Search results

Search for "hydroxylation" in Full Text gives 124 result(s) in Beilstein Journal of Organic Chemistry.

Recent developments in photoredox-catalyzed remote ortho and para C–H bond functionalizations

  • Rafia Siddiqui and
  • Rashid Ali

Beilstein J. Org. Chem. 2020, 16, 248–280, doi:10.3762/bjoc.16.26

Graphical Abstract
  • catalysts was also reported, and this approach allowed for easy and fast transformations to take place. Herein, we cover all the reported strategies for aryl para C–H bond functionalizations by means of photoredox catalysis. Aryl C–H hydroxylation: synthesis of substituted phenols The synthesis of phenol
  • hydroxylation of arenes (Scheme 18) [157]. They realized that the photoredox catalyst 8 possesses a great oxidizing ability (Ered vs SCE = 2.72 V) at ambient conditions. The mechanism of the reaction was studied by fluorescence quenching and transient absorption spectroscopy. They observed that the one-electron
  • reduction potential of 1QuCN+* was higher than that of benzene (Eox vs SCE = 2.32 V), making the electron transfer from phenol to 1QuCN+* viable. The mechanistic pathway for the C–H hydroxylation of benzene derivatives is shown in Figure 19. On the other hand, Ohkubo et al. reported that substrates like
PDF
Album
Review
Published 26 Feb 2020

Light-controllable dithienylethene-modified cyclic peptides: photoswitching the in vivo toxicity in zebrafish embryos

  • Sergii Afonin,
  • Oleg Babii,
  • Aline Reuter,
  • Volker Middel,
  • Masanari Takamiya,
  • Uwe Strähle,
  • Igor V. Komarov and
  • Anne S. Ulrich

Beilstein J. Org. Chem. 2020, 16, 39–49, doi:10.3762/bjoc.16.6

Graphical Abstract
  • side-chain hydroxylation modifications (series iii), with macrocycle ring-size variations (series iv), and with macrocycle homodimerization (series v). We systematically screened the ring-open and ring-closed photoforms of all 29 compounds in vitro, using a range of cellular toxicity assays (against
PDF
Album
Full Research Paper
Published 07 Jan 2020

Construction of trisubstituted chromone skeletons carrying electron-withdrawing groups via PhIO-mediated dehydrogenation and its application to the synthesis of frutinone A

  • Qiao Li,
  • Chen Zhuang,
  • Donghua Wang,
  • Wei Zhang,
  • Rongxuan Jia,
  • Fengxia Sun,
  • Yilin Zhang and
  • Yunfei Du

Beilstein J. Org. Chem. 2019, 15, 2958–2965, doi:10.3762/bjoc.15.291

Graphical Abstract
  • ][76][77], converting alkynes and alkenes to ketones [78], oxidizing alcohols to aldehydes [79][80], as well as in the direct α-hydroxylation of ketones [81]. Furthermore, it could also be used to realize oxidative C–C [82], C–N [83], and C–O [84] bond formations. However, to the best of our knowledge
PDF
Album
Supp Info
Letter
Published 12 Dec 2019

Bacterial terpene biosynthesis: challenges and opportunities for pathway engineering

  • Eric J. N. Helfrich,
  • Geng-Min Lin,
  • Christopher A. Voigt and
  • Jon Clardy

Beilstein J. Org. Chem. 2019, 15, 2889–2906, doi:10.3762/bjoc.15.283

Graphical Abstract
  • Information File 1, Table S2). CYPs are heme-dependent iron proteins that catalyze a wide range of reactions [83][84]. The reactions typically involve substrate radical generation by the activated iron species and subsequent hydroxylation. Terpenes are mainly composed of nonactivated hydrocarbons that are
  • , simply by rationally mutating the active-site residues. The majority of bacterial type II diterpene TCs produce bicyclic labdane, halimadane, or clerodane skeletons with different stereochemistry, levels of unsaturation, and hydroxylation patterns [124], which undergo further conversion with their
  • examples of terpene modification by bacterial CYPs. a) Hydroxylation [89]. b) Carboxylation, hydroxylation, and ring contraction [41]. c) Ether formation [90]. d) Rearrangement [91]. Off-target effects observed during heterologous expression of terpenoid BGCs. Unexpected oxidation of 34b by an
PDF
Album
Supp Info
Review
Published 29 Nov 2019

Unexpected one-pot formation of the 1H-6a,8a-epiminotricyclopenta[a,c,e][8]annulene system from cyclopentanone, ammonia and dimethyl fumarate. Synthesis of highly strained polycyclic nitroxide and EPR study

  • Sergey A. Dobrynin,
  • Igor A. Kirilyuk,
  • Yuri V. Gatilov,
  • Andrey A. Kuzhelev,
  • Olesya A. Krumkacheva,
  • Matvey V. Fedin,
  • Michael K. Bowman and
  • Elena G. Bagryanskaya

Beilstein J. Org. Chem. 2019, 15, 2664–2670, doi:10.3762/bjoc.15.259

Graphical Abstract
  • dipole and dipolarophile (Figure 3). Nitroxide Oxidation of 1 with m-CPBA afforded the nitroxide 6 with 48% yield (Scheme 3). It is noteworthy that the oxidation of the amino group is accompanied by the stereospecific hydroxylation at position 4 of the 2,3,4,7-tetrahydroazepine ring. The structure
  • assignment was based on the single-crystal X-ray analysis (Figure 4) and a possible mechanism for this hydroxylation is shown in Scheme 4. Oxidation of amines with peracids is known to proceed through oxoammonium cation formation [12]. The close proximity of this reactive group to the allyl hydrogen results
PDF
Album
Supp Info
Full Research Paper
Published 07 Nov 2019

Nanangenines: drimane sesquiterpenoids as the dominant metabolite cohort of a novel Australian fungus, Aspergillus nanangensis

  • Heather J. Lacey,
  • Cameron L. M. Gilchrist,
  • Andrew Crombie,
  • John A. Kalaitzis,
  • Daniel Vuong,
  • Peter J. Rutledge,
  • Peter Turner,
  • John I. Pitt,
  • Ernest Lacey,
  • Yit-Heng Chooi and
  • Andrew M. Piggott

Beilstein J. Org. Chem. 2019, 15, 2631–2643, doi:10.3762/bjoc.15.256

Graphical Abstract
  • strobilactone B, previously reported from A. ustus [29], with the only difference being hydroxylation at C-1 in 1, instead of at C-2. Therefore, the structure of 1 was assigned as shown in Figure 1. The absolute configuration of 1 was confirmed to be 1R,5S,6R,9R,13R by single crystal X-ray diffraction analysis
  • FE257_006542 contains both class I (DDxxD/E) and class II (DxDD, QW) terpene synthases, we propose that FE257_006542 is responsible for both the cyclisation into drimanyl diphosphate and the hydrolysis of the diphosphate into drim-8-ene-11-ol. We propose the next step in the pathway is hydroxylation at C-6 or
  • C-9, as hydroxylation at both sites is common to all of the (iso)nanangenines. The 9-hydroxylation also results in migration of the double bond on the decalin to Δ7,8. The two hydroxylations could be catalysed by the FAD-dependent oxidoreductase or one of the cytochrome P450 oxygenases. From this
PDF
Album
Supp Info
Full Research Paper
Published 05 Nov 2019

Current understanding and biotechnological application of the bacterial diterpene synthase CotB2

  • Ronja Driller,
  • Daniel Garbe,
  • Norbert Mehlmer,
  • Monika Fuchs,
  • Keren Raz,
  • Dan Thomas Major,
  • Thomas Brück and
  • Bernhard Loll

Beilstein J. Org. Chem. 2019, 15, 2355–2368, doi:10.3762/bjoc.15.228

Graphical Abstract
  • lead to different migration of the double bound and different hydroxylation pattern (Table 2 and Scheme 1). An exchange to leucine drastically changes the product to cembrane A (7) and 3,7,18-dolabellatriene 12 (Table 2 and Scheme 1) [36]. The cation migrates via a 1,5 hydride shift, as shown by
  • to gain cembrene C and second a hydroxylation at C14. Sarcophytol A (15), is a promising target as it possesses inhibitory activity against potent tumor promotors, like teleocidin [74]. Interestingly, sarcophytol A (15) was already inhibitory at equimolar amounts in contrast to other natural
PDF
Album
Review
Published 02 Oct 2019

α-Photooxygenation of chiral aldehydes with singlet oxygen

  • Dominika J. Walaszek,
  • Magdalena Jawiczuk,
  • Jakub Durka,
  • Olga Drapała and
  • Dorota Gryko

Beilstein J. Org. Chem. 2019, 15, 2076–2084, doi:10.3762/bjoc.15.205

Graphical Abstract
  • -hydroxylation of aldehydes [14][15]. Recently, we have reported that organocatalytic photooxygenation of aldehydes affords the desired diols (after in situ reduction) in decent yield with either (R)- or (S)-selectivity depending on a catalysts used [14]. In the presence of prolinamides the (R)-enantiomer
PDF
Album
Supp Info
Full Research Paper
Published 30 Aug 2019

A golden opportunity: benzofuranone modifications of aurones and their influence on optical properties, toxicity, and potential as dyes

  • Joza Schmitt and
  • Scott T. Handy

Beilstein J. Org. Chem. 2019, 15, 1781–1785, doi:10.3762/bjoc.15.171

Graphical Abstract
  • important than the exact substituent (at least for the examples studied), with halogen or hydroxy at the 4-position are red-shifted by roughly 10 nm compared to the unsubstituted compound and any halogen or methyl at the 5-position likewise displays a similar shift. Only hydroxylation at the 6-position
  • displays a significant blue shift by roughly 40 nm. With respect to toxicity, halogens were the least toxic substituents, displaying the lowest cytotoxicity when at the 6- or 7-positions. Hydroxylation or substitution at the 4-position invariably lead to higher cytotoxicity, though often times no worse
PDF
Album
Supp Info
Full Research Paper
Published 25 Jul 2019

Fluorine-containing substituents: metabolism of the α,α-difluoroethyl thioether motif

  • Andrea Rodil,
  • Alexandra M. Z. Slawin,
  • Nawaf Al-Maharik,
  • Ren Tomita and
  • David O’Hagan

Beilstein J. Org. Chem. 2019, 15, 1441–1447, doi:10.3762/bjoc.15.144

Graphical Abstract
  • mass spectrometry. Naphthalene 5 was fully converted. Again, initial sulfoxidation dominates, but the second oxidation of the sulfoxide to a sulfone appears to be a slower process, and is outcompeted by aryl hydroxylation reactions. The experiment was conducted three times under similar conditions, all
  • significantly more rapid than the second oxidation to the sulfone. The first oxidation gave enantiomerically enriched sulfoxides (Ar–S(O)CF2CH3) in the 54–60% ee range. This could arise by the action of more than one P450 enzyme. There was no evidence of defluorination, or hydroxylation at the terminal -CH3
PDF
Album
Supp Info
Full Research Paper
Published 28 Jun 2019

Alkylation of lithiated dimethyl tartrate acetonide with unactivated alkyl halides and application to an asymmetric synthesis of the 2,8-dioxabicyclo[3.2.1]octane core of squalestatins/zaragozic acids

  • Herman O. Sintim,
  • Hamad H. Al Mamari,
  • Hasanain A. A. Almohseni,
  • Younes Fegheh-Hassanpour and
  • David M. Hodgson

Beilstein J. Org. Chem. 2019, 15, 1194–1202, doi:10.3762/bjoc.15.116

Graphical Abstract
  • hydroxylation temperature, then a reduced yield of 19b was observed (53%). Indirect hydroxylation of the propylated tartrate enolate was also attempted using CBr4 (at −78 °C) as a more readily available/convenient electrophile, which also gave the hydroxy acetonide 19b presumably by way of hydrolysis on work-up
PDF
Album
Supp Info
Full Research Paper
Published 31 May 2019

Easy, efficient and versatile one-pot synthesis of Janus-type-substituted fullerenols

  • Marius Kunkel and
  • Sebastian Polarz

Beilstein J. Org. Chem. 2019, 15, 901–905, doi:10.3762/bjoc.15.87

Graphical Abstract
  • fullerenes with solubility in water. Thus, one important class of fullerene derivatives are the hydroxylated and polyhydroxylated compounds, so called fullerenols (C60(OH)n) [14]. The degree of hydroxylation and with that the solubility of these compounds can be tuned by using different synthetic approaches
PDF
Album
Supp Info
Letter
Published 12 Apr 2019

Selective benzylic C–H monooxygenation mediated by iodine oxides

  • Kelsey B. LaMartina,
  • Haley K. Kuck,
  • Linda S. Oglesbee,
  • Asma Al-Odaini and
  • Nicholas C. Boaz

Beilstein J. Org. Chem. 2019, 15, 602–609, doi:10.3762/bjoc.15.55

Graphical Abstract
  • catalytic NHPI and iodic acid mediated the hydroxylation or amidation of tertiary C–H bonds using either wet nitromethane or dry acetonitrile, respectively [54][55]. The substrate scope of the developed benzylic C–H monooxygenation reaction was examined via the oxidation of substrates containing benzylic C
PDF
Album
Supp Info
Full Research Paper
Published 05 Mar 2019

Synthesis of nonracemic hydroxyglutamic acids

  • Dorota G. Piotrowska,
  • Iwona E. Głowacka,
  • Andrzej E. Wróblewski and
  • Liwia Lubowiecka

Beilstein J. Org. Chem. 2019, 15, 236–255, doi:10.3762/bjoc.15.22

Graphical Abstract
  • electrophilic hydroxylation at C4 When the lithium enolate of dimethyl N-Cbz-L-glutamate 63 was treated with Davis oxaziridine, an inseparable 9:1 mixture of diastereoisomers was formed with (2S,4S)-64 predominating (Scheme 16) [74]. For sodium and potassium enolates diastereoselectivity of the hydroxylation
  • [86][87][88] or a Diels–Alder reaction using acylnitroso compounds [89]. However, when compared with these multistep approaches hydroxylation of pyroglutamic acid derivatives seems to be the simplest option. Treatment of the lithium enolate of benzyl N-Boc-pyroglutamate (S)-86 with Davis oxaziridine
  • produced (2S,4R)-87 (Scheme 22) [90][91][92]. HPLC investigation of the reaction mixture showed that (2S,4S)-87 was not formed [90]. Stereospecific hydroxylation occurred on the opposite side to the benzyloxycarbonyl group, i.e., only re-face of the enolate was attacked for steric reasons. It is worth
PDF
Album
Review
Published 25 Jan 2019

DABCO- and DBU-promoted one-pot reaction of N-sulfonyl ketimines with Morita–Baylis–Hillman carbonates: a sequential approach to (2-hydroxyaryl)nicotinate derivatives

  • Soumitra Guin,
  • Raman Gupta,
  • Debashis Majee and
  • Sampak Samanta

Beilstein J. Org. Chem. 2018, 14, 2771–2778, doi:10.3762/bjoc.14.254

Graphical Abstract
  • the synthesis of (2-hydroxyaryl)pyridines from 2-arylpyridines via a direct C–H hydroxylation on the aryl ring using several expensive transition metal salts (e.g., Pd(II) [60][61][62][63], Rh(III) [64][65], Ru(II) [66]) as catalysts (Scheme 1a). However, the above methods have several drawbacks such
PDF
Album
Supp Info
Full Research Paper
Published 02 Nov 2018

Targeting the Pseudomonas quinolone signal quorum sensing system for the discovery of novel anti-infective pathoblockers

  • Christian Schütz and
  • Martin Empting

Beilstein J. Org. Chem. 2018, 14, 2627–2645, doi:10.3762/bjoc.14.241

Graphical Abstract
  • , PQS is produced through hydroxylation of position 3 by the NADH-dependent flavin mono-oxygenase PqsH [32]. This biosynthetic cascade is also responsible for the generation of the pqs-related metabolites DHQ, 2-AA, and HQNO as well as other AQs having different lengths of the alkyl chain [29][30
PDF
Album
Review
Published 15 Oct 2018

The enzymes of microbial nicotine metabolism

  • Paul F. Fitzpatrick

Beilstein J. Org. Chem. 2018, 14, 2295–2307, doi:10.3762/bjoc.14.204

Graphical Abstract
  • deal of interest in identifying bacteria capable of degrading it. A number of microbial pathways have been identified for nicotine degradation. The first and best-understood is the pyridine pathway, best characterized for Arthrobacter nicotinovorans, in which the first reaction is hydroxylation of the
  • . JS614; in this case the genes are chromosomal [6]. As shown in Scheme 1, the pathway begins with hydroxylation of the pyridyl ring of nicotine by the enzyme nicotine dehydrogenase to yield 6-hydroxynicotine [7]. Based on the gene sequence, this enzyme was identified as a member of the family of
  • the enzyme. While the dominant form of nicotine found in tobacco is (S)-nicotine, the (R)-stereoisomer is also found at detectable levels [22]. Nicotine dehydrogenase is reported not to be stereospecific, in that it can catalyze the hydroxylation of (R)-nicotine to (R)-6-hydroxynicotine; thus, this
PDF
Album
Review
Published 31 Aug 2018

Cobalt-catalyzed peri-selective alkoxylation of 1-naphthylamine derivatives

  • Jiao-Na Han,
  • Cong Du,
  • Xinju Zhu,
  • Zheng-Long Wang,
  • Yue Zhu,
  • Zhao-Yang Chu,
  • Jun-Long Niu and
  • Mao-Ping Song

Beilstein J. Org. Chem. 2018, 14, 2090–2097, doi:10.3762/bjoc.14.183

Graphical Abstract
  • –C or C–heteroatom bonds has attracted more attention [8][9][10][11][12][13]. In particular, the formation of C–O bonds is widely used in the syntheses of pharmaceuticals and functional materials [14][15][16][17]. The direct hydroxylation [18][19] and acetoxylation [20][21][22] have been developed
PDF
Album
Supp Info
Letter
Published 09 Aug 2018

A survey of chiral hypervalent iodine reagents in asymmetric synthesis

  • Soumen Ghosh,
  • Suman Pradhan and
  • Indranil Chatterjee

Beilstein J. Org. Chem. 2018, 14, 1244–1262, doi:10.3762/bjoc.14.107

Graphical Abstract
  • used by Quideau et al. for the α-hydroxylation of phenolic derivatives via oxygenative dearomatization. Quideau et al. showed that iodobiarene 38 was oxidized in situ by m-CPBA to generate the I(III) reagent which is responsible for the hydroxylative naphthol dearomatization affording the product in
PDF
Album
Review
Published 30 May 2018

An overview of recent advances in duplex DNA recognition by small molecules

  • Sayantan Bhaduri,
  • Nihar Ranjan and
  • Dev P. Arya

Beilstein J. Org. Chem. 2018, 14, 1051–1086, doi:10.3762/bjoc.14.93

Graphical Abstract
PDF
Album
Review
Published 16 May 2018

Hypervalent iodine(III)-mediated decarboxylative acetoxylation at tertiary and benzylic carbon centers

  • Kensuke Kiyokawa,
  • Daichi Okumatsu and
  • Satoshi Minakata

Beilstein J. Org. Chem. 2018, 14, 1046–1050, doi:10.3762/bjoc.14.92

Graphical Abstract
  • amounts of heavy metal oxidants under high-temperature conditions [14][15]. Because these oxidants are typically highly toxic, their use has remained limited in organic synthesis. Barton et al. reported on the development of a practical method for the decarboxylative hydroxylation using thiohydroxamate
PDF
Album
Supp Info
Full Research Paper
Published 15 May 2018

Anodic oxidation of bisamides from diaminoalkanes by constant current electrolysis

  • Tatiana Golub and
  • James Y. Becker

Beilstein J. Org. Chem. 2018, 14, 861–868, doi:10.3762/bjoc.14.72

Graphical Abstract
  • : anodic oxidation; bisamides; constant current electrolysis; methoxylation; Introduction It is well known that the anodic oxidation of amides involving a hydrogen atom at the α-position to the N atom could undergo alkoxylation, carboxylation and hydroxylation at this position [1][2][3][4][5] (Scheme 1
PDF
Album
Supp Info
Full Research Paper
Published 16 Apr 2018

Latest development in the synthesis of ursodeoxycholic acid (UDCA): a critical review

  • Fabio Tonin and
  • Isabel W. C. E. Arends

Beilstein J. Org. Chem. 2018, 14, 470–483, doi:10.3762/bjoc.14.33

Graphical Abstract
  • reduction) and the specific hydroxylation and dehydroxylation of suitable positions in the steroid rings. In this minireview, we critically analyze the state of the art of the production of UDCA by several chemical, chemoenzymatic and enzymatic routes reported, highlighting the bottlenecks of each
  • ] reported that a fungal strain (Fusarium equiseti M41) was able to introduce a 7β-hydroxy group into LCA by hydroxylation forming UDCA directly. Later, many other microorganisms with a 7β-hydroxylating activity were discovered in strains of actinobacteria and filamentous fungi [96][97]. The key-enzyme in
  • that pathway is a P450-like enzyme that catalyses the specific and irreversible 7β-hydroxylation. On this topic, a recent work by Kollerov et al. [98] describes several DCA modifying filamentous fungi strains (mostly ascomycetes and zygomycetes): the highest 7β-hydroxylase activity level was found in
PDF
Album
Supp Info
Review
Published 20 Feb 2018

Photocatalytic formation of carbon–sulfur bonds

  • Alexander Wimmer and
  • Burkhard König

Beilstein J. Org. Chem. 2018, 14, 54–83, doi:10.3762/bjoc.14.4

Graphical Abstract
  • ]. The reaction is catalyzed by [fac-Ir(ppy)3] under visible-light irradiation and proceeds via an oxidative quenching cycle, generating reactive sulfonyl radicals from sulfonyl chlorides. The key to β-hydroxylation is the use of a mixture of acetonitrile and water (5:1) as solvent. They confirmed by 18O
PDF
Album
Review
Published 05 Jan 2018

Aminosugar-based immunomodulator lipid A: synthetic approaches

  • Alla Zamyatina

Beilstein J. Org. Chem. 2018, 14, 25–53, doi:10.3762/bjoc.14.3

Graphical Abstract
PDF
Album
Review
Published 04 Jan 2018
Other Beilstein-Institut Open Science Activities