Search results

Search for "dwell time" in Full Text gives 82 result(s) in Beilstein Journal of Nanotechnology.

Focused ion beam-induced platinum deposition with a low-temperature cesium ion source

  • Thomas Henning Loeber,
  • Bert Laegel,
  • Meltem Sezen,
  • Feray Bakan Misirlioglu,
  • Edgar J. D. Vredenbregt and
  • Yang Li

Beilstein J. Nanotechnol. 2025, 16, 910–920, doi:10.3762/bjnano.16.69

Graphical Abstract
  • avoid, for example, any inhomogeneous ripple structures. The dwell time was always 200 ns. For growth rate characterization, Pt layers with a length of 20 μm and a width of 1 μm were deposited on silicon (Si). The ion beam currents were changed, while the pattern size was kept constant. With the Cs+ FIB
  • exact order, however, of which mechanism contributes how much to the deposition, for example, for cesium (Cs) ions, is beyond the scope of this paper since FIBID is rather complex and depends on a variety of parameters. Besides beam parameters such as acceleration voltage, beam current, ion dose, dwell
  • time, and refresh time, precursor material and substrate have an influence on the effective deposition rate. Gallium (Ga+) and helium (He+) are the most often utilized ion species for FIBID [1][2][5]. Besides these standard FIB systems, new kinds of laser-cooled ion sources have been developed in the
PDF
Album
Full Research Paper
Published 16 Jun 2025

Electron beam-based direct writing of nanostructures using a palladium β-ketoesterate complex

  • Chinmai Sai Jureddy,
  • Krzysztof Maćkosz,
  • Aleksandra Butrymowicz-Kubiak,
  • Iwona B. Szymańska,
  • Patrik Hoffmann and
  • Ivo Utke

Beilstein J. Nanotechnol. 2025, 16, 530–539, doi:10.3762/bjnano.16.41

Graphical Abstract
  • electron arrival rate was 3 × 1010 electrons·s−1 or 4 × 103 electrons·nm−2·s−1. A XENOS pattern generator and ECP software were used to perform the square depositions with spiral inward scanning strategy. In particular, a 5 × 5 µm2 square deposit was created with a 3 nm pitch, 500 ns dwell time (100 µs
  • effective dwell time with a 600 nm FWHM of the electron beam), and 2000 cycles. For deposit morphology observation, a high-resolution Hitachi S4800 FESEM was used. The chemical composition of the deposits was confirmed through energy-dispersive X-ray spectroscopy (EDX) using a silicon drift detector from
  • SEM microscope with the same temperatures and GIS positions as those employed for FEB depositions on native-oxide silicon substrates. A square area of 0.97 × 0.97 µm2 was deposited at 20 keV electron energy, with a dwell time of 500 ns and a point-to-pitch of 9.5 nm. The stage current was measured to
PDF
Album
Supp Info
Full Research Paper
Published 15 Apr 2025

Pulsed laser in liquid grafting of gold nanoparticle–carbon support composites

  • Madeleine K. Wilsey,
  • Teona Taseska,
  • Qishen Lyu,
  • Connor P. Cox and
  • Astrid M. Müller

Beilstein J. Nanotechnol. 2025, 16, 349–361, doi:10.3762/bjnano.16.26

Graphical Abstract
  • 200 W and 15 kV. Samples were washed with water, dried, and affixed to double-sided adhesive copper tape. Survey scans were averaged over five scans and spanned 0–1200 eV with a 1 eV step size, 200 ms dwell time, and 160 eV pass energy. High-resolution core level scans were averaged over five scans
  • and measured with a 0.1 eV step size, 260 ms dwell time, and 20 eV pass energy. All spectra were referenced against the adventitious C 1s peak at 284.8 eV [51]. The data processing, including Shirley background subtraction and Gaussian/Lorentzian peak fitting, was performed in CasaXPS (Version 2.3.24
  • slit, a 5.0 mm secondary slit, and a 2.5 mm anti-scatter screen, and a Lynxeye detector. Each measurement was performed with a resolution of 0.020° in 2θ and 0.5 s per step dwell time, resulting in approximately 40 min per sample. Background subtraction was performed using Bruker DIFFRAC.SUITE software
PDF
Album
Supp Info
Full Research Paper
Published 07 Mar 2025

Characterization of ZnO nanoparticles synthesized using probiotic Lactiplantibacillus plantarum GP258

  • Prashantkumar Siddappa Chakra,
  • Aishwarya Banakar,
  • Shriram Narayan Puranik,
  • Vishwas Kaveeshwar,
  • C. R. Ravikumar and
  • Devaraja Gayathri

Beilstein J. Nanotechnol. 2025, 16, 78–89, doi:10.3762/bjnano.16.8

Graphical Abstract
  • °–80° (2θ), with a step size of 0.02° and a dwell time of 1 s per step. Reflectance was studied using UV–vis spectroscopy performed on a Shimadzu UV-2600 double-beam spectrophotometer. Nanoparticles were dispersed in deionized water at a concentration of 1 mg/mL, and the spectra were recorded in the
PDF
Album
Full Research Paper
Published 30 Jan 2025

New design of operational MEMS bridges for measurements of properties of FEBID-based nanostructures

  • Bartosz Pruchnik,
  • Krzysztof Kwoka,
  • Ewelina Gacka,
  • Dominik Badura,
  • Piotr Kunicki,
  • Andrzej Sierakowski,
  • Paweł Janus,
  • Tomasz Piasecki and
  • Teodor Gotszalk

Beilstein J. Nanotechnol. 2024, 15, 1273–1282, doi:10.3762/bjnano.15.103

Graphical Abstract
  • : energy 30 keV, current 99 pA, 1 μs dwell time, 10.5 nm pitch, 7500 passes, and beam orthogonal to the surface. Due to the effect of residual strain, the RoI was formed with large (over 1.5 μm) internal spacing (Figure 5). The strain model developed with FEM showed that the strain was the result of
  • , 17 pA, 13 ms dwell time, a single line pattern in a single pass with 4 nm pitch, and MeCpPtMe3 precursor at 321 K with a flow rate of 8.5 × 10−4 μm3/s. The pattern line was set to begin on one electrode and end on the other (Figure 7). In between, the nanowire growth proceeded horizontally with an
  • apex by choosing appropriate dwell time and pitch for the deposition. The dimensions of the nanowire were 60 nm in diameter and 1.6 μm in length. The junction was tested by resistance measurements (Figure 8b). The measured resistance was 12 MΩ, giving a resistivity of approximately 2.1 Ω·cm, which is
PDF
Album
Full Research Paper
Published 23 Oct 2024

A low-kiloelectronvolt focused ion beam strategy for processing low-thermal-conductance materials with nanoampere currents

  • Annalena Wolff,
  • Nico Klingner,
  • William Thompson,
  • Yinghong Zhou,
  • Jinying Lin and
  • Yin Xiao

Beilstein J. Nanotechnol. 2024, 15, 1197–1207, doi:10.3762/bjnano.15.97

Graphical Abstract
  • ps. A scanned beam will generally not have moved away from any impact site before 100 ns have elapsed. These 100 ns are currently the typical minimal dwell time for most FIB machines. Consequently, for a 1 nA beam, approximately 625 ions will impact the same scan point before the focused ion beam
  • earlier study [16]. Schmied et al. showed that the dwell time plays a significant role in reducing local heating [16]. The effect of the ion dose rate/energy converted to heat per time is, thus, an important parameter and should be carefully investigated in future experiments. In addition, the effect of
  • 246 nm, exceeds the 200 nm blur and an additional measurement is therefore not meaningful here. The blur was achieved by overfocusing the beam. All cross-sections were prepared using 1 µs dwell time. SEM images of the prepared cross-sections were recorded with 5 kV acceleration voltage, 90 pA beam
PDF
Album
Full Research Paper
Published 27 Sep 2024

Direct electron beam writing of silver using a β-diketonate precursor: first insights

  • Katja Höflich,
  • Krzysztof Maćkosz,
  • Chinmai S. Jureddy,
  • Aleksei Tsarapkin and
  • Ivo Utke

Beilstein J. Nanotechnol. 2024, 15, 1117–1124, doi:10.3762/bjnano.15.90

Graphical Abstract
  • sequence of sonification in acetone, ethanol, and rinsed water, and dry-blowing with nitrogen. In our deposition experiments, faint deposits were visible starting at a GIS temperature of 50 °C for spots of 5 min dwell time, turning into clearly visible deposits starting from about 60 °C. From 80 °C onwards
  • primary electron energy and about 0.5 nA beam current. Rectangular patterns of 10 × 10 µm2 were scanned in an inward spiraling beam path with a 3 nm point-to-point pitch, a dwell time of 1 μs per point, and different numbers of passes using the Xenos Patterning software. A typical workflow involved the
  • dwell time and a beam current of 246 pA. With 8 × 107 electrons·s−1·nm−2 (assuming 5 nm FWHM of the beam), the local electron flux in this case was about three orders of magnitude larger than that of the thermal emitter. The resulting pillar height was more than 2 µm. Given the deposition time of 620 s
PDF
Album
Supp Info
Letter
Published 26 Aug 2024

Water-assisted purification during electron beam-induced deposition of platinum and gold

  • Cristiano Glessi,
  • Fabian A. Polman and
  • Cornelis W. Hagen

Beilstein J. Nanotechnol. 2024, 15, 884–896, doi:10.3762/bjnano.15.73

Graphical Abstract
  • discrete exposure points. The distance between exposure points is the pitch, while the exposure time for each point is the dwell time. This pattern is repeated for a certain number of passes [1]. The shape and size of the deposits are defined using the TFS “rectangle” or “line” patterning tools. The main
  • patterning parameters are the patterned area size, dwell time, primary beam energy and current, pitch, number of passes, and SEM chamber pressure during deposition or chamber pressure increase during deposition. The complete parameters for the deposits presented in this work are presented in Supporting
  • increase the electron flux while keeping the precursor supply constant, such as increasing the dwell time [56], were not explored further. The composition of the material was confirmed by STEM-EDX of a lamella cut from deposit 1g. The C/Pt atom % ratio in this deposit is consistently in the range of 0.22
PDF
Album
Supp Info
Full Research Paper
Published 18 Jul 2024

Level set simulation of focused ion beam sputtering of a multilayer substrate

  • Alexander V. Rumyantsev,
  • Nikolai I. Borgardt,
  • Roman L. Volkov and
  • Yuri A. Chaplygin

Beilstein J. Nanotechnol. 2024, 15, 733–742, doi:10.3762/bjnano.15.61

Graphical Abstract
  • a pixel spacing of a = 38.5 nm. The dwell time value was 0.1 ms, and the number of beam passes was chosen as M = 80, 100, and 120, corresponding to ion fluences of 4.4·1017, 5.5·1017, and 6.6·1017 cm−2 at the center of the trench, respectively. Figure 3a shows the plan-view scanning electron
  • of the prepared boxes was 1 × 1 μm2, and the dwell time value was set at 4.9 ms. The number of the ion beam passes was varied from M = 1 to M = 3. This corresponded to ion fluences from 7.5·1017 to 2.3·1018 cm−2 and resulted in nanostructures with aspect ratios from approximately 1.0 to 1.7 in a
PDF
Album
Full Research Paper
Published 24 Jun 2024

Sidewall angle tuning in focused electron beam-induced processing

  • Sangeetha Hari,
  • Willem F. van Dorp,
  • Johannes J. L. Mulders,
  • Piet H. F. Trompenaars,
  • Pieter Kruit and
  • Cornelis W. Hagen

Beilstein J. Nanotechnol. 2024, 15, 447–456, doi:10.3762/bjnano.15.40

Graphical Abstract
  • . Another major difference is that in the experiment, a line is being etched with a PE beam having a finite spot size. The effect of pixel dwell time, pixel overlap and multiple passes has not been taken into account, all of which could play an important role in circumstances involving surface diffusion
  • current, a pitch between exposure points of 5 nm, and a dwell time of 1 μs; the pattern was repeated for 3000 passes. The etching parameters were 20 keV, 3.2 nA, a pitch of 1 nm, a dwell time of 10 μs, and 35000 passes. It should be noted that for the etching process the electron beam current and
  • substrate with a 20 nm gold–palladium layer and a 5 nm titanium adhesion layer. The line was patterned in 500 passes with a dwell time of 500 µs, using a 5 keV beam and 100 pA current with a defocus of 100 nm. Prior to the FIB milling the line was covered with a protective layer of FEBID Pt/C from the
PDF
Album
Supp Info
Full Research Paper
Published 23 Apr 2024

Ultrasensitive and ultrastretchable metal crack strain sensor based on helical polydimethylsiloxane

  • Shangbi Chen,
  • Dewen Liu,
  • Weiwei Chen,
  • Huajiang Chen,
  • Jiawei Li and
  • Jinfang Wang

Beilstein J. Nanotechnol. 2024, 15, 270–278, doi:10.3762/bjnano.15.25

Graphical Abstract
  • by a return to 0% strain, with each increment being 50% and a dwell time of 10 s. The relative resistance exhibited a gradual increase as the strain was increased from 0 to 200%; it subsequently reverted to its initial level upon release of the strain from 200 to 0%. The helical sensor demonstrated
PDF
Album
Supp Info
Full Research Paper
Published 01 Mar 2024

Graphene removal by water-assisted focused electron-beam-induced etching – unveiling the dose and dwell time impact on the etch profile and topographical changes in SiO2 substrates

  • Aleksandra Szkudlarek,
  • Jan M. Michalik,
  • Inés Serrano-Esparza,
  • Zdeněk Nováček,
  • Veronika Novotná,
  • Piotr Ozga,
  • Czesław Kapusta and
  • José María De Teresa

Beilstein J. Nanotechnol. 2024, 15, 190–198, doi:10.3762/bjnano.15.18

Graphical Abstract
  • nanopatterning, we have found significant morphological changes induced in the SiO2 substrate even at low electron dose values (<8 nC/μm2). We demonstrate that graphene etching and topographical changes in SiO2 substrates can be controlled via electron beam parameters such as dwell time and dose. Keywords
  • : direct writing; dwell time; electron dose; etching; graphene; maskless lithography; nanopatterning; Introduction The discovery of extraordinary and controllable electrical conductivity in graphene back in 2004 made it the most recognized 2D material [1]. The newly discovered phenomena, such as
  • is dependent on the precursor dynamics (adsorption/desorption rate, diffusion), electron beam (lateral size, electron flux, energy), and scanning parameters (dwell time, refresh time, scanning strategy) [22]. Additionally, residual hydrocarbons inside the scanning electron microscope chamber manifest
PDF
Album
Full Research Paper
Published 07 Feb 2024

Current-induced mechanical torque in chiral molecular rotors

  • Richard Korytár and
  • Ferdinand Evers

Beilstein J. Nanotechnol. 2023, 14, 711–721, doi:10.3762/bjnano.14.57

Graphical Abstract
  • particle The substitution of leaves the second EOM in the form where we introduced and the dot indicates differentiation with respect to . At the entry point, s = 0, the velocity of the particle equals dz(0)/dt. The expression describes the inverse dwell time δτ. We shall assume that δτ = 10−2T and
PDF
Album
Full Research Paper
Published 12 Jun 2023

Measurement of polarization effects in dual-phase ceria-based oxygen permeation membranes using Kelvin probe force microscopy

  • Kerstin Neuhaus,
  • Christina Schmidt,
  • Liudmila Fischer,
  • Wilhelm Albert Meulenberg,
  • Ke Ran,
  • Joachim Mayer and
  • Stefan Baumann

Beilstein J. Nanotechnol. 2021, 12, 1380–1391, doi:10.3762/bjnano.12.102

Graphical Abstract
  • ethanol for 48 h on a roller bench with 175 rpm. After drying in ambient air at 70 °C the powder mixture was pressed with an uniaxial press in disc-shaped membranes with d = 20 mm. The discs were sintered with a heating rate of 5 K/min to 1200 °C and a dwell time of 5 h. At the sintering temperature, the
PDF
Album
Full Research Paper
Published 15 Dec 2021

Irradiation-driven molecular dynamics simulation of the FEBID process for Pt(PF3)4

  • Alexey Prosvetov,
  • Alexey V. Verkhovtsev,
  • Gennady Sushko and
  • Andrey V. Solov’yov

Beilstein J. Nanotechnol. 2021, 12, 1151–1172, doi:10.3762/bjnano.12.86

Graphical Abstract
  • role of these processes under specific conditions might be a topic for a separate investigation, which goes beyond the scope of the present study. Irradiation In experiments the irradiation phase of the FEBID process can last for a period (called dwell time τd) from sub-microseconds to sub-milliseconds
  • coalescence into metal-enriched clusters and bigger structures. As the typical dwell time values are relatively short, adsorption and desorption of precursor molecules within the irradiation phase are assumed negligible. In this step, the electron-induced precursor fragmentation is simulated by means of IDMD
  • rate to the electron flux. As the realistic experimental time scale for τd is challenging for all-atom MD, the simulated PE fluxes J0 (and hence PE beam currents I0) are rescaled to match the number of PE per unit area and per dwell time as in experiments. The correspondence of simulated results to
PDF
Album
Full Research Paper
Published 13 Oct 2021

Surface-enhanced Raman scattering of water in aqueous dispersions of silver nanoparticles

  • Paulina Filipczak,
  • Krzysztof Hałagan,
  • Jacek Ulański and
  • Marcin Kozanecki

Beilstein J. Nanotechnol. 2021, 12, 497–506, doi:10.3762/bjnano.12.40

Graphical Abstract
  • hydration layer, but it is also transferred to deeper layers of water up to approx.10 Å (this value is only slightly impacted by the interaction energies). As a result, water molecules around AgNPs have a lower kinetic energy and a longer dwell time that favours structure stabilization. A similar effect has
PDF
Album
Supp Info
Full Research Paper
Published 25 May 2021

The patterning toolbox FIB-o-mat: Exploiting the full potential of focused helium ions for nanofabrication

  • Victor Deinhart,
  • Lisa-Marie Kern,
  • Jan N. Kirchhof,
  • Sabrina Juergensen,
  • Joris Sturm,
  • Enno Krauss,
  • Thorsten Feichtner,
  • Sviatoslav Kovalchuk,
  • Michael Schneider,
  • Dieter Engel,
  • Bastian Pfau,
  • Bert Hecht,
  • Kirill I. Bolotin,
  • Stephanie Reich and
  • Katja Höflich

Beilstein J. Nanotechnol. 2021, 12, 304–318, doi:10.3762/bjnano.12.25

Graphical Abstract
  • appropriate dose range was determined in prior automated dose tests (cf. Supporting Information File 1, section “Automation in FIB-o-mat”). The used ion beam current was 2.6 pA at an acceleration voltage of 30 kV and an extractor voltage of 32 kV. The dwell time was 1 μs and the pitch was 5 nm. The magnetic
  • acceleration voltage of 30 kV and a BIV of around 32.3 kV. The patterns were constructed from circle segments combined with linear segments to define length and width of the trampoline bridges. In the absence of contaminants, a pitch of 50 pm in combination with a dwell time of 4 ms leads to well-defined
  • . For Ga ion beam milling a current of 10 pA, a pitch of 3 nm and a dwell time of 1 μs were employed in a two-step patterning process. First, the surrounding gold was removed by rectangular scanning of a square of several micrometers from which a slightly larger tetramer shape was subtracted
PDF
Album
Supp Info
Full Research Paper
Published 06 Apr 2021

Gold(I) N-heterocyclic carbene precursors for focused electron beam-induced deposition

  • Cristiano Glessi,
  • Aya Mahgoub,
  • Cornelis W. Hagen and
  • Mats Tilset

Beilstein J. Nanotechnol. 2021, 12, 257–269, doi:10.3762/bjnano.12.21

Graphical Abstract
  • for deposition upon e-beam irradiation. When deposition was successful, two types of deposits were created. Firstly, large deposits for composition analysis were written by repeatedly (2000 passes) exposing a 250 × 250 nm2 area, using point exposures with a dwell time of 500 µs and a pitch of 10 nm
  • between the exposure points. Secondly, to characterize the growth, square arrays of 3 × 3 pillars, each pillar grown at a different dwell time, were fabricated. In each array, the pillar separation was 1 µm. Two types of arrays were deposited, one with short dwell times of 0.1, 0.2, 0.5, 1, 2, 5, 10, 20
PDF
Album
Supp Info
Full Research Paper
Published 17 Mar 2021

Scanning transmission helium ion microscopy on carbon nanomembranes

  • Daniel Emmrich,
  • Annalena Wolff,
  • Nikolaus Meyerbröker,
  • Jörg K. N. Lindner,
  • André Beyer and
  • Armin Gölzhäuser

Beilstein J. Nanotechnol. 2021, 12, 222–231, doi:10.3762/bjnano.12.18

Graphical Abstract
  • within a set of images. The grid of the Everhart–Thornley detector was kept at 500 V while photomultiplier gain, brightness, and image intensity were adjusted for each set of images to keep the signal on all images within the dynamic range of the detector. Images were acquired at a dwell time of 0.5 µs
PDF
Album
Full Research Paper
Published 26 Feb 2021

Bio-imaging with the helium-ion microscope: A review

  • Matthias Schmidt,
  • James M. Byrne and
  • Ilari J. Maasilta

Beilstein J. Nanotechnol. 2021, 12, 1–23, doi:10.3762/bjnano.12.1

Graphical Abstract
  • perspective, charge compensation can be challenging as the total amount of charges required for compensation depends linearly on the number of charges implanted per line scanned. In other words, the settings of the flood gun have to be adjusted whenever the number of pixels per line, dwell time, or beam
  • current are changed. Figure 3 illustrates how the variation of the dwell time of the ion beam on a pixel influences the brightness of the image if the flooding parameters are kept constant. Similar results can be obtained when the flood time is varied at a constant dwell time. Secondary ion mass
PDF
Album
Review
Published 04 Jan 2021

Scanning transmission imaging in the helium ion microscope using a microchannel plate with a delay line detector

  • Eduardo Serralta,
  • Nico Klingner,
  • Olivier De Castro,
  • Michael Mousley,
  • Santhana Eswara,
  • Serge Duarte Pinto,
  • Tom Wirtz and
  • Gregor Hlawacek

Beilstein J. Nanotechnol. 2020, 11, 1854–1864, doi:10.3762/bjnano.11.167

Graphical Abstract
  • 5 × 10−7 mbar. These conditions provide an estimated beam current of 50 fA. For the STIM images, a single scan with pixel dwell time of 110 μs was used. In the SE imaging mode, we used the line average mode with ten scans and a pixel dwell time of 10 μs. The research data used in this publication is
  • based on their gray levels. For this image we used 30 kV acceleration voltage, with a 5 μm aperture, in spot control 5, a gun gas pressure of 1.3 × 10−6 mbar, and 300 μs pixel dwell time. The sample comprises a 20 nm thick silicon nitride membrane used as a support layer. A 20 nm thick layer of silicon
  • . The pixel dwell time used in the STIM data acquisition was 200 μs. Thallium chloride evaporated on a TEM grid. (a) Secondary electron image. Inset of (a) shows the regions of the detector used to generate the following STIM images. (b) BF STIM image with acceptance angle of 0 to 4°. (c) DF STIM using
PDF
Album
Full Research Paper
Published 11 Dec 2020

Electron beam-induced deposition of platinum from Pt(CO)2Cl2 and Pt(CO)2Br2

  • Aya Mahgoub,
  • Hang Lu,
  • Rachel M. Thorman,
  • Konstantin Preradovic,
  • Titel Jurca,
  • Lisa McElwee-White,
  • Howard Fairbrother and
  • Cornelis W. Hagen

Beilstein J. Nanotechnol. 2020, 11, 1789–1800, doi:10.3762/bjnano.11.161

Graphical Abstract
  • ultrahigh-resolution (immersion) mode. Specific patterning parameters such as electron beam dwell time and the refresh time between exposure passes will be detailed for each experiment. To characterize FEBID growth, the height and base diameter of pillars were measured using 35° tilt images. Energy
  • was used with beam currents of 12, 38, and 140 pA. A writing strategy was employed wherein a 4 × 5 array of locations at a 200 nm pitch was exposed in a serial fashion. At each location, the electron beam remained for a different dwell time, starting with 0.5 ms and increasing by 1 ms at each further
  • electrons used to grow a pillar, that is, the beam current multiplied by the total dwell time at the location of exposure, excluding the waiting time. For point exposures, this is a better-defined measure than the dose per unit area. Although the diameters of the pillars from Pt(CO)2Cl2, as judged from
PDF
Album
Supp Info
Full Research Paper
Published 27 Nov 2020

Out-of-plane surface patterning by subsurface processing of polymer substrates with focused ion beams

  • Serguei Chiriaev,
  • Luciana Tavares,
  • Vadzim Adashkevich,
  • Arkadiusz J. Goszczak and
  • Horst-Günter Rubahn

Beilstein J. Nanotechnol. 2020, 11, 1693–1703, doi:10.3762/bjnano.11.151

Graphical Abstract
  • mode with multiple passes and a beam dwell time of 2 µs. Arrays of 10 × 10 µm2 squares irradiated with different doses were used for measuring the dependence of the surface height on the irradiation dose, as previously described [4]. The distance between the square edges was kept at either 10 or 15 µm
PDF
Album
Supp Info
Full Research Paper
Published 06 Nov 2020

Helium ion microscope – secondary ion mass spectrometry for geological materials

  • Matthew R. Ball,
  • Richard J. M. Taylor,
  • Joshua F. Einsle,
  • Fouzia Khanom,
  • Christelle Guillermier and
  • Richard J. Harrison

Beilstein J. Nanotechnol. 2020, 11, 1504–1515, doi:10.3762/bjnano.11.133

Graphical Abstract
  • value of m/z for which no secondary ions were expected, for the measurement of a “background count rate”, with a fixed, low magnetic field of around 100 mT. The primary beam was rastered over the sample to simultaneously map ion counts on each detector with a typical dwell time per pixel of 4 ms
PDF
Album
Full Research Paper
Published 02 Oct 2020

Effect of localized helium ion irradiation on the performance of synthetic monolayer MoS2 field-effect transistors

  • Jakub Jadwiszczak,
  • Pierce Maguire,
  • Conor P. Cullen,
  • Georg S. Duesberg and
  • Hongzhou Zhang

Beilstein J. Nanotechnol. 2020, 11, 1329–1335, doi:10.3762/bjnano.11.117

Graphical Abstract
  • ]. The average recorded beam current throughout the irradiations was 37.5 ± 0.4 pA, and the probe size was determined at approx. 7 nm [9]. The areal ion dose delivered to each sample was maintained at approx. 1017 ions cm−2, with a step size of 1 nm and a dwell time of 4.3 μs throughout the duration of a
PDF
Album
Full Research Paper
Published 04 Sep 2020
Other Beilstein-Institut Open Science Activities