Search results

Search for "single crystal" in Full Text gives 198 result(s) in Beilstein Journal of Nanotechnology.

Heat-induced transformation of nickel-coated polycrystalline diamond film studied in situ by XPS and NEXAFS

  • Olga V. Sedelnikova,
  • Yuliya V. Fedoseeva,
  • Dmitriy V. Gorodetskiy,
  • Yuri N. Palyanov,
  • Elena V. Shlyakhova,
  • Eugene A. Maksimovskiy,
  • Anna A. Makarova,
  • Lyubov G. Bulusheva and
  • Aleksandr V. Okotrub

Beilstein J. Nanotechnol. 2025, 16, 887–898, doi:10.3762/bjnano.16.67

Graphical Abstract
  • coating on the electronic structure and chemical state of graphite layers formed on the surface of a polycrystalline diamond (PCD) film with mixed grain orientation was studied. A synthetic single-crystal diamond (SCD) with a polished (110) face was examined for comparison. The samples were coated with a
  • . Keywords: graphitization; near-edge X-ray absorption fine structure spectroscopy; nickel coating; polycrystalline diamond film; single-crystal diamond; X-ray photoelectron spectroscopy; Introduction Diamond and graphite, both composed entirely of carbon atoms, exhibit vastly different properties due to
  • -diamond heterostructures by annealing. Among those, nickel attracts specific attention since the 1960s [33] because its lattice parameter is close to that of diamond. Single-crystal diamond (SCD) substrates were subjected to nickel-assisted graphitization [17][18][19][20][21]. The transformation of the
PDF
Album
Supp Info
Full Research Paper
Published 12 Jun 2025

Insights into the electronic and atomic structures of cerium oxide-based ultrathin films and nanostructures using high-brilliance light sources

  • Paola Luches and
  • Federico Boscherini

Beilstein J. Nanotechnol. 2025, 16, 860–871, doi:10.3762/bjnano.16.65

Graphical Abstract
  • of surface C or CO [38]. Resonant photoemission detected by a spectroscopic photoemission and low-energy electron microscope (SPLEEM) was also used to acquire local information on the oxidation degree of cerium in mixed zirconia–ceria nanostructures supported on a Rh(111) single crystal [39]. Figure
  • Katoch et al. investigated the dynamics of photoexcited electron and hole polarons in a cerium oxide single crystal and in a nanocrystal using FEL-based pump–probe XANES at the Ce M5 and O K edges detected in total electron yield mode [61]. The samples contained a non-negligible concentration of Ce3
PDF
Album
Review
Published 10 Jun 2025

Synchrotron X-ray photoelectron spectroscopy study of sodium adsorption on vertically arranged MoS2 layers coated with pyrolytic carbon

  • Alexander V. Okotrub,
  • Anastasiya D. Fedorenko,
  • Anna A. Makarova,
  • Veronica S. Sulyaeva,
  • Yuliya V. Fedoseeva and
  • Lyubov G. Bulusheva

Beilstein J. Nanotechnol. 2025, 16, 847–859, doi:10.3762/bjnano.16.64

Graphical Abstract
  • consisting of MoS2 and graphite thin layers in SIBs. The presence of PyC protects the surface of MoS2 from excess sodium concentration and, consequently, from the destruction of the original MoS2 structure. Experimental The substrates cut from a single-crystal silicon wafer were annealed in air at 1323 K for
PDF
Album
Supp Info
Full Research Paper
Published 10 Jun 2025

Thickness dependent oxidation in CrCl3: a scanning X-ray photoemission and Kelvin probe microscopies study

  • Shafaq Kazim,
  • Rahul Parmar,
  • Maryam Azizinia,
  • Matteo Amati,
  • Muhammad Rauf,
  • Andrea Di Cicco,
  • Seyed Javid Rezvani,
  • Dario Mastrippolito,
  • Luca Ottaviano,
  • Tomasz Klimczuk,
  • Luca Gregoratti and
  • Roberto Gunnella

Beilstein J. Nanotechnol. 2025, 16, 749–761, doi:10.3762/bjnano.16.58

Graphical Abstract
  • material. This is an aspect of particular relevance because of the possible applications of the material to monolayer-thin devices. Experimental The preparation of exfoliated CrCl3 flakes from the single crystal bulk material was reported in our previous papers [2][11]. Though preferentially a 270 nm
PDF
Album
Supp Info
Full Research Paper
Published 02 Jun 2025

Nanostructured materials characterized by scanning photoelectron spectromicroscopy

  • Matteo Amati,
  • Alexey S. Shkvarin,
  • Alexander I. Merentsov,
  • Alexander N. Titov,
  • María Taeño,
  • David Maestre,
  • Sarah R. McKibbin,
  • Zygmunt Milosz,
  • Ana Cremades,
  • Rainer Timm and
  • Luca Gregoratti

Beilstein J. Nanotechnol. 2025, 16, 700–710, doi:10.3762/bjnano.16.54

Graphical Abstract
  • why these structural fragments form a single crystal and not independent phases. An analysis of the binding energy of the core levels of Cr 3p, Ti 3p, Ti 2p, and Cr 2p3/2 (Figure 1d–f) in the different fragments reveals a shift of about 0.5 eV in the binding energy, indicating that the fragments are
  • charged relative to each other. It is evident that this is the mechanism by which the individual fragments are linked into a single crystal. The SPEM technique is fundamental for the detection of such inhomogeneities, given that the photoelectron yield depth in this instance does not exceed 12 angstroms
  • small in lateral dimensions. The Fe0.25Ni0.25TiSe2 system provides an illustrative example of such a system [14]. The single-crystal growth of a mixture of Fe0.25TiSe2 and Ni0.25TiSe2 results in the formation of a (Fe,Ni)0.25TiSe2 single crystal, which is covered with faceted single-crystal inclusions
PDF
Album
Review
Published 23 May 2025

High-temperature epitaxial growth of tantalum nitride thin films on MgO: structural evolution and potential for SQUID applications

  • Michelle Cedillo Rosillo,
  • Oscar Contreras López,
  • Jesús Antonio Díaz,
  • Agustín Conde Gallardo and
  • Harvi A. Castillo Cuero

Beilstein J. Nanotechnol. 2025, 16, 690–699, doi:10.3762/bjnano.16.53

Graphical Abstract
  • collected using an Al Kα monochromatic source and a hemispherical analyzer from SPECS. The films were grown on (100)-oriented single crystal substrates of magnesium oxide (MgO) (99.9%, purchased from Sigma Aldrich). To obtain a FCC structure, we varied the deposition temperature while using 90 mTorr of N2
PDF
Album
Full Research Paper
Published 22 May 2025

Performance optimization of a microwave-coupled plasma-based ultralow-energy ECR ion source for silicon nanostructuring

  • Joy Mukherjee,
  • Safiul Alam Mollick,
  • Tanmoy Basu and
  • Tapobrata Som

Beilstein J. Nanotechnol. 2025, 16, 484–494, doi:10.3762/bjnano.16.37

Graphical Abstract
  • power, and extraction grid voltage is documented for different ion energies. Additionally, the manuscript establishes the relationship between ion beam current and ion energy. Irradiation of p-type single crystal Si(100) surfaces at off-normal angles (60° and 72.5°) with 450 eV Ar ions results in the
PDF
Album
Full Research Paper
Published 31 Mar 2025

ReactorAFM/STM – dynamic reactions on surfaces at elevated temperature and atmospheric pressure

  • Tycho Roorda,
  • Hamed Achour,
  • Matthijs A. van Spronsen,
  • Marta E. Cañas-Ventura,
  • Sander B. Roobol,
  • Willem Onderwaater,
  • Mirthe Bergman,
  • Peter van der Tuijn,
  • Gertjan van Baarle,
  • Johan W. Bakker,
  • Joost W. M. Frenken and
  • Irene M. N. Groot

Beilstein J. Nanotechnol. 2025, 16, 397–406, doi:10.3762/bjnano.16.30

Graphical Abstract
  • structure of materials under reaction conditions. We demonstrate this by imaging a Pd(100) single crystal at 450 K with combined AFM/STM. The surface is compared under ultrahigh vacuum and under 0.5 bar O2 pressure showing a notable increase in RMS current, which we attribute to oxidation. Also, we study
  • show operando combined AFM/STM images of a clean Pd(100) single crystal that undergoes oxidation of the surface. The oxidation happens at 450 K under 0.5 bar of oxygen atmosphere. The second experiment is a FTS experiment, where we show AFM images of catalytic cobalt nanoparticles. The nanoparticles
  • demonstrate the performance of the AFM/STM reactor, we show in Figure 5 images of an as-prepared Pd(100) single crystal, taken at 450 K under UHV conditions (Figure 5a) and under oxidation reaction conditions (Figure 5b). Scanning at high temperature and pressure is performed with the same feedback settings
PDF
Album
Full Research Paper
Published 21 Mar 2025

A review of metal-organic frameworks and polymers in mixed matrix membranes for CO2 capture

  • Charlotte Skjold Qvist Christensen,
  • Nicholas Hansen,
  • Mahboubeh Motadayen,
  • Nina Lock,
  • Martin Lahn Henriksen and
  • Jonathan Quinson

Beilstein J. Nanotechnol. 2025, 16, 155–186, doi:10.3762/bjnano.16.14

Graphical Abstract
PDF
Album
Supp Info
Review
Published 12 Feb 2025

The role of a tantalum interlayer in enhancing the properties of Fe3O4 thin films

  • Hai Dang Ngo,
  • Vo Doan Thanh Truong,
  • Van Qui Le,
  • Hoai Phuong Pham and
  • Thi Kim Hang Pham

Beilstein J. Nanotechnol. 2024, 15, 1253–1259, doi:10.3762/bjnano.15.101

Graphical Abstract
  • study of analog resistive switching of Fe3O4-based cross-cell memristive devices [7][8][9][10]. Fe3O4 thin films can be grown by many processes, including molecular beam epitaxy, which is employed for depositing single crystal films, and pulsed laser deposition, which is utilized to achieve epitaxial
  • films on three different types of substrates, namely an amorphous SiO2/Si(100) substrate, a single crystal MgO(100) substrate, and a buffer layer consisting of MgO/Ta/SiO2/Si(100). The properties of Fe3O4 thin films were analyzed using atomic force microscopy (AFM), X-ray diffractometry (XRD), and
PDF
Album
Full Research Paper
Published 14 Oct 2024

Local work function on graphene nanoribbons

  • Daniel Rothhardt,
  • Amina Kimouche,
  • Tillmann Klamroth and
  • Regina Hoffmann-Vogel

Beilstein J. Nanotechnol. 2024, 15, 1125–1131, doi:10.3762/bjnano.15.91

Graphical Abstract
  • -dependent measurements. Experimental The experiments were conducted in an Omicron VT-SFM system (base pressure 2 × 10−10 mbar). The Au(111) single crystal substrate (Mateck GmbH) was cleaned by repeated Ar ion sputtering–annealing cycles. The cleanliness of the samples was checked by SFM measurements. Then
PDF
Album
Supp Info
Letter
Published 29 Aug 2024

Investigating ripple pattern formation and damage profiles in Si and Ge induced by 100 keV Ar+ ion beam: a comparative study

  • Indra Sulania,
  • Harpreet Sondhi,
  • Tanuj Kumar,
  • Sunil Ojha,
  • G R Umapathy,
  • Ambuj Mishra,
  • Ambuj Tripathi,
  • Richa Krishna,
  • Devesh Kumar Avasthi and
  • Yogendra Kumar Mishra

Beilstein J. Nanotechnol. 2024, 15, 367–375, doi:10.3762/bjnano.15.33

Graphical Abstract
  • or range of damage profiles. Single-crystal materials (e.g. silicon and germanium) are composed of ordered arrays of atoms. If an ion beam is aligned to the atomic planes, most of the ions pass through the interplanar space and penetrate deep into the crystal. This can be used in channelling studies
  • attributed to the accumulation of defects produced by Ar irradiation. The RBS-c spectra recorded for Si and Ge single-crystal samples pre-damaged with 100 keV Ar+ ions at RT are presented in Figure 5A and Figure 5B, respectively. The RBS spectrum recorded for the pristine sample in random orientation
PDF
Album
Supp Info
Full Research Paper
Published 05 Apr 2024

Ion beam processing of DNA origami nanostructures

  • Leo Sala,
  • Agnes Zerolová,
  • Violaine Vizcaino,
  • Alain Mery,
  • Alicja Domaracka,
  • Hermann Rothard,
  • Philippe Boduch,
  • Dominik Pinkas and
  • Jaroslav Kocišek

Beilstein J. Nanotechnol. 2024, 15, 207–214, doi:10.3762/bjnano.15.20

Graphical Abstract
  • the direction of the primary ion’s initial momentum. Hillock structures are usually formed upon such interaction with single-crystal materials [19], while craters and particle tracks form on polymeric thin films such as PMMA [20][21]. The dimensions of such features can be influenced by the interplay
PDF
Album
Supp Info
Full Research Paper
Published 12 Feb 2024

In situ optical sub-wavelength thickness control of porous anodic aluminum oxide

  • Aleksandrs Dutovs,
  • Raimonds Popļausks,
  • Oskars Putāns,
  • Vladislavs Perkanuks,
  • Aušrinė Jurkevičiūtė,
  • Tomas Tamulevičius,
  • Uldis Malinovskis,
  • Iryna Olyshevets,
  • Donats Erts and
  • Juris Prikulis

Beilstein J. Nanotechnol. 2024, 15, 126–133, doi:10.3762/bjnano.15.12

Graphical Abstract
  • effective thickness below 300 nm could be produced with a few nanometers accuracy using single-crystal aluminum substrates. The results were confirmed using spectroscopic ellipsometry. The method for controlling the thickness during anodization eliminates the necessity of sample sectioning for electron
  • absorption and photoluminescence characteristics of PAAO [38]. In order to achieve nanometer-scale thickness uniformity of the PAAO layers (Figure 4), it was necessary to use single-crystal aluminum substrates as starting material. In previous studies it was shown that anodization of polycrystalline aluminum
  • samples at constant 40 V potential. Platinum cathode and single crystal Al(100) (MTI Corp. mcALa101010) anode were immersed in 0.3 M oxalic acid electrolyte inside a multiwalled container with a transparent optical window. The container was placed on a magnetic stirrer and cooled to 5 °C. The reflectance
PDF
Album
Full Research Paper
Published 31 Jan 2024

TEM sample preparation of lithographically patterned permalloy nanostructures on silicon nitride membranes

  • Joshua Williams,
  • Michael I. Faley,
  • Joseph Vimal Vas,
  • Peng-Han Lu and
  • Rafal E. Dunin-Borkowski

Beilstein J. Nanotechnol. 2024, 15, 1–12, doi:10.3762/bjnano.15.1

Graphical Abstract
  • -crystal SiC membranes is also feasible. Py epitaxial films were obtained on single-crystal MgO substrates [36] that have a lattice constant of 0.42 nm. It was demonstrated that the epitaxial SiC layer can serve as an excellent mask material for KOH etching of Si [37]. However, etching to a crystalline
  • development is to use a different membrane, for example SiC (lattice constant a = 0.435 nm), since it can grow as a single-crystalline layer and ensure epitaxial sample growth on top of it, for example, the growth of NbN (a = 0.439 nm) with a lattice mismatch of 1%. Epitaxial growth of Py films on single
PDF
Album
Supp Info
Full Research Paper
Published 02 Jan 2024

Spatial mapping of photovoltage and light-induced displacement of on-chip coupled piezo/photodiodes by Kelvin probe force microscopy under modulated illumination

  • Zeinab Eftekhari,
  • Nasim Rezaei,
  • Hidde Stokkel,
  • Jian-Yao Zheng,
  • Andrea Cerreta,
  • Ilka Hermes,
  • Minh Nguyen,
  • Guus Rijnders and
  • Rebecca Saive

Beilstein J. Nanotechnol. 2023, 14, 1059–1067, doi:10.3762/bjnano.14.87

Graphical Abstract
  • × 2.8) and (1.4 × 1.2) mm2 labeled as A, B, C, and D, respectively. In the process of fabrication, a 100 nm thick layer of LNO as the bottom electrode was first deposited, using pulsed laser deposition (PLD) technique, on a single crystal silicon wafer. Then, an 850 nm lead barium zirconia titanate
PDF
Album
Supp Info
Full Research Paper
Published 06 Nov 2023

Low temperature atomic layer deposition of cobalt using dicobalt hexacarbonyl-1-heptyne as precursor

  • Mathias Franz,
  • Mahnaz Safian Jouzdani,
  • Lysann Kaßner,
  • Marcus Daniel,
  • Frank Stahr and
  • Stefan E. Schulz

Beilstein J. Nanotechnol. 2023, 14, 951–963, doi:10.3762/bjnano.14.78

Graphical Abstract
  • solution. The attached RF generator operates at 13.56 MHz, creating a direct capacitively coupled plasma, if required. The system includes an integrated iSE spectroscopic ellipsometer of J.A. Woollam Co. for inline thickness measurements. Basic materials and procedure The whole study was done using single
  • crystal 200 mm silicon (100) wafers with a pre-coated thermal SiO2 film of 100 nm thickness. As precursor for all depositions dicobalt hexacarbonyl-1-heptyne [Co2(CO)6HC≡CC5H11] was used. The precursor was synthesised according to Georgi et al. [23] and filled to a common 200 mL stainless steel bubbler
PDF
Album
Supp Info
Full Research Paper
Published 15 Sep 2023

Thermal transport in kinked nanowires through simulation

  • Alexander N. Robillard,
  • Graham W. Gibson and
  • Ralf Meyer

Beilstein J. Nanotechnol. 2023, 14, 586–602, doi:10.3762/bjnano.14.49

Graphical Abstract
  • . Systems are simulated using open boundary conditions, that is, there is no use of periodic boundary conditions for these systems. The kinked wires used in MD are shaped from a single crystal oriented so that the straight portions follow along the [100] direction. These systems are build from cylindrical
PDF
Album
Full Research Paper
Published 15 May 2023

Bending and punching characteristics of aluminum sheets using the quasi-continuum method

  • Man-Ping Chang,
  • Shang-Jui Lin and
  • Te-Hua Fang

Beilstein J. Nanotechnol. 2022, 13, 1303–1315, doi:10.3762/bjnano.13.108

Graphical Abstract
  • friction behaviors of different models [52]. Moreover, the QC method based on the embedded-atom method (EAM) potential was adopted to observe the fatigue crack growth and expansion characteristics of single-crystal metals under cyclic loading processes. The results showed that after compressive or shear
  • , the effect of crystal orientation on the materials will be firstly considered. The mechanical properties of single-crystal materials can be strongly affected by the crystal orientation [56], such as the elastic stress [57], thermomechanical fatigue behavior [58], and the dislocation effect of
  • close-packed surface of the single-crystal Al workpiece, respectively [60]. The thickness of the Al workpiece was set to 10 Å and the clearance was 5 Å. Figure 2 exhibits the shear stress–displacement curve of O1, O2, and O3 during the nano-punching process. Firstly, it can be observed that a continuous
PDF
Album
Full Research Paper
Published 10 Nov 2022

A cantilever-based, ultrahigh-vacuum, low-temperature scanning probe instrument for multidimensional scanning force microscopy

  • Hao Liu,
  • Zuned Ahmed,
  • Sasa Vranjkovic,
  • Manfred Parschau,
  • Andrada-Oana Mandru and
  • Hans J. Hug

Beilstein J. Nanotechnol. 2022, 13, 1120–1140, doi:10.3762/bjnano.13.95

Graphical Abstract
PDF
Album
Full Research Paper
Published 11 Oct 2022

Self-assembly of C60 on a ZnTPP/Fe(001)–p(1 × 1)O substrate: observation of a quasi-freestanding C60 monolayer

  • Guglielmo Albani,
  • Michele Capra,
  • Alessandro Lodesani,
  • Alberto Calloni,
  • Gianlorenzo Bussetti,
  • Marco Finazzi,
  • Franco Ciccacci,
  • Alberto Brambilla,
  • Lamberto Duò and
  • Andrea Picone

Beilstein J. Nanotechnol. 2022, 13, 857–864, doi:10.3762/bjnano.13.76

Graphical Abstract
  • in UHV on a MgO(001) single crystal [48]. The Fe(001)–p(1 × 1)O surface was prepared by using the following procedure: the clean Fe substrate was exposed to 30 Langmuir of molecular oxygen at a pressure of = 2 × 10−7 mbar and subsequently annealed at about 700 °C for 5 min. Porphyrins were
PDF
Album
Full Research Paper
Published 30 Aug 2022

Ultrafast signatures of magnetic inhomogeneity in Pd1−xFex (x ≤ 0.08) epitaxial thin films

  • Andrey V. Petrov,
  • Sergey I. Nikitin,
  • Lenar R. Tagirov,
  • Amir I. Gumarov,
  • Igor V. Yanilkin and
  • Roman V. Yusupov

Beilstein J. Nanotechnol. 2022, 13, 836–844, doi:10.3762/bjnano.13.74

Graphical Abstract
  • paramagnetic (PM) regions coexist, with the latter collapsing upon an increase of the iron content. Experimental The samples for the studies were thin epitaxial films of Pd1−xFex with a nominal iron content of x = 0 (pure Pd), 0.038, 0.062, and 0.080 grown on single-crystal MgO(001) substrates by molecular
PDF
Album
Full Research Paper
Published 25 Aug 2022

Optimizing PMMA solutions to suppress contamination in the transfer of CVD graphene for batch production

  • Chun-Da Liao,
  • Andrea Capasso,
  • Tiago Queirós,
  • Telma Domingues,
  • Fatima Cerqueira,
  • Nicoleta Nicoara,
  • Jérôme Borme,
  • Paulo Freitas and
  • Pedro Alpuim

Beilstein J. Nanotechnol. 2022, 13, 796–806, doi:10.3762/bjnano.13.70

Graphical Abstract
  • of both a graphene film and a single crystal (Figure 2a,b). The area analysis (650 × 500 µm2) revealed less than ten residues, indicating an extremely clean transfer process. B2 PMMA allowed for up to six transfer cycles, representing an intermediate, yet acceptable, mechanical support. This proves
  • ) and 1860 Ω (FWHM = 567 Ω), respectively, proving that the optimized PMMA mixture enables the production of reproducible arrays of electronic devices with consistent properties. Experimental Graphene growth Single-crystal and large-area graphene were obtained on Cu foil via catalyst-assisted growth in
  • -area film and (b) a single crystal. (c) Raman spectra taken at the positions indicated in (b). Raman mapping of (d) I(D)/I(G), (e) I(2D)/I(G), and (f) FWHM(2D), and (g–i) corresponding statistics. Statistical analysis of the Raman spectra of transistors prepared with transfers using PMMA mixtures with
PDF
Album
Supp Info
Full Research Paper
Published 18 Aug 2022

Recent advances in nanoarchitectures of monocrystalline coordination polymers through confined assembly

  • Lingling Xia,
  • Qinyue Wang and
  • Ming Hu

Beilstein J. Nanotechnol. 2022, 13, 763–777, doi:10.3762/bjnano.13.67

Graphical Abstract
  • connected channels were fully occupied by one single crystal (Figure 2). The fronts of the single crystal grew along these channels, leading to single crystals with several branches, such as comb-shaped single crystals, as investigated by optical microscopy. It was found that when the crystal size is
  • smaller than the channel size, the crystals were polyhedra. When the channel was fully filled by a crystal, chemical gradient, physical constraints, and absence of advection changed the properties of the crystal according to reaction–diffusion theory. The fact that one single crystal can occupy several
  • connected branches suggests that the channel walls can be encapsulated by single crystals. This is a basis for the formation of composites with a single crystal matrix. When solid networks are immersed into a solution of coordination polymers, the connected space among the networks can be seen as connected
PDF
Album
Review
Published 12 Aug 2022

A non-enzymatic electrochemical hydrogen peroxide sensor based on copper oxide nanostructures

  • Irena Mihailova,
  • Vjaceslavs Gerbreders,
  • Marina Krasovska,
  • Eriks Sledevskis,
  • Valdis Mizers,
  • Andrejs Bulanovs and
  • Andrejs Ogurcovs

Beilstein J. Nanotechnol. 2022, 13, 424–436, doi:10.3762/bjnano.13.35

Graphical Abstract
  • obtain nanostructures with a large active surface area, which ensures efficient electron charge transfer between CuO nanostructures and the copper substrate due to the formation of high-density, single-crystal nanopetals. Nanostructures are produced in one step, and can be directly used as sensor
PDF
Album
Full Research Paper
Published 03 May 2022
Other Beilstein-Institut Open Science Activities