1.0 M PbBr2 stock solution in DMF was prepared. 2.0 equiv of the appropriate Azo-(O)Cn ligand was added to the solution. Under vigorous stirring 0.2 mL of the precursor solution was added quickly into 30 mL DCM (n = 2) or acetone (n = 4, 12). The suspension was stirred for 1 h, then the
  • solution in dried triethylene glycol was prepared. For the preparation of the precursor MABr (0.9 equiv) and the appropriate Azo(O)Cn ligand (0.1 equiv) were dissolved and the solution was cooled for at least 1 h. Under vigorous stirring 0.2 mL of the precursor solution was added quickly into 30 mL DCM
PDF
Album
Supp Info
Full Research Paper
Published 17 Mar 2020

An advanced structural characterization of templated meso-macroporous carbon monoliths by small- and wide-angle scattering techniques

  • Felix M. Badaczewski,
  • Marc O. Loeh,
  • Torben Pfaff,
  • Dirk Wallacher,
  • Daniel Clemens and
  • Bernd M. Smarsly

Beilstein J. Nanotechnol. 2020, 11, 310–322, doi:10.3762/bjnano.11.23

Graphical Abstract
  • physisorption was applied, using deuterated p-xylene (DPX) as a contrast-matching agent in the neutron scattering process. The impact of the carbon precursor on the structural order on an atomic scale in terms of size and disorder of the carbon microstructure, on the nanopore structure, and on the template
  • porosity on the precursor materials is expected as some materials are better graphitizable than others. For instance, resin-based carbon materials are not graphitizable, while pitch-based carbon materials develop a comparably high structural order upon heat treatment and can be converted into graphite. The
  • main approaches to influence the carbon structure are the choice of the carbon precursor and the applied heat treatment temperature for carbonization or graphitization. These two factors have the highest impact on the resulting sp2-hybridized microstructure. Since the porosity mainly consists of
PDF
Album
Supp Info
Correction
Full Research Paper
Published 10 Feb 2020

Understanding nanoparticle flow with a new in vitro experimental and computational approach using hydrogel channels

  • Armel Boutchuen,
  • Dell Zimmerman,
  • Abdollah Arabshahi,
  • John Melnyczuk and
  • Soubantika Palchoudhury

Beilstein J. Nanotechnol. 2020, 11, 296–309, doi:10.3762/bjnano.11.22

Graphical Abstract
  • synthesis, the ligand mixture of PVP and PEI was heated to dissolution in the solvent TREG at 90 °C for 10 min. The iron precursor, Fe(acac)3 was subsequently added to this reactant mixture and thermally decomposed at 290 °C for 1 h to form the iron oxide NPs. The different biocompatible iron oxide NP
PDF
Album
Supp Info
Full Research Paper
Published 06 Feb 2020

Facile biogenic fabrication of hydroxyapatite nanorods using cuttlefish bone and their bactericidal and biocompatibility study

  • Satheeshkumar Balu,
  • Manisha Vidyavathy Sundaradoss,
  • Swetha Andra and
  • Jaison Jeevanandam

Beilstein J. Nanotechnol. 2020, 11, 285–295, doi:10.3762/bjnano.11.21

Graphical Abstract
  • nontoxicity, worldwide availability and low production cost of cuttlefish bone products makes them an excellent calcium carbonate precursor for the fabrication of hydroxyapatite. In the present study, a novel oil-bath-mediated precipitation method was introduced for the synthesis of hydroxyapatite (Hap
  • ) nanorods using cuttlefish bone powder as a precursor (CB-Hap NRs). The obtained CB-Hap NRs were investigated using transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and thermogravimetric analysis (TGA) techniques to evaluate their
  • spectrum of aragonite cuttlefish bone (CB), calcite, and hydroxyapatite (Hap) nanorods using cuttlefish bone powder as a precursor (CB-Hap NRs). The impurity peaks are indicated by an “x”. FTIR spectra of cuttlefish bone and hydroxyapatite (Hap) nanorods using cuttlefish bone powder as a precursor (CB-Hap
PDF
Album
Full Research Paper
Published 04 Feb 2020

High-performance asymmetric supercapacitor made of NiMoO4 nanorods@Co3O4 on a cellulose-based carbon aerogel

  • Meixia Wang,
  • Jing Zhang,
  • Xibin Yi,
  • Benxue Liu,
  • Xinfu Zhao and
  • Xiaochan Liu

Beilstein J. Nanotechnol. 2020, 11, 240–251, doi:10.3762/bjnano.11.18

Graphical Abstract
  • on the above considerations, we present a simple scalable strategy to fabricate an integrated NiMoO4@Co3O4 hierarchical porous structure aligned on CA, which is derived from a cellulose precursor, to be applied in an advanced asymmetric supercapacitor (ASC). The NiMoO4 nanorods originated from ZIF-67
  • aerogel precursor, which was produced from microcrystalline cellulose (MC). Second, the produced CA was used as the backbone for the growth of NiMoO4 nanorods employing a hydrothermal method followed by heat treatment. By this approach, NiMoO4/CA composites were obtained, in which the NiMoO4 nanorods
  • uniformly filled the 3D network of CA, providing plenty of sites for coupling with ZIF-67. Third, ZIF-67 was in situ crystallized on the surface of the NiMoO4/CA skeleton by a hydrothermal method. Finally, after the pyrolysis of the NiMoO4@ZIF-67/CA precursor at 350 °C for 2 h under air atmosphere, the
PDF
Album
Supp Info
Full Research Paper
Published 21 Jan 2020

Simple synthesis of nanosheets of rGO and nitrogenated rGO

  • Pallellappa Chithaiah,
  • Madhan Mohan Raju,
  • Giridhar U. Kulkarni and
  • C. N. R. Rao

Beilstein J. Nanotechnol. 2020, 11, 68–75, doi:10.3762/bjnano.11.7

Graphical Abstract
  • any solvents, metal catalysts, reagents and hazardous chemicals. Similarly, N-rGO nanosheets have also been synthesized using glycine as precursor. Results and Discussion The typical XRD patterns of rGO and N-rGO nanosheets are shown in Figure 1. The XRD pattern of the as-prepared rGO (Figure 1a
  • oxygen atmosphere. The sugar undergoes dehydration, producing a black foam in ca. 7 min. Finally, the resultant product was collected for further analysis. A similar procedure was followed to prepare N-rGO using glycine as precursor. Hydrogen treatment of rGO nanosheets Hydrogen-treated reduced graphene
PDF
Album
Supp Info
Full Research Paper
Published 07 Jan 2020

Recent progress in perovskite solar cells: the perovskite layer

  • Xianfeng Dai,
  • Ke Xu and
  • Fanan Wei

Beilstein J. Nanotechnol. 2020, 11, 51–60, doi:10.3762/bjnano.11.5

Graphical Abstract
  • [29][30]. Here, some common and effective methods are introduced. Additives As is now well known, introducing additives to perovskite precursor solutions is a common way to optimize the film morphology and enhance the crystalline quality. Wang et al. [31] demonstrated a method to achieve fast
  • formation and crystallization of perovskite films by incorporating hydrobromic acid (HBr) into the perovskite precursor solutions. Here, the halogen ion, a strong donor, can interact strongly with Pb2+ to form a homogeneous solution, which is beneficial for the swift growth of high-quality films. A
  • over time is summarized in Figure 3. Spray coating Spray coating is the fastest method of obtaining scalable perovskite layers providing a high coating rate in a continuous process. For the first time, Lidzey et al. [43] used the ultrasonic spray coating technique to coat a precursor solution
PDF
Album
Review
Published 06 Jan 2020

Gold and silver dichroic nanocomposite in the quest for 3D printing the Lycurgus cup

  • Lars Kool,
  • Floris Dekker,
  • Anton Bunschoten,
  • Glen J. Smales,
  • Brian R. Pauw,
  • Aldrik H. Velders and
  • Vittorio Saggiomo

Beilstein J. Nanotechnol. 2020, 11, 16–23, doi:10.3762/bjnano.11.2

Graphical Abstract
  • exposing a solution of the silver precursor, sodium citrate, and a photopolymer initiator to sunlight for four months. When the same starting solution was exposed to incandescent light or xenon light to decrease the synthesis time, the final AgNP solutions presented different colorations. The dichroic
  • , ending in a yellow transparent solution. Synthesis of AuNP The AuNP were synthesized using the Standard Turkevich method [16]. In brief, 95 mL of 0.14 mM gold precursor solution (0.133 mL of 0.1 M HAuCl4 in 95 mL of DI water) was heated to 100 °C. The reduction of the gold precursor solution was
PDF
Album
Supp Info
Full Research Paper
Published 02 Jan 2020

Synthesis of amorphous and graphitized porous nitrogen-doped carbon spheres as oxygen reduction reaction catalysts

  • Maximilian Wassner,
  • Markus Eckardt,
  • Andreas Reyer,
  • Thomas Diemant,
  • Michael S. Elsaesser,
  • R. Jürgen Behm and
  • Nicola Hüsing

Beilstein J. Nanotechnol. 2020, 11, 1–15, doi:10.3762/bjnano.11.1

Graphical Abstract
  • of N sites, which influence the ORR activity even if they are not the active ORR sites themselves [27]. The N content depends on the amount of nitrogen in the precursor, the N(C) precursor concentration, the reaction temperature as well as the duration of the doping treatment. During ammonia
PDF
Album
Full Research Paper
Published 02 Jan 2020

Self-assembly of a terbium(III) 1D coordination polymer on mica

  • Quentin Evrard,
  • Giuseppe Cucinotta,
  • Felix Houard,
  • Guillaume Calvez,
  • Yan Suffren,
  • Carole Daiguebonne,
  • Olivier Guillou,
  • Andrea Caneschi,
  • Matteo Mannini and
  • Kevin Bernot

Beilstein J. Nanotechnol. 2019, 10, 2440–2448, doi:10.3762/bjnano.10.234

Graphical Abstract
  • ceric oxide [38] surfaces and is favored by the presence of moisture [35]. As far as surface deposits are concerned, the epitaxial orientation of tungsten oxide (WO3) nanowires upon deposition on air-cleaved mica [21] has been linked to the formation of K2CO3 acting as a precursor for the pure WO3
  • nanowires. For [Tb(hfac)3·2H2O]n@mica a similar growth of the nanochains along preferential directions on the mica substrate is observed. However, it is very unlikely that K2CO3 acts as a precursor for our compound making this hypothesis the less accurate. The second hypothesis, which we consider more
  • report on highly luminescent and magnetic terbium one-dimensional coordination polymers on a mica substrate with the possible formula [Tb(hfac)3·2H2O]n@mica. These deposits can be obtained from [Tb(hfac)3·2H2O]n, which is a standard precursor to build luminescent and magnetic molecules. Its high
PDF
Album
Supp Info
Full Research Paper
Published 10 Dec 2019

pH-Controlled fluorescence switching in water-dispersed polymer brushes grafted to modified boron nitride nanotubes for cellular imaging

  • Saban Kalay,
  • Yurij Stetsyshyn,
  • Volodymyr Donchak,
  • Khrystyna Harhay,
  • Ostap Lishchynskyi,
  • Halyna Ohar,
  • Yuriy Panchenko,
  • Stanislav Voronov and
  • Mustafa Çulha

Beilstein J. Nanotechnol. 2019, 10, 2428–2439, doi:10.3762/bjnano.10.233

Graphical Abstract
  • ) and Fe2O3 (0.166 g) [25]. Briefly, the precursor mixture was transferred to an alumina boat and preheated at 180 °C for 15 min and then the alumina boat was placed into the center of the tubular furnace (Protherm, Furnaces PTF 14/50/450). The BNNT synthesis was performed under saturated NH3 atmosphere
PDF
Album
Supp Info
Full Research Paper
Published 10 Dec 2019

Air oxidation of sulfur mustard gas simulants using a pyrene-based metal–organic framework photocatalyst

  • Ghada Ayoub,
  • Mihails Arhangelskis,
  • Xuan Zhang,
  • Florencia Son,
  • Timur Islamoglu,
  • Tomislav Friščić and
  • Omar K. Farha

Beilstein J. Nanotechnol. 2019, 10, 2422–2427, doi:10.3762/bjnano.10.232

Graphical Abstract
  • an active photocatalyst, where the pyrene-based linkers are expected to play the role of photosensitizers responsible for singlet oxygen production under UV irradiation, several control studies were performed to firmly establish the role of the linker. We explored the ability of pure linker precursor
PDF
Album
Supp Info
Full Research Paper
Published 09 Dec 2019

Semitransparent Sb2S3 thin film solar cells by ultrasonic spray pyrolysis for use in solar windows

  • Jako S. Eensalu,
  • Atanas Katerski,
  • Erki Kärber,
  • Lothar Weinhardt,
  • Monika Blum,
  • Clemens Heske,
  • Wanli Yang,
  • Ilona Oja Acik and
  • Malle Krunks

Beilstein J. Nanotechnol. 2019, 10, 2396–2409, doi:10.3762/bjnano.10.230

Graphical Abstract
  • detected, which is an expected result when crystalline Sb2S3 is formed [28][46][49]. No traces of additional phases were detected by either XRD or Raman in any glass/ITO/TiO2/Sb2S3 samples. Chlorine, which could originate from the SbCl3 precursor, was not detected by energy-dispersive X-ray spectroscopy
PDF
Album
Supp Info
Full Research Paper
Published 06 Dec 2019

Polyvinylpyrrolidone as additive for perovskite solar cells with water and isopropanol as solvents

  • Chen Du,
  • Shuo Wang,
  • Xu Miao,
  • Wenhai Sun,
  • Yu Zhu,
  • Chengyan Wang and
  • Ruixin Ma

Beilstein J. Nanotechnol. 2019, 10, 2374–2382, doi:10.3762/bjnano.10.228

Graphical Abstract
  • paper, we describe the preparation of perovskite solar cells from an aqueous solution of lead nitrate as precursor under ambient conditions. In order to improve the photoelectric performance of the PSCs, PVP was added to the precursor solution. A combination of SEM, EIS, PL, UV, and other
  • whole process was carried out under ambient conditions. Thus, our preparation method involves less toxic substances and is more environmentally friendly. Compared with previous preparation methods using aqueous lead nitrate solution as a precursor, our method can improve the photovoltaic performance of
  • -Fermi level in the contacted perovskite and electron transfer material, but also by the defect-induced recombination in the electron transport channels [33]. It is clear that perovskite solar cells using a PVP-containing aqueous lead nitrate precursor solution will lead to an increase in Voc. The Voc of
PDF
Album
Full Research Paper
Published 05 Dec 2019

Design and facile synthesis of defect-rich C-MoS2/rGO nanosheets for enhanced lithium–sulfur battery performance

  • Chengxiang Tian,
  • Juwei Wu,
  • Zheng Ma,
  • Bo Li,
  • Pengcheng Li,
  • Xiaotao Zu and
  • Xia Xiang

Beilstein J. Nanotechnol. 2019, 10, 2251–2260, doi:10.3762/bjnano.10.217

Graphical Abstract
  • storage performance. In this work, the as-synthesized C-MoS2/rGO-S electrodes did not show a clear improvement compared with pristine MoS2. This may be attributed to the higher concentration of the precursor during the synthesis process, insufficient carbonation of glucose and relatively poor
PDF
Album
Supp Info
Full Research Paper
Published 14 Nov 2019

Nontoxic pyrite iron sulfide nanocrystals as second electron acceptor in PTB7:PC71BM-based organic photovoltaic cells

  • Olivia Amargós-Reyes,
  • José-Luis Maldonado,
  • Omar Martínez-Alvarez,
  • María-Elena Nicho,
  • José Santos-Cruz,
  • Juan Nicasio-Collazo,
  • Irving Caballero-Quintana and
  • Concepción Arenas-Arrocena

Beilstein J. Nanotechnol. 2019, 10, 2238–2250, doi:10.3762/bjnano.10.216

Graphical Abstract
  • ) precursors were used to obtain the FeS2 NCs. The iron precursor was dissolved with octadecylamine at 120 °C for 1 h under argon atmosphere. Sulfur was dissolved with diphenyl ether at 70 °C for 1 h under argon gas. Then sulfur/diphenyl ether solution was added to the iron-octadecylamine complex. The solution
PDF
Album
Supp Info
Full Research Paper
Published 14 Nov 2019

A novel all-fiber-based LiFePO4/Li4Ti5O12 battery with self-standing nanofiber membrane electrodes

  • Li-li Chen,
  • Hua Yang,
  • Mao-xiang Jing,
  • Chong Han,
  • Fei Chen,
  • Xin-yu Hu,
  • Wei-yong Yuan,
  • Shan-shan Yao and
  • Xiang-qian Shen

Beilstein J. Nanotechnol. 2019, 10, 2229–2237, doi:10.3762/bjnano.10.215

Graphical Abstract
  • : 0.007 mol of Fe(NO3)3·9H2O and C2H3O2Li·2H2O, H3PO4 were dissolved in 29 g of N,N-dimethylformamide (DMF) to obtain solution A; 4 g of polyacrylonitrile (PAN) and 2 g of polyvinylpyrrolidone (PVP) were dissolved in 29 g of DMF to obtain solution B. A precursor spinning solution for the LiFePO4 nanofiber
  • membrane is obtained after mixing A and B solutions. From the precursor solution a precursor fiber membrane was formed under a voltage of 25 kV, which was followed by a pre-oxidation at 260 °C for 2 h and then calcination at 800 °C for 10 h in N2 atmosphere (Figure 2c,d). Li4Ti5O12: 0.01 mol tetra-n-butyl
  • titanate (C16H36O4Ti), 0.9593 g C2H3O2Li·2H2O, and 0.25 mL HNO3 were dissolved in 29 g of N,N-dimethylformamide (DMF) to obtain solution A; 4 g of polyacrylonitrile (PAN) and 2 g of polyvinylpyrrolidone (PVP) were dissolved in 29 g of DMF to obtain solution B. A precursor spinning solution for the
PDF
Album
Supp Info
Full Research Paper
Published 13 Nov 2019

Ultrathin Ni1−xCoxS2 nanoflakes as high energy density electrode materials for asymmetric supercapacitors

  • Xiaoxiang Wang,
  • Teng Wang,
  • Rusen Zhou,
  • Lijuan Fan,
  • Shengli Zhang,
  • Feng Yu,
  • Tuquabo Tesfamichael,
  • Liwei Su and
  • Hongxia Wang

Beilstein J. Nanotechnol. 2019, 10, 2207–2216, doi:10.3762/bjnano.10.213

Graphical Abstract
  • , which makes it difficult to compare the electrochemical performance among the different nanostructures of transition metal chalcogenides. Herein, we have fabricated ultrathin Ni1−xCoxS2 nanoflakes by sulfurising a NiCo oxide precursor. We have found that the as-prepared Ni1−xCoxS2 nanocomposites well
  • without any purification. All other chemicals were purchased from Sigma-Aldrich. Synthesis of Ni1.7Co1.3O4 powder precursor The Ni1.7Co1.3O4 precursor was prepared by a facile two-step method. In a solvothermal procedure, similarly to [19], 10 mmol·L−1 nickel nitrate hexahydrate, 10 mmol·L−1 cobalt
  • structure of the precursor Ni1.7Co1.3O4 (Supporting Information File 1, Figure S2b–d) is maintained through this facile calcination method. Similarly, Ni1.7Co1.3O4 inherits the overall morphology of pristine NiCo-LDHs [19], which proves the microstructure was maintained during the calcination process
PDF
Album
Supp Info
Full Research Paper
Published 11 Nov 2019
Other Beilstein-Institut Open Science Activities