Search results

Search for "AFM" in Full Text gives 703 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Thickness dependent oxidation in CrCl3: a scanning X-ray photoemission and Kelvin probe microscopies study

  • Shafaq Kazim,
  • Rahul Parmar,
  • Maryam Azizinia,
  • Matteo Amati,
  • Muhammad Rauf,
  • Andrea Di Cicco,
  • Seyed Javid Rezvani,
  • Dario Mastrippolito,
  • Luca Ottaviano,
  • Tomasz Klimczuk,
  • Luca Gregoratti and
  • Roberto Gunnella

Beilstein J. Nanotechnol. 2025, 16, 749–761, doi:10.3762/bjnano.16.58

Graphical Abstract
  • Cl and Cr core levels at room temperature (RT). By monitoring the core levels and valence band spectra at various spatial resolutions (≥0.13 μm), we obtained quantitative maps of the chemical composition to correlate these maps with the thicknesses measured by AFM. Additionally, we investigated the
  • correlation between the microscopic results and the surface potential of CrCl3 flakes at the nanoscale level using Kelvin probe force microscopy (KPFM) [28]. KPFM is mainly employed to measure the local contact potential difference between the conductive AFM tip and the sample, allowing for high-resolution
  • mapping of the work function and surface atomic states [29]. This technique establishes a correlation between the valence band photoemission data and the morphological information, offering insights into the position of the conduction band [30]. Results and Discussion Optical contrast and AFM It is well
PDF
Album
Supp Info
Full Research Paper
Published 02 Jun 2025

Nanostructured materials characterized by scanning photoelectron spectromicroscopy

  • Matteo Amati,
  • Alexey S. Shkvarin,
  • Alexander I. Merentsov,
  • Alexander N. Titov,
  • María Taeño,
  • David Maestre,
  • Sarah R. McKibbin,
  • Zygmunt Milosz,
  • Ana Cremades,
  • Rainer Timm and
  • Luca Gregoratti

Beilstein J. Nanotechnol. 2025, 16, 700–710, doi:10.3762/bjnano.16.54

Graphical Abstract
  • suitable substrates for characterization by scanning probe microscopy and SPEM. An atomic force microscopy (AFM) image of a typical InP p–n junction nanowire is shown in Figure 2a, confirming a homogeneous shape with a nanowire length of about 2.5 µm and a diameter of about 200 nm, fluctuating only by a
  • . Titov, “Morphology and composition of nanoinclusions in (Fe, Ni)0.25TiSe2“, article no. 115821, Copyright (2022), with permission from Elsevier. This content is not subject to CC BY 4.0. Surface characterization of InP p–n junction nanowires: a) sketched structure (top), AFM image (middle), and
PDF
Album
Review
Published 23 May 2025

High-temperature epitaxial growth of tantalum nitride thin films on MgO: structural evolution and potential for SQUID applications

  • Michelle Cedillo Rosillo,
  • Oscar Contreras López,
  • Jesús Antonio Díaz,
  • Agustín Conde Gallardo and
  • Harvi A. Castillo Cuero

Beilstein J. Nanotechnol. 2025, 16, 690–699, doi:10.3762/bjnano.16.53

Graphical Abstract
  • . Atomic force microscopy (AFM, XE-70 Park Systems) in contact mode was used to study the surface morphology of the films. The synthesis protocol used in this study was modified from the work reported by Quintanar-Zamora et al. [15] by varying the substrate temperature and the nitrogen pressure. Results
  • makes this film an excellent candidate for superconducting applications, particularly in devices such as superconducting quantum interference devices (SQUIDs). Figure 7 presents an AFM image revealing the low surface roughness (2.2 nm) of even the film deposited at an elevated growth temperature of 850
  • potential of thin TaN films for integration into advanced superconducting applications. AFM analysis confirmed the smooth surface morphology of the films, suggesting that the deposition parameters significantly influence both the structural and superconducting properties of the TaN thin films, but not the
PDF
Album
Full Research Paper
Published 22 May 2025

The impact of tris(pentafluorophenyl)borane hole transport layer doping on interfacial charge extraction and recombination

  • Konstantinos Bidinakis and
  • Stefan A. L. Weber

Beilstein J. Nanotechnol. 2025, 16, 678–689, doi:10.3762/bjnano.16.52

Graphical Abstract
  • scanning electron microscopy (SEM) and atomic force microscopy (AFM) images (See Supporting Information File 1, Section 4). The lateral resolution for both AFM and SEM measurements is a few nanometers. The AFM channel that exhibited the clearest contrast between the layers was the amplitude error signal
  • (Supporting Information File 1, Figure S10). In Figure 5a–d we again identified the charge separating junctions in each cell, as calibrated by the AFM and SEM images (Supporting Information File 1, Figure S4). In the cells that use spiro-OMeTAD as HTL, we can identify that positive charges get separated at
PDF
Album
Supp Info
Full Research Paper
Published 21 May 2025

Nanoscale capacitance spectroscopy based on multifrequency electrostatic force microscopy

  • Pascal N. Rohrbeck,
  • Lukas D. Cavar,
  • Franjo Weber,
  • Peter G. Reichel,
  • Mara Niebling and
  • Stefan A. L. Weber

Beilstein J. Nanotechnol. 2025, 16, 637–651, doi:10.3762/bjnano.16.49

Graphical Abstract
  • nanoscale systems across materials science, biology, and nanotechnology, complementing established methods in the field. Keywords: atomic force microscopy; capacitance gradients; dielectric constant; dielectric spectroscopy; heterodyne frequency mixing; Kelvin probe force microscopy; multifrequency AFM
  • features. Scanning probe techniques have revolutionized nanoscale material characterization. Since the invention of scanning tunneling microscopy (STM) [16] and atomic force microscopy (AFM) [17], various electric force-based methods, called electrostatic force microscopy (EFM) methods, have emerged to
  • study materials such as perovskite solar cells [18][19][20] and Li-ion batteries [21][22][23]. AFM enables simultaneous acquisition of topographic and electronic data by applying AC or DC voltages across the tip–sample gap, allowing for the detection of capacitive forces [24][25] or contact potential
PDF
Album
Supp Info
Full Research Paper
Published 08 May 2025

Electron beam-based direct writing of nanostructures using a palladium β-ketoesterate complex

  • Chinmai Sai Jureddy,
  • Krzysztof Maćkosz,
  • Aleksandra Butrymowicz-Kubiak,
  • Iwona B. Szymańska,
  • Patrik Hoffmann and
  • Ivo Utke

Beilstein J. Nanotechnol. 2025, 16, 530–539, doi:10.3762/bjnano.16.41

Graphical Abstract
  • Oxford Instruments. EDX was performed with 6 keV electron beam at 500 pA, and the signals were collected for 60 s. Atomic force microscopy (AFM) measurements were conducted on an NT-MDT NTEGRA Spectra system, and data was analyzed using Gwyddion and Origin software. To accurately obtain the composition
  • topography and overall uniformity of the deposit (Figure 2a). The thickness profile extracted from the AFM data (Figure 2b) shows a dip at the center of the deposit. This shape is typical of the spiral scanning method when the rate of adsorbate dissociation exceeds the rate of adsorbate supply. The resulting
  • , calculated using the method of Kanaya and Okayama [46], is outlined with a yellow border. The prominent silicon peak indicates that thin film correction of EDX data is necessary for the accurate quantification of the thin Pd-containing FEB deposit. Using thickness values from AFM measurements and Stratagem
PDF
Album
Supp Info
Full Research Paper
Published 15 Apr 2025

N2+-implantation-induced tailoring of structural, morphological, optical, and electrical characteristics of sputtered molybdenum thin films

  • Usha Rani,
  • Kafi Devi,
  • Divya Gupta and
  • Sanjeev Aggarwal

Beilstein J. Nanotechnol. 2025, 16, 495–509, doi:10.3762/bjnano.16.38

Graphical Abstract
  • thickness of the as-deposited films. This pattern persists with film thickness even after N2+ implantation. After implantation, crystallinity decreases relative to as-deposited films with the same nominal thickness. The AFM analysis reveals that RMS roughness increases with the thickness of Mo films
  • of 1.5405 Å. Measurements were conducted with a fixed incident angle of 0.5°, and the X-ray tube was operated at 40 kV and 40 mA. The surface morphology was analyzed using a Bruker Multimode-8 atomic force microscopy (AFM). The optical characteristics of the molybdenum thin films were analyzed using
  • morphology Figure 5 depicts 2 × 2 µm2 2D and 3D AFM images of as-deposited and implanted (at an ion fluence of 1 × 1017 N2+·cm−2) Mo thin films. Figure 5a reveals that the 150 nm thick Mo film exhibits a surface with thinner and more elongated rough peaks [42]. In this stage of deposition, the particles
PDF
Album
Full Research Paper
Published 01 Apr 2025

Performance optimization of a microwave-coupled plasma-based ultralow-energy ECR ion source for silicon nanostructuring

  • Joy Mukherjee,
  • Safiul Alam Mollick,
  • Tanmoy Basu and
  • Tapobrata Som

Beilstein J. Nanotechnol. 2025, 16, 484–494, doi:10.3762/bjnano.16.37

Graphical Abstract
  • confirm the formation of nanostructures as observed from atomic force microscopy (AFM) images. The thickness of the amorphous thin layer is in good agreement with Monte Carlo simulations (SRIM) [31]. The article further investigates and explains the optical response (by UV–vis spectrometry) of the
  • ions at different incidence angles and for various irradiation times is investigated using AFM in tapping mode. Si cantilevers with tip radii of 10 nm were employed, with scan rate of 1 µm/s and a fixed scan size of 5 µm × 5 µm. Quantitative analysis of the surface topography was conducted using WSxM
  • -defined nanoscale ripple pattern as observed in Figure 5c. The growth of the ripple becomes more prominent with the increase in bombardment time, that is, the amplitude of the ripples grows. To visualize the growth of the ripples, 3D AFM images are presented along with 2D images. The ripple height
PDF
Album
Full Research Paper
Published 31 Mar 2025

ReactorAFM/STM – dynamic reactions on surfaces at elevated temperature and atmospheric pressure

  • Tycho Roorda,
  • Hamed Achour,
  • Matthijs A. van Spronsen,
  • Marta E. Cañas-Ventura,
  • Sander B. Roobol,
  • Willem Onderwaater,
  • Mirthe Bergman,
  • Peter van der Tuijn,
  • Gertjan van Baarle,
  • Johan W. Bakker,
  • Joost W. M. Frenken and
  • Irene M. N. Groot

Beilstein J. Nanotechnol. 2025, 16, 397–406, doi:10.3762/bjnano.16.30

Graphical Abstract
  • , capable of studying materials under industrially relevant conditions. Here we show current developments of the ReactorAFM/STM, implementing a qPlus sensor to add the ability of combining atomic force microscopy (AFM) and scanning tunneling microscopy (STM) techniques to study the geometric and electronic
  • structure of materials under reaction conditions. We demonstrate this by imaging a Pd(100) single crystal at 450 K with combined AFM/STM. The surface is compared under ultrahigh vacuum and under 0.5 bar O2 pressure showing a notable increase in RMS current, which we attribute to oxidation. Also, we study
  • in counts while between 490 and 550 K. The added ability to scan various surfaces with combined AFM/STM while monitoring the reaction products demonstrates the versatility offered by the ReactorAFM/STM to study catalysts under realistic industrial conditions. Keywords: combined AFM/STM; conductive
PDF
Album
Full Research Paper
Published 21 Mar 2025

Tailoring of physical properties of RF-sputtered ZnTe films: role of substrate temperature

  • Kafi Devi,
  • Usha Rani,
  • Arun Kumar,
  • Divya Gupta and
  • Sanjeev Aggarwal

Beilstein J. Nanotechnol. 2025, 16, 333–348, doi:10.3762/bjnano.16.25

Graphical Abstract
  • ) spectrophotometer under 320 nm excitation produced by a xenon arc lamp. For investigating the surface topography, atomic force microscopy (AFM) micrographs of ZnTe/Qz films were recorded (scan area 2 × 2 µm2) using a Bruker multimode-8 AFM in the ScanAsyst mode at the Ion Beam Centre, Kurukshetra University. The
  • Equation 4, and it decreases with increasing substrate temperature. The high value of crystallinity and low value of microstrain and dislocation density at 600 °C shows that good quality films can be fabricated at this temperature. Morphological investigation AFM was utilized to study the evolution of
  • surface morphology of ZnTe/Qz films grown at different substrate temperatures. 2D and 3D AFM images (scan area 2 × 2 µm2) are presented in Figure 2. The 2D images (Figure 2a–e) show that the surface of all film samples is covered with densely packed spherical nanograins. The 3D images (Figure 2a1–e1
PDF
Album
Supp Info
Full Research Paper
Published 05 Mar 2025

Correction: AFM-IR investigation of thin PECVD SiOx films on a polypropylene substrate in the surface-sensitive mode

  • Hendrik Müller,
  • Hartmut Stadler,
  • Teresa de los Arcos,
  • Adrian Keller and
  • Guido Grundmeier

Beilstein J. Nanotechnol. 2025, 16, 252–253, doi:10.3762/bjnano.16.19

Graphical Abstract
  • /bjnano.16.19 Keywords: AFM-IR; polypropylene; surface-sensitive mode; silicon oxide; thin films; XPS; The authors regret that the acknowledgement in the publication is unfortunately not complete. The following sentence in the Funding section is missing: This work was supported by the German Research
  • Foundation (DFG) under grant number 407752136 and North Rhine-Westphalia based on the funding for large appliances (AFM-IR). The complete funding section should read: Funding This work was financially supported by the German Research Foundation (DFG) within the project “Functional PECVD coatings as
  • migration barrier for the use of postconsumer recycled materials in food contact” (TRR 87 - T07 Project number 138690629). This work was supported by the German Research Foundation (DFG) under grant number 407752136 and North Rhine-Westphalia based on the funding for large appliances (AFM-IR).
PDF
Original
Article
Correction
Published 20 Feb 2025

Probing the potential of rare earth elements in the development of new anticancer drugs: single molecule studies

  • Josiane A. D. Batista,
  • Rayane M. de Oliveira,
  • Carlos H. M. Lima,
  • Milton L. Lana Júnior,
  • Virgílio C. dos Anjos,
  • Maria J. V. Bell and
  • Márcio S. Rocha

Beilstein J. Nanotechnol. 2025, 16, 187–194, doi:10.3762/bjnano.16.15

Graphical Abstract
  • extracted as well, providing robust information about the effects of the rare earths on the DNA double helix [19][16]. In addition, atomic force microscopy (AFM) imaging assays were also performed to confirm DNA compaction/condensation by erbium and neodymium, allowing for a direct visualization of these
  • parameters and the local persistence lengths are left as adjustable parameters to be determined from the fit. The details of this methodology can be found in [19][21]. Atomic force microscopy assays The samples for atomic force microscopy (AFM) assays consist of 3 kbp DNA molecules (ThermoFischer Scientific
  • distinct molecules in the scanned images and to avoid relevant volume exclusion effects that play a significant role for λ DNA because of its larger contour length (48.5 kbp) [23]. The mica substrates were scanned with the AFM operating in the tapping mode. All experiments were performed in air, at ambient
PDF
Album
Full Research Paper
Published 14 Feb 2025

Advanced atomic force microscopy techniques V

  • Philipp Rahe,
  • Ilko Bald,
  • Nadine Hauptmann,
  • Regina Hoffmann-Vogel,
  • Harry Mönig and
  • Michael Reichling

Beilstein J. Nanotechnol. 2025, 16, 54–56, doi:10.3762/bjnano.16.6

Graphical Abstract
  • 10.3762/bjnano.16.6 Keywords: AFM; atomic force microscopy; conductivity; drift correction; force spectroscopy; NC-AFM; non-contact atomic force microscopy; resistivity; tip–surface interaction; With the restrictions on travelling and social distancing lifted, we were delighted to continue two series of
  • meetings on atomic force microscopy (AFM), the 23rd International Conference on Non-Contact Atomic Force Microscopy (NC-AFM) held in Nijmegen (Netherlands) and the 6th International Workshop on Advanced Atomic Force Microscopy Techniques held in Potsdam (Germany). The strong advance in the field and the
  • software tool (”unDrift”), which allows reliable and fast drift correction. Dickbreder et al. demonstrate the robust performance of the software tool by AFM data recorded under varying conditions (vacuum or liquid environment) on calcite surfaces with recording times up to several hours. The work by Nony
PDF
Editorial
Published 21 Jan 2025

Precursor sticking coefficient determination from indented deposits fabricated by electron beam induced deposition

  • Alexander Kuprava and
  • Michael Huth

Beilstein J. Nanotechnol. 2025, 16, 35–43, doi:10.3762/bjnano.16.4

Graphical Abstract
  • these two conflicting conditions. Two deposits at a substrate temperature of 293 K were fabricated using Cr(C6H6)2 with different beam defocus setting. The AFM images of the deposits fabricated with 1400 and 800 nm wide beams (Figure 3) clearly exhibit an indent resembling a volcano. The size of 800 nm
  • temperature. The AFM scans in Figure 5 clearly indicate a flat-top deposit from which a growth rate of 1.75 nm/s can be deduced. In contradistinction to the volcano-shaped deposits observed for the Cr-precursor, with the Pt-precursor no elevated rim region develops, the reasons for which are discussed next
  • the strand and the stage itself. To reach a stable temperature, the substrate was first cooled to 5 °C below the target temperature and then heated up. Profiles of the deposits were obtained using an AFM (Nanosurf EasyScan 2) with an uncertainty of ±3 nm. Conclusion The introduced method enables the
PDF
Album
Supp Info
Full Research Paper
Published 13 Jan 2025

Natural nanofibers embedded in the seed mucilage envelope: composite hydrogels with specific adhesive and frictional properties

  • Agnieszka Kreitschitz and
  • Stanislav N. Gorb

Beilstein J. Nanotechnol. 2024, 15, 1603–1618, doi:10.3762/bjnano.15.126

Graphical Abstract
  • atomic force microscopy (AFM), transmission electron microscopy (TEM), SEM, or cryo-SEM [45][57][63][64][65][66]. Very often, the procedures for preparing mucilage envelope samples can destroy and/or influence the organisation of polysaccharides, making the analysis of spatial structure of the mucilage
  • impossible. The complicated preparation procedures and analysis give us often an information limited to just one factor, for example, to specific chemical composition or topology (AFM, FTIR, or Raman microscopy) [45]. Ideally, the comparison of data from diverse visualisation techniques can provide us with
PDF
Album
Review
Published 13 Dec 2024

Strain-induced bandgap engineering in 2D ψ-graphene materials: a first-principles study

  • Kamal Kumar,
  • Nora H. de Leeuw,
  • Jost Adam and
  • Abhishek Kumar Mishra

Beilstein J. Nanotechnol. 2024, 15, 1440–1452, doi:10.3762/bjnano.15.116

Graphical Abstract
  • graphene to a piezoelectric substrate, by shrinking or elongating the substrate by applying a bias voltage, or by using the tip of an atomic force microscope (AFM) to push graphene over a hole created in the substrate [29]. A wealth of literature on strain engineering of graphene and other 2D materials
PDF
Album
Supp Info
Full Research Paper
Published 20 Nov 2024

A biomimetic approach towards a universal slippery liquid infused surface coating

  • Ryan A. Faase,
  • Madeleine H. Hummel,
  • AnneMarie V. Hasbrook,
  • Andrew P. Carpenter and
  • Joe E. Baio

Beilstein J. Nanotechnol. 2024, 15, 1376–1389, doi:10.3762/bjnano.15.111

Graphical Abstract
  • force microscopy (AFM), sum frequency generation spectroscopy (SFG), and X-ray photoelectron spectroscopy (XPS). Measuring static water contact angles is a straightforward method to determine the relative wettability of a material and allows for a quick check if our surface modifications were successful
  • with a fluid similar to blood [24]. AFM is a technique that provides topographical information through a nanoscale probe [25]. After each successive layer of the coating the topography of the surface will change and can be measured via AFM. SFG is a surface-sensitive non-linear spectroscopic technique
  • measurements were conducted with the sessile drop method. Droplets of 5 µL were pipetted onto the surface, and an image was captured. Eight images from two duplicates of each sample type were acquired on a smartphone device and processed in ImageJ (NIH). Atomic force microscopy AFM was conducted on a Veeco di
PDF
Album
Supp Info
Full Research Paper
Published 08 Nov 2024

Interaction of graphene oxide with tannic acid: computational modeling and toxicity mitigation in C. elegans

  • Romana Petry,
  • James M. de Almeida,
  • Francine Côa,
  • Felipe Crasto de Lima,
  • Diego Stéfani T. Martinez and
  • Adalberto Fazzio

Beilstein J. Nanotechnol. 2024, 15, 1297–1311, doi:10.3762/bjnano.15.105

Graphical Abstract
  • complete characterization of the GO sample is available in [36]. Atomic force microscopy (AFM), Raman spectroscopy, and X-ray photoelectron spectroscopy (XPS) were used to assess size, morphology, number of layers, and surface chemistry of GO. The GO sample used in this study consists of single layers with
  • Agency (EPA), herein named EPA medium, in absence and presence of TA. Atomic force microscopy AFM has been extensively used to characterize the distribution and morphology of biomolecules on the surface of nanomaterials, especially 2D materials [37]. Figure 1a and Figure 1b show AFM images of GO sheets
  • possible to identify interactions between these groups and GO’s carbon structure and between carbon atoms of both structures. Furthermore, we analyzed the maximum heights of TA-plus-GO conformations among the snapshots. The values range from 1.5 to 3.0 nm, which corroborates with AFM topography results and
PDF
Album
Supp Info
Full Research Paper
Published 30 Oct 2024

New design of operational MEMS bridges for measurements of properties of FEBID-based nanostructures

  • Bartosz Pruchnik,
  • Krzysztof Kwoka,
  • Ewelina Gacka,
  • Dominik Badura,
  • Piotr Kunicki,
  • Andrzej Sierakowski,
  • Paweł Janus,
  • Tomasz Piasecki and
  • Teodor Gotszalk

Beilstein J. Nanotechnol. 2024, 15, 1273–1282, doi:10.3762/bjnano.15.103

Graphical Abstract
  • spectral analysis of vibrations [49]. The thermomechanical noise analysis approximates the bridge as a simple harmonic oscillator with one DOF, as has been used for determining the spring constant of AFM cantilevers [50]. This approach provides an approximation for the stiffness k in terms of the measured
PDF
Album
Full Research Paper
Published 23 Oct 2024

The role of a tantalum interlayer in enhancing the properties of Fe3O4 thin films

  • Hai Dang Ngo,
  • Vo Doan Thanh Truong,
  • Van Qui Le,
  • Hoai Phuong Pham and
  • Thi Kim Hang Pham

Beilstein J. Nanotechnol. 2024, 15, 1253–1259, doi:10.3762/bjnano.15.101

Graphical Abstract
  • films on three different types of substrates, namely an amorphous SiO2/Si(100) substrate, a single crystal MgO(100) substrate, and a buffer layer consisting of MgO/Ta/SiO2/Si(100). The properties of Fe3O4 thin films were analyzed using atomic force microscopy (AFM), X-ray diffractometry (XRD), and
  • indicates the potential to facilitate the development of novel magnetic and spintronic architectures. Results and Discussion AFM and line-cut method were used to examine the surface morphology and grain sizes of the Fe3O4 films that were formed on SiO2/Si(100), MgO(100), and MgO/Ta/SiO2/Si(100) multilayer
  • Design magnetic property measurement system, MPMS-5XL), and X-ray diffractometry (Bruker Discover D8), respectively. AFM images (1 × 1 µm2) of Fe3O4 thin films on different substrates. (a) SiO2, (b) MgO(100), and (c) MgO/Ta/SiO2. XRD spectra of sample 1 (black), sample 2 (red), and sample 3 (blue) on
PDF
Album
Full Research Paper
Published 14 Oct 2024

Local work function on graphene nanoribbons

  • Daniel Rothhardt,
  • Amina Kimouche,
  • Tillmann Klamroth and
  • Regina Hoffmann-Vogel

Beilstein J. Nanotechnol. 2024, 15, 1125–1131, doi:10.3762/bjnano.15.91

Graphical Abstract
  • properties in nanoelectronics. (a) Topography image of GNRs on Au, measured with a Si tip, f0 = 170.91 kHz, cL = 40 N/m, A = 1 nm, Q = 20,000, and Δf = −21 Hz. (b) In KPFM, local variations in contact potential (CPD) can be measured by applying a voltage between the sample and the AFM tip so that the
PDF
Album
Supp Info
Letter
Published 29 Aug 2024

Unveiling the potential of alginate-based nanomaterials in sensing technology and smart delivery applications

  • Shakhzodjon Uzokboev,
  • Khojimukhammad Akhmadbekov,
  • Ra’no Nuritdinova,
  • Salah M. Tawfik and
  • Yong-Ill Lee

Beilstein J. Nanotechnol. 2024, 15, 1077–1104, doi:10.3762/bjnano.15.88

Graphical Abstract
  • wall [60]. Another important morphological feature of polymers is the surface of the polymers, and atomic force microscopy (AFM) can be utilized to detect surface features of polymeric nanoparticles. It is very useful tool that offers high-resolution images in three dimensions at the nanometer scale
  • [61]. Nanoparticle size: The nanoparticle size can be determined using a variety of methods including dynamic (DLS) and static (SLS) light scattering; TEM, SEM, and AFM are also widely employed [62][63]. DLS and SLS can detect particle size by determining changes in distribution of particle size
PDF
Album
Review
Published 22 Aug 2024

Signal generation in dynamic interferometric displacement detection

  • Knarik Khachatryan,
  • Simon Anter,
  • Michael Reichling and
  • Alexander von Schmidsfeld

Beilstein J. Nanotechnol. 2024, 15, 1070–1076, doi:10.3762/bjnano.15.87

Graphical Abstract
  • . In a non-contact atomic force microscope (NC-AFM), it facilitates the force measurement by recording the periodic displacement of an oscillating microcantilever. To understand signal generation in a NC-AFM-based Michelson-type interferometer, we evaluate the non-linear response of the interferometer
  • . Keywords: amplitude calibration; displacement detection; force microscopy; interferometer signal; NC-AFM; Introduction Optical interferometry is a reliable technique utilizing light waves to measure distance and displacement with high precision [1][2]. With the light wavelength as the length standard, a
  • highly stable interferometer can detect displacements with an accuracy far beyond nanometer resolution [3], where the final physical limit is set by the photon emission statistics of the light source [4]. In non-contact atomic force microscopy (NC-AFM), interferometry is used to measure the periodic
PDF
Album
Full Research Paper
Published 20 Aug 2024

Exploring surface charge dynamics: implications for AFM height measurements in 2D materials

  • Mario Navarro-Rodriguez,
  • Andres M. Somoza and
  • Elisa Palacios-Lidon

Beilstein J. Nanotechnol. 2024, 15, 767–780, doi:10.3762/bjnano.15.64

Graphical Abstract
  • microscopy (AFM) techniques emerge as ideal tools to investigate them [26][27]. Depending on the operation mode and under controlled environmental conditions, AFM offers the possibility to record morphology along with relevant electronic, mechanical, or magnetic properties with nanoscale resolution. In
  • addition, it can be integrated with classical optical spectroscopy methods such as Raman and fluorescence [20][28][29], enabling a multidimensional characterization approach. A well-recognized issue within the AFM community is the inaccurate height determination derived from topography images on
  • heterogeneous samples. This discrepancy arises from various sources depending on the operation mode and working parameters. In the frequency modulation mode (FM-AFM), a non-compensated bias voltage between tip and sample, from differences in the surface potential (SP), results in inaccurate height measurements
PDF
Album
Supp Info
Full Research Paper
Published 01 Jul 2024

Effect of repeating hydrothermal growth processes and rapid thermal annealing on CuO thin film properties

  • Monika Ozga,
  • Eunika Zielony,
  • Aleksandra Wierzbicka,
  • Anna Wolska,
  • Marcin Klepka,
  • Marek Godlewski,
  • Bogdan J. Kowalski and
  • Bartłomiej S. Witkowski

Beilstein J. Nanotechnol. 2024, 15, 743–754, doi:10.3762/bjnano.15.62

Graphical Abstract
  • , which allowed for the investigation of both topography and electrical properties of the films. Surface topography analysis was performed by utilizing an atomic force microscopy (AFM) operating in Peak Force Tapping mode. The surface was scanned at a resolution of 1024 × 1024 measurement points using a
  • effect [49][50]. Despite the measurement conditions, it was still possible to qualitatively analyze changes in surface potential and work function based on the sample preparation method. The AFM, SCM, and KPFM data were analyzed using the Nanoscope Analysis 3.0 software (Bruker). The CuO films also
  • cycle one, two, and three times was conducted using SEM and AFM. Figure 3 shows representative images of the surface and height profiles (where 0 corresponds to the mean plane) acquired along the marked lines from the AFM scans of the analyzed samples. The measured parameters are compiled in Table 2
PDF
Album
Full Research Paper
Published 24 Jun 2024
Other Beilstein-Institut Open Science Activities