Search results

Search for "transition metal" in Full Text gives 677 result(s) in Beilstein Journal of Organic Chemistry. Showing first 200.

Radical chemistry in polymer science: an overview and recent advances

  • Zixiao Wang,
  • Feichen Cui,
  • Yang Sui and
  • Jiajun Yan

Beilstein J. Org. Chem. 2023, 19, 1580–1603, doi:10.3762/bjoc.19.116

Graphical Abstract
  • (OMRP) is also a commonly used polymerization method, which uses transition-metal complexes such as titanium and vanadium for coordination polymerization [69]. However, due to the high cost of these complexes and their post-processing, OMRP is not widely used. The chain termination reaction of OMRP is
  • mechanism (cf. section 3.2) [86]. 2.3 Metal-free ring opening metathesis polymerization (MF-ROMP) ROMP is a powerful and broadly applicable technique for synthesizing polymers. Traditional ROMP systems are initiated by transition-metal complexes and Ru-based alkylidene complexes, which are also known as
  • Grubbs catalysts (Scheme 12A), are the most popular ones [87]. However, Ru-based catalysts are expensive making them less attractive for industrial applications. Living ROMP is commonly terminated by adding a special chemical which can remove the transition metal from the chain end and deactivate it from
PDF
Album
Review
Published 18 Oct 2023

C–H bond functionalization: recent discoveries and future directions

  • Indranil Chatterjee

Beilstein J. Org. Chem. 2023, 19, 1568–1569, doi:10.3762/bjoc.19.114

Graphical Abstract
  • its combination with organometallic chemistry for site-selective C−H bond functionalization [3][4]. Recent years have witnessed many viable strategies for the synthesis of complex targets utilizing photoredox catalysis, electroorganic catalysis, Lewis acid catalysis, and transition-metal-free
  • reports from several research groups, including photochemical as well as transition-metal-mediated C–H bond functionalization. This mixing of traditional and classical with modern-day research will surely encourage synthetic chemists to sketch new methodologies. Indranil Chatterjee Rupnagar, September
PDF
Editorial
Published 17 Oct 2023

Lewis acid-promoted direct synthesis of isoxazole derivatives

  • Dengxu Qiu,
  • Chenhui Jiang,
  • Pan Gao and
  • Yu Yuan

Beilstein J. Org. Chem. 2023, 19, 1562–1567, doi:10.3762/bjoc.19.113

Graphical Abstract
  • nitrogen source (Scheme 1, reaction 2). In 2017, Xu and co-workers [19] developed a copper-mediated annulation reaction to synthesize isoxazoles from two different alkynes. In fact, most methods mostly used highly toxic transition-metal catalysts such as copper metals. In order to develop cheaper and more
PDF
Album
Supp Info
Full Research Paper
Published 16 Oct 2023

Morpholine-mediated defluorinative cycloaddition of gem-difluoroalkenes and organic azides

  • Tzu-Yu Huang,
  • Mario Djugovski,
  • Sweta Adhikari,
  • Destinee L. Manning and
  • Sudeshna Roy

Beilstein J. Org. Chem. 2023, 19, 1545–1554, doi:10.3762/bjoc.19.111

Graphical Abstract
  • Tzu-Yu Huang Mario Djugovski Sweta Adhikari Destinee L. Manning Sudeshna Roy Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, University, MS 38677, USA 10.3762/bjoc.19.111 Abstract Here, we report the first transition-metal-free defluorinative cycloaddition of
  • decomposition of azides at higher temperatures required the use of 2a or 2b in excess. No significant difference in yields between 1.5 equiv and 2 equiv of the aryl azide was observed. Adding fluorophilic additives (TMSCl, Table 1, entry 5) or using copper as other transition metal (CuCl or Cu(OAc)2, Table 1
  • organic azides in morpholine as a solvent forming C-4-morpholine functionalized fully decorated 1,2,3-triazoles with potential applications in pharmaceutical, biomedical, agrichemical, and materials sciences. This study fills a critical gap in the literature as it is a transition-metal-free and
PDF
Album
Supp Info
Letter
Published 05 Oct 2023

N-Sulfenylsuccinimide/phthalimide: an alternative sulfenylating reagent in organic transformations

  • Fatemeh Doraghi,
  • Seyedeh Pegah Aledavoud,
  • Mehdi Ghanbarlou,
  • Bagher Larijani and
  • Mohammad Mahdavi

Beilstein J. Org. Chem. 2023, 19, 1471–1502, doi:10.3762/bjoc.19.106

Graphical Abstract
  • -coupling, and direct sulfenylation reactions, which are classified into three categories: sulfenylation catalyzed by i) transition metal catalysts, ii) organocompound catalysts, and iii) catalyst-free sulfenylation. Review Sulfenylation of organic compounds by N-(sulfenyl)succinimides/phthalimides Metal
  • 102 were obtained in moderate to excellent yields with good to excellent enantioselectivities (Scheme 42) [76]. It should be noted that the authors did not define the exact role of the organocatalyst in the reaction mechanism. Transition-metal-free C–H sulfenylation of electron-rich arenes 103 by N
  • conversion of 1-I to 2-II was confirmed by mechanistic studies due to the stability of the benzyl carbocation, followed by 6-endo-dig cyclization. In this method, toxic transition metal catalysts, oxidants, or bases are not used, which made it economically and environmentally reliable. In 2023, Gao et al
PDF
Album
Review
Published 27 Sep 2023

α-(Aminomethyl)acrylates as acceptors in radical–polar crossover 1,4-additions of dialkylzincs: insights into enolate formation and trapping

  • Angel Palillero-Cisneros,
  • Paola G. Gordillo-Guerra,
  • Fernando García-Alvarez,
  • Olivier Jackowski,
  • Franck Ferreira,
  • Fabrice Chemla,
  • Joel L. Terán and
  • Alejandro Perez-Luna

Beilstein J. Org. Chem. 2023, 19, 1443–1451, doi:10.3762/bjoc.19.103

Graphical Abstract
  • carbonyl compounds to provide the corresponding zinc enolates (Scheme 1) [1][2]. While simple, this reaction offers attractive features: 1) it proceeds under mild conditions in the absence of any transition-metal catalyst; 2) the 1,4-addition step can be combined with condensation reactions of the zinc
PDF
Album
Supp Info
Full Research Paper
Published 21 Sep 2023

Application of N-heterocyclic carbene–Cu(I) complexes as catalysts in organic synthesis: a review

  • Nosheen Beig,
  • Varsha Goyal and
  • Raj K. Bansal

Beilstein J. Org. Chem. 2023, 19, 1408–1442, doi:10.3762/bjoc.19.102

Graphical Abstract
  • have been found versatile synthons for medicinally important and naturally occurring nitrogen-containing compounds (Scheme 54) [72][73][74]. In the past, several transition-metal catalysts were used for this reaction and Li and co-workers reviewed the use of transition-metal salts for the A3 reactions
  • conditions, although the transition-metal catalysts were preserved, the reactions require high temperature conditions [76]. In 2008, Wang and co-workers [77] for the first time employed an NHC–Cu(I) complex (2 mol %) and its silica-immobilized version 141 (2 mol %) as catalyst for an A3 coupling reaction
PDF
Album
Review
Published 20 Sep 2023

Consecutive four-component synthesis of trisubstituted 3-iodoindoles by an alkynylation–cyclization–iodination–alkylation sequence

  • Nadia Ledermann,
  • Alae-Eddine Moubsit and
  • Thomas J. J. Müller

Beilstein J. Org. Chem. 2023, 19, 1379–1385, doi:10.3762/bjoc.19.99

Graphical Abstract
  • transition-metal catalysis [31], we disclosed an activating group-free alkynylation–cyclization sequence to (aza)indoles [32][33] that could be readily concatenated with a concluding N-alkylation of the 7-azaindole intermediate in the sense of consecutive three-component coupling–cyclization–alkylation
PDF
Album
Supp Info
Full Research Paper
Published 14 Sep 2023

Non-noble metal-catalyzed cross-dehydrogenation coupling (CDC) involving ether α-C(sp3)–H to construct C–C bonds

  • Hui Yu and
  • Feng Xu

Beilstein J. Org. Chem. 2023, 19, 1259–1288, doi:10.3762/bjoc.19.94

Graphical Abstract
  • bonds The possible mechanism of the CDC reaction involving ether α-C(sp3)–H bonds mainly follows the two pathways outlined in Scheme 2. Route a: First, the C(sp3)–H bond at the α-position of the oxygen atom undergoes a single-electron transfer under the combined action of the transition metal and an
  • , and the cleavage of the C(sp3)–H bond in the ether substrates which produces α-alkyl radicals is the rate-determining step. Fe-catalyzed reactions Iron is a transition metal with abundant reserves, low price, and non-toxicity, which shows many characteristics in catalytic processes, such as the
  • is similar to the CDC reaction of simple ethers by transition-metal catalysis. First, Ag triggers the oxidant to produce oxidant radicals, and the corresponding ether radicals are obtained by extraction of H atoms from the ether substrates by the oxidant radicals. Then, the addition of the radicals
PDF
Album
Review
Published 06 Sep 2023

Exploring the role of halogen bonding in iodonium ylides: insights into unexpected reactivity and reaction control

  • Carlee A. Montgomery and
  • Graham K. Murphy

Beilstein J. Org. Chem. 2023, 19, 1171–1190, doi:10.3762/bjoc.19.86

Graphical Abstract
  • -effect; Introduction Iodonium ylides are a subset of hypervalent iodine (HVI) reagents that were first reported in 1957 by Neiland [1]. These have since been investigated under a variety of thermal, photochemical, radical and transition metal-catalyzed conditions [2], and they have been successfully
  • elimination) more commonly associated with transition metal-mediated chemistry; however, halogen- or σ-hole bonding has recently emerged as a credible explanation for the diverse reactivity that iodonium ylides undergo. σ-Hole bonding theory offers a means to explain the occurrence of transition metal-free
  • cycloaddition reactions that occur without transition metal catalysts, the unexpected initiation of single electron transfer (SET) processes or photochemical transformations, and even proton transfers that appear to defy pKa limitations. The reaction pathways followed by iodonium ylides and Lewis basic reaction
PDF
Album
Review
Published 07 Aug 2023

Photoredox catalysis harvesting multiple photon or electrochemical energies

  • Mattia Lepori,
  • Simon Schmid and
  • Joshua P. Barham

Beilstein J. Org. Chem. 2023, 19, 1055–1145, doi:10.3762/bjoc.19.81

Graphical Abstract
  • PEC, a main theme of this Review. Protocols for sensitization-initiated electron transfer (SenI-ET) relying on a dual catalytic system of transition-metal based photocatalysts and pyrenes to generate highly reductive species are also excluded as such reported transformations are now equally achievable
  • widely used as reagents, organocatalysts, or phase transfer reagents [58][59][60][61] were synthesized from aryl chlorides in various yields (20–87%) under mild photocatalytic conditions whereas previously reported protocols typically relied on transition metal catalysis or high temperature processes [62
  • carboxylic acids with amines that typically generate stochiometric amounts of harmful byproducts released [80][81], while simultaneously operating under milder reaction conditions than those applied in transition metal-catalyzed carbonylative amidation protocols [82][83]. Following the same distinct, yet
PDF
Album
Review
Published 28 Jul 2023

Clauson–Kaas pyrrole synthesis using diverse catalysts: a transition from conventional to greener approach

  • Dileep Kumar Singh and
  • Rajesh Kumar

Beilstein J. Org. Chem. 2023, 19, 928–955, doi:10.3762/bjoc.19.71

Graphical Abstract
  • acid catalysts and transition metal catalysts. The goal of this review is to summarize the synthesis of various N-substituted pyrrole derivatives using a modified Clauson–Kaas reaction under diverse conventional and greener reaction conditions. Keywords: catalyst; Clauson–Kaas pyrrole synthesis; 2,5
  • (2). Further, a nucleophilic attack of amines 40 with intermediate A, MeOH removal, dehydration, and aromatization steps produce N-substituted pyrroles 41 in good to excellent yields. In 2019, Wani et al. [73] used the alkaline-earth metal-based catalyst Ca(NO3)2∙4H2O for a mild, transition metal
  • of N-arylpyrroles from various amines 78 via the reaction with 2,5-dimethoxytetrahydrofuran (2). Oxone is a mild, inexpensive, nontoxic, stable, and transition-metal-free catalyst that is very easy to handle during this transformation and provided high yields of the product. The authors also proposed
PDF
Album
Review
Published 27 Jun 2023

Intermediates and shunt products of massiliachelin biosynthesis in Massilia sp. NR 4-1

  • Till Steinmetz,
  • Blaise Kimbadi Lombe and
  • Markus Nett

Beilstein J. Org. Chem. 2023, 19, 909–917, doi:10.3762/bjoc.19.69

Graphical Abstract
  • photosynthesis, respiration or nitrogen fixation, in which iron-containing proteins are engaged in electron transfer reactions. In fact, the transition metal is perfectly suited for shifting electrons due to its ability to easily interconvert between a reduced ferrous (Fe2+) and an oxidized ferric state (Fe3
PDF
Album
Supp Info
Full Research Paper
Published 23 Jun 2023

Synthesis of aliphatic nitriles from cyclobutanone oxime mediated by sulfuryl fluoride (SO2F2)

  • Xian-Lin Chen and
  • Hua-Li Qin

Beilstein J. Org. Chem. 2023, 19, 901–908, doi:10.3762/bjoc.19.68

Graphical Abstract
  • of novel synthetic methods and strategies toward nitrile group construction continues to be a focus for synthetic chemists. The cross-coupling reactions of C–C bonds catalyzed by transition-metal complexes play a crucial role in modern organic synthesis, as they make it feasible to synthesize complex
PDF
Album
Supp Info
Letter
Published 22 Jun 2023

Pyridine C(sp2)–H bond functionalization under transition-metal and rare earth metal catalysis

  • Haritha Sindhe,
  • Malladi Mounika Reddy,
  • Karthikeyan Rajkumar,
  • Akshay Kamble,
  • Amardeep Singh,
  • Anand Kumar and
  • Satyasheel Sharma

Beilstein J. Org. Chem. 2023, 19, 820–863, doi:10.3762/bjoc.19.62

Graphical Abstract
  • of several methods for the synthesis of functionalized pyridines or their integration into an organic molecule, new methodologies for the direct functionalization of pyridine scaffolds have been developed during the past two decades. In addition, transition-metal-catalyzed C–H functionalization and
  • rare earth metal-catalyzed reactions have flourished over the past two decades in the development of functionalized organic molecules of concern. In this review, we discuss recent achievements in the transition-metal and rare earth metal-catalyzed C–H bond functionalization of pyridine and look into
  • the mechanisms involved. Keywords: C–H functionalization; heterocycles; pyridine; rare earth metal; transition-metal-catalyzed; Introduction Pyridine, one of the most important azaheterocyclic scaffolds, is found in a diverse range of bioactive natural products, pharmaceuticals, and functional
PDF
Album
Review
Published 12 Jun 2023

Strategies in the synthesis of dibenzo[b,f]heteropines

  • David I. H. Maier,
  • Barend C. B. Bezuidenhoudt and
  • Charlene Marais

Beilstein J. Org. Chem. 2023, 19, 700–718, doi:10.3762/bjoc.19.51

Graphical Abstract
  • transition metal (Ni, Fe, V) porphyrin catalysts and oxygen. Catalytic reduction (H2, Pd/C) affords 2,2'-diaminobibenzyl (20) in the subsequent step [28]. 1.2 Ring-closing via amine condensation The initial synthesis of 10,11-dihydro-5H-dibenzo[b,f]azepine (2a) was reported in 1899 by Thiele and Holzinger
PDF
Album
Review
Published 22 May 2023

Enolates ambushed – asymmetric tandem conjugate addition and subsequent enolate trapping with conventional and less traditional electrophiles

  • Péter Kisszékelyi and
  • Radovan Šebesta

Beilstein J. Org. Chem. 2023, 19, 593–634, doi:10.3762/bjoc.19.44

Graphical Abstract
  • α,β-unsaturated carbonyl compounds [2]. In particular, the last-mentioned method is highly synthetically relevant. This approach has the advantage of being more selective and affording more molecular complexity in one step. In addition, transition-metal catalysis allows the introduction of
PDF
Album
Review
Published 04 May 2023

C3-Alkylation of furfural derivatives by continuous flow homogeneous catalysis

  • Grédy Kiala Kinkutu,
  • Catherine Louis,
  • Myriam Roy,
  • Juliette Blanchard and
  • Julie Oble

Beilstein J. Org. Chem. 2023, 19, 582–592, doi:10.3762/bjoc.19.43

Graphical Abstract
  • furfural derivatives have been developed. In particular, their direct functionalization by transition-metal-catalyzed C–H activation processes [16][17][18] has become a major area of interest where only a few methods have been reported so far. Most examples concern functionalization at C5, which is the
  • synthesis has increased dramatically and has rapidly become a routine tool for classical synthesis [26][27][28][29]. In particular, many efforts have been devoted to the development of flow alternatives for transition-metal-catalyzed cross-couplings [30] and for some C–H functionalizations [31
PDF
Album
Supp Info
Full Research Paper
Published 03 May 2023

A new oxidatively stable ligand for the chiral functionalization of amino acids in Ni(II)–Schiff base complexes

  • Alena V. Dmitrieva,
  • Oleg A. Levitskiy,
  • Yuri K. Grishin and
  • Tatiana V. Magdesieva

Beilstein J. Org. Chem. 2023, 19, 566–574, doi:10.3762/bjoc.19.41

Graphical Abstract
  • employing chiral auxiliaries [4][5] and asymmetric phase-transfer catalysis [6][7]. The former approach is commonly based on the application of chiral derivatives of glycine containing structurally diverse chiral auxiliaries, both cyclic [8][9][10][11] and acyclic [12][13]. Transition-metal complexes
PDF
Album
Supp Info
Full Research Paper
Published 27 Apr 2023

Access to cyclopropanes with geminal trifluoromethyl and difluoromethylphosphonate groups

  • Ita Hajdin,
  • Romana Pajkert,
  • Mira Keßler,
  • Jianlin Han,
  • Haibo Mei and
  • Gerd-Volker Röschenthaler

Beilstein J. Org. Chem. 2023, 19, 541–549, doi:10.3762/bjoc.19.39

Graphical Abstract
  • ]. Therefore, as relevant building blocks, tremendous efforts have been made to develop reliable methods for their synthesis. Transition-metal-catalyzed cyclopropanation of alkenes with trifluoromethyldiazoalkanes is a commonly used synthetic strategy for the construction of trifluoromethylcyclopropanes
PDF
Album
Supp Info
Letter
Published 25 Apr 2023

Transition-metal-catalyzed domino reactions of strained bicyclic alkenes

  • Austin Pounder,
  • Eric Neufeld,
  • Peter Myler and
  • William Tam

Beilstein J. Org. Chem. 2023, 19, 487–540, doi:10.3762/bjoc.19.38

Graphical Abstract
  • Austin Pounder Eric Neufeld Peter Myler William Tam Guelph-Waterloo Centre for Graduate Work in Chemistry and Biochemistry, Department of Chemistry, University of Guelph, Guelph, Ontario, N1G 2W1, Canada 10.3762/bjoc.19.38 Abstract This review presents a comprehensive overview of transition-metal
  • shed light on future directions for further development in this field. Keywords: bicyclic alkenes; cascade; catalysis; domino; transition-metal-catalyzed; Introduction A well-orchestrated sequence of events – cascade, also known as domino, tandem, and sequential reactions, constitutes a fascinating
  • to domino reactions which include at least two distinct reactions. The review is divided on the basis of the transition-metal catalyst used in the reaction and will not cover metal-free methods. The literature is covered up to and including January 2023. For reasons of clarity, newly formed bonds are
PDF
Album
Review
Published 24 Apr 2023

Total synthesis: an enabling science

  • Bastien Nay

Beilstein J. Org. Chem. 2023, 19, 474–476, doi:10.3762/bjoc.19.36

Graphical Abstract
  • synthetic methodology developments and to natural product isolation or biosynthesis. Thus, thematic issues dealing with total synthesis in the Beilstein Journal of Organic Chemistry have naturally been published in these fields, such as "Transition-metal and organocatalysis in natural product synthesis
PDF
Album
Editorial
Published 19 Apr 2023

Transition-metal-catalyzed C–H bond activation as a sustainable strategy for the synthesis of fluorinated molecules: an overview

  • Louis Monsigny,
  • Floriane Doche and
  • Tatiana Besset

Beilstein J. Org. Chem. 2023, 19, 448–473, doi:10.3762/bjoc.19.35

Graphical Abstract
  • approaches, the transition-metal-catalyzed functionalization of various scaffolds with a panel of fluorinated groups (XRF, X = S, Se, O) offered straightforward access to high value-added compounds. This review will highlight the main advances made in the field with the transition-metal-catalyzed
  • [6][7][8][9][10][11]. Among them [2][5][12][13][14][15][16][17][18], the direct functionalization of a simple C–H bond by transition-metal catalysis [19][20][21][22][23][24][25][26][27][28][29][30][31][32][33][34][35][36][37][38][39][40][41][42][43] became an important tool offering new
  • retrosynthetic disconnections. In this context, a strong interest from the scientific community was shown towards the challenging synthesis of fluorinated molecules by transition-metal-catalyzed C–H bond activation [44][45][46][47][48][49][50], allowing the functionalization of complex molecules and even for
PDF
Album
Review
Published 17 Apr 2023

Mechanochemical solid state synthesis of copper(I)/NHC complexes with K3PO4

  • Ina Remy-Speckmann,
  • Birte M. Zimmermann,
  • Mahadeb Gorai,
  • Martin Lerch and
  • Johannes F. Teichert

Beilstein J. Org. Chem. 2023, 19, 440–447, doi:10.3762/bjoc.19.34

Graphical Abstract
  • generally there are many different synthetic routes to transition metal/NHC complexes [7][8][9][10][11][12][13][14][15] not all of them are applicable to the preparation of copper(I)/NHC compounds (Scheme 1) [5][6][13][16][17][18][19]. Generally, the so-called direct routes via the appropriate imidazol(in
  • ) (Scheme 1d). In some cases, this transmetallation step is carried out in situ [14][15][29][30][31][32]. Notably, these generally successful synthetic routes produce a considerable amount of transition metal waste (next to the inherent use of solvents) and are therefore in misalignment with the principles
  • (Scheme 1f) [45][46][47]. These approaches are an elegant alternative to the transmetallation route performing without unwanted transition metal waste. Two possible direct mechanochemical pathways have been presented for the synthesis of copper(I)/NHC complexes: First, the complexes can be synthesized by
PDF
Album
Supp Info
Letter
Published 14 Apr 2023

Group 13 exchange and transborylation in catalysis

  • Dominic R. Willcox and
  • Stephen P. Thomas

Beilstein J. Org. Chem. 2023, 19, 325–348, doi:10.3762/bjoc.19.28

Graphical Abstract
  • for catalysis, due to the generally higher abundance and lower toxicity of these elements. Group 13 elements have a rich catalogue of stoichiometric addition reactions to unsaturated bonds but cannot undergo the redox chemistry which underpins transition-metal catalysis. Group 13 exchange reactions
  • after In‒N/B‒H exchange with HBpin gave a borylimine iron complex 110. A second hydroelementation and In‒N/B‒H exchange gave the bisborylamine 113 and regenerated the HInCl2 107 co-catalyst (Scheme 27). Conclusion Increasing concerns over the sustainability and toxicity of many transition-metal
PDF
Album
Review
Published 21 Mar 2023
Other Beilstein-Institut Open Science Activities