Search results

Search for "FIB" in Full Text gives 115 result(s) in Beilstein Journal of Nanotechnology.

A review of metal-organic frameworks and polymers in mixed matrix membranes for CO2 capture

  • Charlotte Skjold Qvist Christensen,
  • Nicholas Hansen,
  • Mahboubeh Motadayen,
  • Nina Lock,
  • Martin Lahn Henriksen and
  • Jonathan Quinson

Beilstein J. Nanotechnol. 2025, 16, 155–186, doi:10.3762/bjnano.16.14

Graphical Abstract
PDF
Album
Supp Info
Review
Published 12 Feb 2025

Orientation-dependent photonic bandgaps in gold-dust weevil scales and their titania bioreplicates

  • Norma Salvadores Farran,
  • Limin Wang,
  • Primoz Pirih and
  • Bodo D. Wilts

Beilstein J. Nanotechnol. 2025, 16, 1–10, doi:10.3762/bjnano.16.1

Graphical Abstract
  • . The domains in lattice orientation {100} exhibited polarization conversion. The structure inferred from optical measurements was confirmed using conventional and focused ion beam scanning electron microscopy (FIB-SEM). By averaging the reciprocal space images obtained from different lattice
  • cortex is thinner (≈0.5 μm) and flat (Figure 2c). From the FIB-SEM cuts, we estimated the chitin fill fraction of the chitin network to be 0.44 ± 0.06. By adjusting the power and duration of the argon plasma etching, we were able to selectively etch the lower cortex of the scales (Figure 2d), revealing
  • Information File 66: Material characterization, polarization properties, lattice estimation, additional microscopy and spectroscopy. Acknowledgements We thank Viola Bauernfeind and Ullrich Steiner (Adolphe Merkle Institute) for technical support with the FIB-SEM, Gregor Zickler (PLUS) for technical support
PDF
Album
Supp Info
Full Research Paper
Published 02 Jan 2025

New design of operational MEMS bridges for measurements of properties of FEBID-based nanostructures

  • Bartosz Pruchnik,
  • Krzysztof Kwoka,
  • Ewelina Gacka,
  • Dominik Badura,
  • Piotr Kunicki,
  • Andrzej Sierakowski,
  • Paweł Janus,
  • Tomasz Piasecki and
  • Teodor Gotszalk

Beilstein J. Nanotechnol. 2024, 15, 1273–1282, doi:10.3762/bjnano.15.103

Graphical Abstract
  • ). However, parasitic strain can cause unforeseen static changes in the geometry of the RoI. This problem is addressed by focused ion beam (FIB) technology, which can be used as a strain engineering tool. We will refer to MEMS with a formed RoI as operational MEMS, or opMEMS for short. In contrast to
  • the gallium FIB to mill a 200 nm wide slit (Figure 2c). As a side-effect, gallium was implanted along the edge of the RoI slit, so to prevent the leakage current; additional openings were formed using the DRIE process to create a non-conductive edge of the slit (Figure 3b). Mechanical characterization
  • structural effects present in the opMEMS bridges. Of particular importance was the presence of eigenstrains [39], which would affect the shape of the RoI after FIB milling. Eigenstrains can occur due to mismatches between the crystalline lattices of the deposited materials or due to interactions between
PDF
Album
Full Research Paper
Published 23 Oct 2024

A low-kiloelectronvolt focused ion beam strategy for processing low-thermal-conductance materials with nanoampere currents

  • Annalena Wolff,
  • Nico Klingner,
  • William Thompson,
  • Yinghong Zhou,
  • Jinying Lin and
  • Yin Xiao

Beilstein J. Nanotechnol. 2024, 15, 1197–1207, doi:10.3762/bjnano.15.97

Graphical Abstract
  • community. This is partly due to the increased use of FIB-SEMs in biology as well as the development of complex materials, such as polymers, which need to be analyzed. The work presented here looks at the physics behind the ion beam–sample interactions and the effect of the incident ion energy (set by the
  • milling speed but reduced heat damage. Keywords: biological sample; COMSOL; focused ion beam; forward time–centered space (FTCS); heat damage; SRIM; Introduction FIB-SEMs combine a scanning electron microscope (SEM) and a focused ion beam (FIB) in a single instrument and are increasingly used to prepare
  • not a large number of recent papers published looking at the underlying physics in the field of focused ion beams. A broader look at current literature on heat transfer induced by particle beams highlights that heat damage is not only problematic for FIB processing, but also presents challenges for
PDF
Album
Full Research Paper
Published 27 Sep 2024

Direct electron beam writing of silver using a β-diketonate precursor: first insights

  • Katja Höflich,
  • Krzysztof Maćkosz,
  • Chinmai S. Jureddy,
  • Aleksei Tsarapkin and
  • Ivo Utke

Beilstein J. Nanotechnol. 2024, 15, 1117–1124, doi:10.3762/bjnano.15.90

Graphical Abstract
  • microstructure of the deposits was investigated using a ThermoFischer Themis 200 G3 aberration-corrected transmission electron microscope (TEM) operating at 200 kV. Cross-sectional TEM lamellas were prepared by a standard sample preparation protocol using a Tescan Lyra3 FIB-SEM system. The TEM overview image was
PDF
Album
Supp Info
Letter
Published 26 Aug 2024

Water-assisted purification during electron beam-induced deposition of platinum and gold

  • Cristiano Glessi,
  • Fabian A. Polman and
  • Cornelis W. Hagen

Beilstein J. Nanotechnol. 2024, 15, 884–896, doi:10.3762/bjnano.15.73

Graphical Abstract
  • , isolated grains are visible. Also, several gaps are present in the lines, where the grains apparently did not connect to each other. A FIB cross section of the line revealed that the gaps extend down to the substrate surface. The gaps and the granularity may arise from the high mobility of Pt, and
  • of 2g (1 µm line, 5 kV, 0.54 nA, 1 µs dwell, 4 nm pitch, 100000 passes) before FIB milling (top) and after milling (bottom). Imaging and milling were performed in a Thermo Fisher Scientific Helios dual-beam instrument. Electron beam-assisted purification of Au and Pt FEBID materials with oxidant gas
PDF
Album
Supp Info
Full Research Paper
Published 18 Jul 2024

Level set simulation of focused ion beam sputtering of a multilayer substrate

  • Alexander V. Rumyantsev,
  • Nikolai I. Borgardt,
  • Roman L. Volkov and
  • Yuri A. Chaplygin

Beilstein J. Nanotechnol. 2024, 15, 733–742, doi:10.3762/bjnano.15.61

Graphical Abstract
  • ; multilayer substrate; silicon; silicon dioxide; sputtering; Introduction The focused ion beam (FIB) technique is an effective method for surface nanostructuring. It is based on the local removal of material by sputtering with a narrow beam of, typically, gallium ions. This feature of the FIB method makes it
  • possible to deterministically produce a nanoscale topography on the surface of almost any substrate [1]. FIB milling was originally established in semiconductor technology [2] and materials science applications [3]. Now it is increasingly used for fabrication of complex micro- and nanoscale structures and
  • devices including Fresnel zone plates [4], X-ray lenses [5], optical tweezers [6], and plasmonic antennas [7]. The application of the FIB method is not limited to patterning single-component targets. This technique can also be employed for the modification of multilayer substrates. Depending on the task
PDF
Album
Full Research Paper
Published 24 Jun 2024

Sidewall angle tuning in focused electron beam-induced processing

  • Sangeetha Hari,
  • Willem F. van Dorp,
  • Johannes J. L. Mulders,
  • Piet H. F. Trompenaars,
  • Pieter Kruit and
  • Cornelis W. Hagen

Beilstein J. Nanotechnol. 2024, 15, 447–456, doi:10.3762/bjnano.15.40

Graphical Abstract
  • using focused ion beam (FIB) milling and shown as an electron tilt image in Figure 1b, clearly demonstrates the Gaussian shape. For lithography applications, however, both the long tails and the Gaussian cross section are highly undesirable. The tails may form interconnects to neighboring lines, and the
  • SE image. A 200 nm thick carbon FEBID deposit was fabricated, which would be thick enough to image with SE as well as using FIB cross sectioning. The top view SE image and cross section of the reference structure are shown in Figure 7. Such a deposit was then exposed to FEBIE at both sidewalls. A
  • hundred nanometres. The SE image of the resultant structure is shown in Figure 8b. The deposit was then covered with a protective layer of Pt/C as before, and a cross section was made using a FIB (Figure 8c), clearly demonstrating the creation of vertical sidewalls. Conclusion A new technique combining
PDF
Album
Supp Info
Full Research Paper
Published 23 Apr 2024

Ion beam processing of DNA origami nanostructures

  • Leo Sala,
  • Agnes Zerolová,
  • Violaine Vizcaino,
  • Alain Mery,
  • Alicja Domaracka,
  • Hermann Rothard,
  • Philippe Boduch,
  • Dominik Pinkas and
  • Jaroslav Kocišek

Beilstein J. Nanotechnol. 2024, 15, 207–214, doi:10.3762/bjnano.15.20

Graphical Abstract
  • unperturbed. Present stability and nature of damages on DNA origami nanostructures enable fusion of DNA origami advantages such as shape and positioning control into novel ion beam nanofabrication approaches. Keywords: DNA nanotechnology; DNA origami; FIB; heavy ions; Introduction Ion beam interaction with
  • common type of beam processing, namely focused ion beam technology (FIB). Following the results of high- and medium-energy ion irradiation on deposited DNA origami nanostructures, which will be presented in this work, we wanted to explore whether we could observe similar effects using a commonly used
  • method for nanofabrication such as FIB, which also happens to cover the low-energy interaction regime. The method is widely available as a complement to scanning electron microscopes. Focused ion beams allow for both subtractive and additive nanoscale manufacturing [31] and can also be used for chemical
PDF
Album
Supp Info
Full Research Paper
Published 12 Feb 2024

Graphene removal by water-assisted focused electron-beam-induced etching – unveiling the dose and dwell time impact on the etch profile and topographical changes in SiO2 substrates

  • Aleksandra Szkudlarek,
  • Jan M. Michalik,
  • Inés Serrano-Esparza,
  • Zdeněk Nováček,
  • Veronika Novotná,
  • Piotr Ozga,
  • Czesław Kapusta and
  • José María De Teresa

Beilstein J. Nanotechnol. 2024, 15, 190–198, doi:10.3762/bjnano.15.18

Graphical Abstract
  • -beam bombardment, which initially introduces defects into the graphene structure and then knocks out carbon atoms, although the edges of the fabricated nanostructures remain rough after the process [11]. Other direct techniques, such as focused ion beam (FIB) milling with heavy Ga+ ions, are not
PDF
Album
Full Research Paper
Published 07 Feb 2024

TEM sample preparation of lithographically patterned permalloy nanostructures on silicon nitride membranes

  • Joshua Williams,
  • Michael I. Faley,
  • Joseph Vimal Vas,
  • Peng-Han Lu and
  • Rafal E. Dunin-Borkowski

Beilstein J. Nanotechnol. 2024, 15, 1–12, doi:10.3762/bjnano.15.1

Graphical Abstract
  • -standing membrane and as a conductive layer for better imaging during FIB milling. Then FIB milling was performed to create apertures in the SiN membrane representing the patterns to be transferred to the sample. Last, the aluminium layer was removed by submerging the mask in TMAH 3% solution. In this
  • membrane might be different from etching to a free-standing amorphous SiN membrane. The structural integrity of a free-standing crystalline membrane during KOH etching is still to be investigated. An alternative to KOH etching would be FIB milling [38] or RIE [39]. Lift-off fabrication process. SEM images
PDF
Album
Supp Info
Full Research Paper
Published 02 Jan 2024

Exploring internal structures and properties of terpolymer fibers via real-space characterizations

  • Michael R. Roenbeck and
  • Kenneth E. Strawhecker

Beilstein J. Nanotechnol. 2023, 14, 1004–1017, doi:10.3762/bjnano.14.83

Graphical Abstract
  • features at different length scales and verify the applicability of analytical structural models used to date. Over the last several years, a “focused ion beam (FIB) notch” technique has been developed and employed to address these gaps in understanding of the internal structures of fibers such as Kevlar
  • expect that these features resulted from the way this particular fiber split open after FIB notching. Likewise, the lone drop in stiffness makes sense, as the AFM probe experiences a local reduction in tip–substrate contact area. However, similar topography and stiffness jumps forming a compliant band
  • to date, in Technora®, these features regularly merge and separate from one another, intersecting at nodes and splitting off into fibrils with distinct dimensions [9][10][11][12][13]. Likewise, some fibrils appear to protrude into and out from the primary surface exposed by FIB notching, suggesting
PDF
Album
Full Research Paper
Published 05 Oct 2023

Hydroxyapatite–bioglass nanocomposites: Structural, mechanical, and biological aspects

  • Olga Shikimaka,
  • Mihaela Bivol,
  • Bogdan A. Sava,
  • Marius Dumitru,
  • Christu Tardei,
  • Beatrice G. Sbarcea,
  • Daria Grabco,
  • Constantin Pyrtsac,
  • Daria Topal,
  • Andrian Prisacaru,
  • Vitalie Cobzac and
  • Viorel Nacu

Beilstein J. Nanotechnol. 2022, 13, 1490–1504, doi:10.3762/bjnano.13.123

Graphical Abstract
  • microstructural characteristics, such as micromorphology of the obtained materials and the qualitative and quantitative distribution of the granular phase and pores, SEM analysis of the sintered materials was performed using a Zeiss Auriga FESEM-FIB electron microscope. For SEM analysis, the samples underwent a
PDF
Full Research Paper
Published 12 Dec 2022

Laser-processed antiadhesive bionic combs for handling nanofibers inspired by nanostructures on the legs of cribellate spiders

  • Sebastian Lifka,
  • Kristóf Harsányi,
  • Erich Baumgartner,
  • Lukas Pichler,
  • Dariya Baiko,
  • Karsten Wasmuth,
  • Johannes Heitz,
  • Marco Meyer,
  • Anna-Christin Joel,
  • Jörn Bonse and
  • Werner Baumgartner

Beilstein J. Nanotechnol. 2022, 13, 1268–1283, doi:10.3762/bjnano.13.105

Graphical Abstract
  • gold-sputtered (S150B, Edwards). The metatarsi were examined using a focused ion beam scanning electron microscope (FIB-SEM) tomography (Strata 400 STEM, FEI Company, Oregon, USA) at the Central Facility for Electron Microscopy at the RWTH Aachen University. Measurements were performed using the
  • accompanying software (xT Microscope Control). For all spiders, we measured the peak-to-peak amplitude of the nanoripples covering the calamistrum at the region of interest. In addition, FIB tomography was used to measure the depth of structure in A. similis. Images of four distantly related and differently
  • [16]). (b) Photography of the cosmopolitan feather-legged lace weaver Uloborus plumipes (body size up to 0.6 cm [17]). (c) Scanning electron micrograph of the calamistrum of Jamberoo johnnoblei (body size up to 0.8 cm [18]). (d) FIB-cut high resolution SEM image through the nanoripples on the
PDF
Album
Supp Info
Full Research Paper
Published 07 Nov 2022

Influence of water contamination on the sputtering of silicon with low-energy argon ions investigated by molecular dynamics simulations

  • Grégoire R. N. Defoort-Levkov,
  • Alan Bahm and
  • Patrick Philipp

Beilstein J. Nanotechnol. 2022, 13, 986–1003, doi:10.3762/bjnano.13.86

Graphical Abstract
  • , Luxembourg Thermo Fisher Scientific, Hillsboro, OR, 97124, USA 10.3762/bjnano.13.86 Abstract Focused ion beams (FIB) are a common tool in nanotechnology for surface analysis, sample preparation for electron microscopy and atom probe tomography, surface patterning, nanolithography, nanomachining, and
  • ; molecular dynamics; silicon; simulations; water; Introduction Focused ion beams (FIB) play an increasingly important role in materials research areas such as nanoanalysis (e.g., secondary ion mass spectrometry (SIMS) [1][2][3] and sample preparation for transmission electron microscopy (TEM) [4], atom
  • formed during the sample preparation by FIB milling [15][16][17]. Such an amorphous layer represents a substantial part of the thickness of the sample and information coming from this part does not correspond to the initial sample structure. Minimizing the thickness of this amorphous layer during FIB
PDF
Album
Supp Info
Full Research Paper
Published 21 Sep 2022

Systematic studies into uniform synthetic protein nanoparticles

  • Nahal Habibi,
  • Ava Mauser,
  • Jeffery E. Raymond and
  • Joerg Lahann

Beilstein J. Nanotechnol. 2022, 13, 274–283, doi:10.3762/bjnano.13.22

Graphical Abstract
  • detailing the exact masses and volumes for these formulations is provided in Supporting Information File 1 (Table S8). Scanning electron microscopy SEM images were obtained using a FEI Nova 200 Nanolab SEM/FIB at the Michigan Center for Materials Engineering using an acceleration voltage of 5 kV. Particles
PDF
Album
Supp Info
Full Research Paper
Published 28 Feb 2022

Measurement of polarization effects in dual-phase ceria-based oxygen permeation membranes using Kelvin probe force microscopy

  • Kerstin Neuhaus,
  • Christina Schmidt,
  • Liudmila Fischer,
  • Wilhelm Albert Meulenberg,
  • Ke Ran,
  • Joachim Mayer and
  • Stefan Baumann

Beilstein J. Nanotechnol. 2021, 12, 1380–1391, doi:10.3762/bjnano.12.102

Graphical Abstract
  • , KPFM measurements were started with an imaging velocity of 1 image per minute to measure the relaxation of the introduced gradient. Electron microscopy The TEM specimens were cut from 60CSO20-FC2O pellets by focused ion beam (FIB) milling using a FEI Strata400 system with Ga ion beam. Further thinning
PDF
Album
Full Research Paper
Published 15 Dec 2021

Chemical vapor deposition of germanium-rich CrGex nanowires

  • Vladislav Dřínek,
  • Stanislav Tiagulskyi,
  • Roman Yatskiv,
  • Jan Grym,
  • Radek Fajgar,
  • Věra Jandová,
  • Martin Koštejn and
  • Jaroslav Kupčík

Beilstein J. Nanotechnol. 2021, 12, 1365–1371, doi:10.3762/bjnano.12.100

Graphical Abstract
  • transfer single NWs onto contact lithographic pads (Supporting Information File 1, Figure S9) to measure their conductivity. The NWs, however, turned out to be fragile and were destroyed when an attempt was made to cut them from the tungsten tip using a focused ion beam (FIB). Therefore, a method to
  • with the Ga+ focused ion beam (FIB), gas injection system (GIS), and nanomanipulator OmniProbe 400 (Oxford Instruments) with a tungsten tip. The nanomanipulator enabled a direct contact of single as-grown NWs. The current–voltage (I–V) characteristics were measured using a Keithley 237 source
PDF
Album
Supp Info
Letter
Published 07 Dec 2021

Is the Ne operation of the helium ion microscope suitable for electron backscatter diffraction sample preparation?

  • Annalena Wolff

Beilstein J. Nanotechnol. 2021, 12, 965–983, doi:10.3762/bjnano.12.73

Graphical Abstract
  • commonly used approach is the focused ion beam (FIB) polishing. Unfortunately, artefacts that can be easily induced by Ga FIB polishing approaches are seldom published. This work aims to provide a better understanding of the underlying causes for artefact formation and to assess if the helium ion
  • elsewhere [31]. Throughout the past years, Ga-focused ion beam/scanning electron microscopes (Ga FIB/SEMs) have been used to polish samples [32][33]. Although it is recognized within the FIB community that Ga can induce artefacts in the sample [34][35][36][37], many of the encountered artefacts, which can
  • potentially lead to misinterpretation of the results, are unfortunately never published. Besides the initial study by Michael [34], which showed that Ga ion polishing can phase transform Cu to Cu3Ga as well as a follow up study investigating microtextural modifications in samples when using a Ga FIB [35], a
PDF
Album
Supp Info
Full Research Paper
Published 31 Aug 2021

A review of defect engineering, ion implantation, and nanofabrication using the helium ion microscope

  • Frances I. Allen

Beilstein J. Nanotechnol. 2021, 12, 633–664, doi:10.3762/bjnano.12.52

Graphical Abstract
  • the layers was undesired. Membrane folding Recently, several papers on FIB-enabled nanoscale kirigami have been published using the gallium FIB to mill line patterns in free-standing membranes (equivalent to traditional macroscale paper cuts) followed by localized gallium ion implantation to induce
  • is conceivable that by using the HIM to both mill the cuts and induce the buckling, the size of FIB-based nanoscale kirigami structures can be further reduced compared to what is currently possible using the gallium FIB technique. First steps in this direction have recently been taken [102]. 4 Resist
  • introduction of the HIM, ion beam-based lithography mainly relied on the gallium FIB, for which major drawbacks were ion beam sputtering of the resist and the relatively large beam spot size (several nanometers) with its significant beam tails. Helium ion beam lithography (HIBL) using the HIM is therefore a
PDF
Album
Review
Published 02 Jul 2021

Spontaneous shape transition of MnxGe1−x islands to long nanowires

  • S. Javad Rezvani,
  • Luc Favre,
  • Gabriele Giuli,
  • Yiming Wubulikasimu,
  • Isabelle Berbezier,
  • Augusto Marcelli,
  • Luca Boarino and
  • Nicola Pinto

Beilstein J. Nanotechnol. 2021, 12, 366–374, doi:10.3762/bjnano.12.30

Graphical Abstract
  • and 25 mA with a graphite monochromator. Step-scan diffractograms were collected in the 2θ range of 3–70° with 0.02° step and 3 s/step counting time. For HRTEM analysis, focused ion beam (FIB) lamellae were prepared using a dual-beam FIB. The lamellae were oriented along the elongation direction. The
  • lamellas were ultimately thinned during a last step using a FIB based on an inert-gas source working at low energy to prevent sample amorphization. HRTEM investigations were performed at the CP2M microanalysis center (Marseille, France) on a JEOL JEM 2010 F URP22 instrument using a 200 keV primary energy
PDF
Album
Full Research Paper
Published 28 Apr 2021

The patterning toolbox FIB-o-mat: Exploiting the full potential of focused helium ions for nanofabrication

  • Victor Deinhart,
  • Lisa-Marie Kern,
  • Jan N. Kirchhof,
  • Sabrina Juergensen,
  • Joris Sturm,
  • Enno Krauss,
  • Thorsten Feichtner,
  • Sviatoslav Kovalchuk,
  • Michael Schneider,
  • Dieter Engel,
  • Bastian Pfau,
  • Bert Hecht,
  • Kirill I. Bolotin,
  • Stephanie Reich and
  • Katja Höflich

Beilstein J. Nanotechnol. 2021, 12, 304–318, doi:10.3762/bjnano.12.25

Graphical Abstract
  • , is not trivial. Here, we introduce the Python toolbox FIB-o-mat for automated pattern creation and optimization, providing full flexibility to accomplish demanding patterning tasks. FIB-o-mat offers high-level pattern creation, enabling high-fidelity large-area patterning and systematic variations in
  • geometry and raster settings. It also offers low-level beam path creation, providing full control over the beam movement and including sophisticated optimization tools. Three applications showcasing the potential of He ion beam nanofabrication for two-dimensional material systems and devices using FIB-o
  • nanometer range is heavily sought after. One promising candidate for ultraprecise nanofabrication is focused ion beam (FIB) machining. Focused ion beams locally remove material based on physical sputtering with a large degree of flexibility due to advanced beam control. FIB patterning is a direct single
PDF
Album
Supp Info
Full Research Paper
Published 06 Apr 2021

Scanning transmission helium ion microscopy on carbon nanomembranes

  • Daniel Emmrich,
  • Annalena Wolff,
  • Nikolaus Meyerbröker,
  • Jörg K. N. Lindner,
  • André Beyer and
  • Armin Gölzhäuser

Beilstein J. Nanotechnol. 2021, 12, 222–231, doi:10.3762/bjnano.12.18

Graphical Abstract
  • established as a key nanofabrication tool for milling [7][8][9], defect engineering [10][11], and resist-based lithography [12][13], overcoming the resolution limitations of other FIB techniques [14][15]. Both bulk samples as well as thin membranes have been structured using the HIM. On membranes, the sputter
PDF
Album
Full Research Paper
Published 26 Feb 2021

Mapping the local dielectric constant of a biological nanostructured system

  • Wescley Walison Valeriano,
  • Rodrigo Ribeiro Andrade,
  • Juan Pablo Vasco,
  • Angelo Malachias,
  • Bernardo Ruegger Almeida Neves,
  • Paulo Sergio Soares Guimarães and
  • Wagner Nunes Rodrigues

Beilstein J. Nanotechnol. 2021, 12, 139–150, doi:10.3762/bjnano.12.11

Graphical Abstract
  • . The scanning electron microscopy (SEM) image presented in Figure 2 shows the nanostructured section of a fragment of the red region indicated in Figure 1a. The section was partially polished using a focused ion beam (FIB) and the multilayered structure is clearly visible. The corrugated surface is the
  • the layers of the wing a cross-sectional image of the fragment of the Chalcopterix rutilans male rear wing was obtained by SEM. Before preparing and polishing the cross section with a FIB, the wing was inserted in an evaporator to cover the surface with a thin Pt layer in order to make it conductive
  • and reduce the curtain effect during FIB polishing. The Ga+ beam of the FIB was adjusted to 30 kV and 1 nA to mill a cross section of the wing while polishing was carried out under 30 kV, 16 kV and 5 kV, all of them with a beam current of 50 pA. Determination of the SPM parameters The sample thickness
PDF
Album
Full Research Paper
Published 28 Jan 2021

Towards 3D self-assembled rolled multiwall carbon nanotube structures by spontaneous peel off

  • Jonathan Quinson

Beilstein J. Nanotechnol. 2020, 11, 1865–1872, doi:10.3762/bjnano.11.168

Graphical Abstract
  • . Characterization MWCNT structures were characterized by SEM (Jeol 840F operated at 5 kV and a Zeiss NVision FIB microscope equipped with an in-lens and a backscattered-electron detector, also operated at 5 kV) and by Raman spectroscopy (JY Horiba Labram Aramis imaging confocal Raman microscope equipped with a 532
PDF
Album
Supp Info
Full Research Paper
Published 18 Dec 2020
Other Beilstein-Institut Open Science Activities