Search results

Search for "cobalt" in Full Text gives 147 result(s) in Beilstein Journal of Organic Chemistry.

Recent advances in metathesis-derived polymers containing transition metals in the side chain

  • Ileana Dragutan,
  • Valerian Dragutan,
  • Bogdan C. Simionescu,
  • Albert Demonceau and
  • Helmut Fischer

Beilstein J. Org. Chem. 2015, 11, 2747–2762, doi:10.3762/bjoc.11.296

Graphical Abstract
  • (PdNPs) affording highly active catalysts for Suzuki–Miyaura coupling reactions. Cobalt-containing polymers The incorporation of other late transition metals such as cobalt into polymers soon emerged as an efficient and rapid method for the production of nanostructured materials of scientific and
  • application of metallopolymers as heterogeneous macromolecular catalysts for living radical polymerizations, Tang et al. [51] produced the cobalt-containing polymer 10 by ROMP of the norbornene monomer 9, derivatized with triazolyl and cyclopentadienylcobalt-1,3-cyclopentadiene moieties (Scheme 5). The
  • triazolyl unit was first attached to the η4-cyclopentadiene CpCo(I) complex by click reaction of the corresponding alkyne precursor and then the triazolyl-Co scaffold was incorporated into the norbornene monomer 9 by conventional esterification. It is important to note that the cyclopentadienyl-cobalt-1,3
PDF
Album
Review
Published 28 Dec 2015

Robust bifunctional aluminium–salen catalysts for the preparation of cyclic carbonates from carbon dioxide and epoxides

  • Yuri A. Rulev,
  • Zalina Gugkaeva,
  • Victor I. Maleev,
  • Michael North and
  • Yuri N. Belokon

Beilstein J. Org. Chem. 2015, 11, 1614–1623, doi:10.3762/bjoc.11.176

Graphical Abstract
  • developed for the production of cyclic carbonates [7][8][9] and polycarbonates [10][11] from carbon dioxide and epoxides, the most developed and privileged set of catalysts are based on Lewis acidic metal–salen complexes. In particular, cobalt(III) and chromium(III) complexes were found to be highly
PDF
Album
Full Research Paper
Published 11 Sep 2015

Surprisingly facile CO2 insertion into cobalt alkoxide bonds: A theoretical investigation

  • Willem K. Offermans,
  • Claudia Bizzarri,
  • Walter Leitner and
  • Thomas E. Müller

Beilstein J. Org. Chem. 2015, 11, 1340–1351, doi:10.3762/bjoc.11.144

Graphical Abstract
  • calculations to elucidate the reaction step of CO2 insertion into cobalt(III)–alkoxide bonds, which is also the central step of metal catalysed carboxylation reactions. It was found that CO2 insertion into the cobalt(III)–alkoxide bond of [(2-hydroxyethoxy)CoIII(salen)(L)] complexes (salen = N,N”-bis
  • , a linear Brønsted–Evans–Polanyi relationship was found between the activation energy and the reaction energy. Keywords: activation; alkoxide; carbon dioxide; cobalt; insertion; salen; Introduction Carbon dioxide (CO2) has been known to be an attractive carbon source for decades [1][2][3][4][5][6
  • – [13][14][15][16][17][18] and cobalt–salen complexes [19][20][21][22] and heterogeneous double metal cyanide (DMC) catalysts [11][23][24][25][26]. In comparison, industrially well-established catalysts are available to accelerate the production of cyclic carbonates [27][28][29]. As the CO2-based
PDF
Album
Supp Info
Full Research Paper
Published 31 Jul 2015

Selected synthetic strategies to cyclophanes

  • Sambasivarao Kotha,
  • Mukesh E. Shirbhate and
  • Gopalkrushna T. Waghule

Beilstein J. Org. Chem. 2015, 11, 1274–1331, doi:10.3762/bjoc.11.142

Graphical Abstract
  • ] have reported the synthesis of various pyridinophanes by a [2 + 2 + 2] cycloaddition reaction mediated by a cobalt catalyst (Scheme 51). To this end, different bisalkynes 271 were reacted with p-toluenenitrile (295, 1 mol equiv) in 1:1 ratio to obtain [2,4]pyridinophane 296 and [2,5]pyridinophane 297
PDF
Album
Review
Published 29 Jul 2015

A hybrid electron donor comprising cyclopentadithiophene and dithiafulvenyl for dye-sensitized solar cells

  • Gleb Sorohhov,
  • Chenyi Yi,
  • Michael Grätzel,
  • Silvio Decurtins and
  • Shi-Xia Liu

Beilstein J. Org. Chem. 2015, 11, 1052–1059, doi:10.3762/bjoc.11.118

Graphical Abstract
  • % with cobalt tris(bipyridine)-based redox mediator. With iodide/triiodide as redox shuttle, both devices based on dye 1 and dye 2 showed higher photocurrent densities of 9.26 mA cm−2 and 12.26 mA cm−2, respectively. However, they showed lower photovoltages of 485 mV and 493 mV. As a result, in the
  • . The composition of the cobalt complex-based electrolyte of this study is 0.2 M [Co(bpy)3][B(CN)4]2, 0.05 M [Co(bpy)3][B(CN)4]3, 0.1 M lithium bis(trifluoromethanesulfonyl)imide, 0.5 M 4-tert-butylpyridine in acetonitrile. The composition of the iodine-based electrolyte is 1-methyl-3-propylimidazolium
PDF
Album
Full Research Paper
Published 22 Jun 2015

CO2 Chemistry

  • Thomas E. Müller and
  • Walter Leitner

Beilstein J. Org. Chem. 2015, 11, 675–677, doi:10.3762/bjoc.11.76

Graphical Abstract
  • ]. Activation of carbon dioxide by inserting it into metal-alkoxide bonds allows for subsequent applications in polymer synthesis such as the copolymerisation of carbon dioxide with epoxides and other co-monomers [11]. Here, the catalysis with cobalt complexes still presents surprising effects [12]. More
PDF
Album
Editorial
Published 07 May 2015

Highly selective generation of vanillin by anodic degradation of lignin: a combined approach of electrochemistry and product isolation by adsorption

  • Dominik Schmitt,
  • Carolin Regenbrecht,
  • Marius Hartmer,
  • Florian Stecker and
  • Siegfried R. Waldvogel

Beilstein J. Org. Chem. 2015, 11, 473–480, doi:10.3762/bjoc.11.53

Graphical Abstract
  • formation of vanillin (1) and a novel as well as viable work-up concept exploiting strongly basic anion exchange resins. As renewable feedstock we employed alkaline lignin solutions. Alloys of cobalt and nickel as anodic material are suitable forming in situ electrochemically active MO(OH) coatings. Despite
PDF
Album
Supp Info
Full Research Paper
Published 13 Apr 2015

Copper-catalyzed cascade reactions of α,β-unsaturated esters with keto esters

  • Zhengning Li,
  • Chongnian Wang and
  • Zengchang Li

Beilstein J. Org. Chem. 2015, 11, 213–218, doi:10.3762/bjoc.11.23

Graphical Abstract
  • conjugate reduction of the α,β-unsaturated diester with newly generated copper hydride, followed by aldol reaction to yield the key intermediate alkoxide A, which is subjected to further lactonization to form the lactone. Lam’s group has furnished a cobalt-catalyzed conjugate reductive aldolization
PDF
Album
Supp Info
Full Research Paper
Published 06 Feb 2015

Electrochemical selenium- and iodonium-initiated cyclisation of hydroxy-functionalised 1,4-dienes

  • Philipp Röse,
  • Steffen Emge,
  • Jun-ichi Yoshida and
  • Gerhard Hilt

Beilstein J. Org. Chem. 2015, 11, 174–183, doi:10.3762/bjoc.11.18

Graphical Abstract
  • 10.3762/bjoc.11.18 Abstract The cobalt(I)-catalysed 1,4-hydrovinylation reaction of allyloxytrimethylsilane and allyl alcohol with substituted 1,3-dienes leads to hydroxy-functionalised 1,4-dienes in excellent regio- and diastereoselective fashion. Those 1,4-dienols can be converted into tetrahydrofuran
  • ; Introduction The reaction of terminal alkenes with 1,3-dienes under cobalt catalysis results in 1,4-dienes in a 1,4-hydrovinylation reaction. Besides cobalt, also other transition metals were described to undergo such transformations [1][2][3][4]. However, only for the cobalt-catalysed reactions a regiodiverse
  • ) [46][47][48][49][50][51] or to consume the halonium ions in situ in follow-up reactions inside the cell [52]. Accordingly, we envisaged the generation of suitable starting materials via a cobalt-catalysed hydrovinylation reaction and investigated their in situ conversion via electrochemically
PDF
Album
Supp Info
Full Research Paper
Published 28 Jan 2015

Cross-dehydrogenative coupling for the intermolecular C–O bond formation

  • Igor B. Krylov,
  • Vera A. Vil’ and
  • Alexander O. Terent’ev

Beilstein J. Org. Chem. 2015, 11, 92–146, doi:10.3762/bjoc.11.13

Graphical Abstract
  • ]. The 2-aminopyridine-1-oxide directing group was used in a rare example of a cobalt-catalyzed oxidative alkoxylation of arenes 66 and alkenes 67 to afford products 68 and 69 under mild contitions [69] (Scheme 14). The directing group can be removed to obtain the corresponding benzoic acid 71 from the
  • the presence of oxidants based on manganese, cobalt, and cerium [197]. The best results were achieved with the use of Mn(OAc)3 and the Co(OAc)2(cat)/KMnO4 system (Scheme 43). The yields of products 206 were as high as 94%. It is supposed that the oxidant serves two functions: the generation of N-oxyl
  • or their hetero analogues, as well as for the generation of tert-butyl peroxide radicals, which react with this complex to give coupling products 214 (Scheme 44). The related peroxidation reactions with hydroperoxides (t-BuOOH, PhMe2COOH) in the presence of transition metal salts (cobalt, manganese
PDF
Album
Review
Published 20 Jan 2015

Electrocarboxylation: towards sustainable and efficient synthesis of valuable carboxylic acids

  • Roman Matthessen,
  • Jan Fransaer,
  • Koen Binnemans and
  • Dirk E. De Vos

Beilstein J. Org. Chem. 2014, 10, 2484–2500, doi:10.3762/bjoc.10.260

Graphical Abstract
  • cobalt complexes [133][134][135][136][137]. Similar to what was mentioned above for aromatic ketones, benzylic chlorides can also be converted to 2-arylpropionic acids (Scheme 18), with applications in the pharmaceutical industry, mainly as NSAIDs. Here too, some articles described the use of ionic
PDF
Album
Review
Published 27 Oct 2014

Phosphinocyclodextrins as confining units for catalytic metal centres. Applications to carbon–carbon bond forming reactions

  • Matthieu Jouffroy,
  • Rafael Gramage-Doria,
  • David Sémeril,
  • Dominique Armspach,
  • Dominique Matt,
  • Werner Oberhauser and
  • Loïc Toupet

Beilstein J. Org. Chem. 2014, 10, 2388–2405, doi:10.3762/bjoc.10.249

Graphical Abstract
  • differs from that of the only other reported trans-[RhH(CO)3L] complex (where L is a bulky phosphoramidite), the observed three carbonyl bands (2055 (sh), 2022 (w) and 1998 (s) cm−1) being here spread over a larger frequency range [31]. Note that the related cobalt complex trans-[CoH(CO)3(PCy3)] displays
PDF
Album
Supp Info
Full Research Paper
Published 15 Oct 2014

Building complex carbon skeletons with ethynyl[2.2]paracyclophanes

  • Ina Dix,
  • Lidija Bondarenko,
  • Peter G. Jones,
  • Thomas Oeser and
  • Henning Hopf

Beilstein J. Org. Chem. 2014, 10, 2013–2020, doi:10.3762/bjoc.10.209

Graphical Abstract
  • triple bonds under the influence of a cobalt catalyst such as CpCo(CO)2 has been observed many times, notably by the Vollhardt group [12]. In our case, however, the process is not complete. Rather than yielding the expected biphenylenophane 27, the reaction stops at the stage of the cyclobutadiene
  • last step is prohibitive. Instead it prefers the isomerization to the isolated CpCo-complex 26. Compound 26 was identified by its spectroscopic data (see Supporting Information File 1) and also by a single-crystal X-ray analysis. The result is displayed in Figure 6. The cobalt complex 26 shows
PDF
Album
Supp Info
Full Research Paper
Published 27 Aug 2014

Copolymerization and terpolymerization of carbon dioxide/propylene oxide/phthalic anhydride using a (salen)Co(III) complex tethering four quaternary ammonium salts

  • Jong Yeob Jeon,
  • Seong Chan Eo,
  • Jobi Kodiyan Varghese and
  • Bun Yeoul Lee

Beilstein J. Org. Chem. 2014, 10, 1787–1795, doi:10.3762/bjoc.10.187

Graphical Abstract
  • -transition temperature (48 °C) than the CO2/PO alternating copolymer (40 °C). Keywords: carbon dioxide; CO2 chemistry; cobalt complex; phthalic anhydride; propylene oxide; terpolymerization; Introduction Carbon dioxide (CO2) can be utilized to prepare aliphatic polycarbonates through coupling reactions
PDF
Album
Supp Info
Full Research Paper
Published 05 Aug 2014

An experimental and theoretical NMR study of NH-benzimidazoles in solution and in the solid state: proton transfer and tautomerism

  • Carla I. Nieto,
  • Pilar Cabildo,
  • M. Ángeles García,
  • Rosa M. Claramunt,
  • Ibon Alkorta and
  • José Elguero

Beilstein J. Org. Chem. 2014, 10, 1620–1629, doi:10.3762/bjoc.10.168

Graphical Abstract
  • relevant drugs (fungicides, anthelmintics, antiulcerative, antiviral,…) [2][3] are also part of some natural products (the most prominent benzimidazole compound in nature is N-ribosyl-5,6-dimethylbenzimidazole, which serves as an axial ligand for cobalt in vitamin B12) and have interesting ferroelectric
PDF
Album
Supp Info
Full Research Paper
Published 16 Jul 2014

Synthesis of chiral N-phosphoryl aziridines through enantioselective aziridination of alkenes with phosphoryl azide via Co(II)-based metalloradical catalysis

  • Jingran Tao,
  • Li-Mei Jin and
  • X. Peter Zhang

Beilstein J. Org. Chem. 2014, 10, 1282–1289, doi:10.3762/bjoc.10.129

Graphical Abstract
  • ; cobalt complex; metalloradical catalysis; organophosphorus; phosphoryl azide; Introduction Aziridines, the smallest three-membered nitrogen-containing heterocycles, are highly valuable heterocyclic compounds that are widely used in organic synthesis and pharmaceuticals [1][2]. As a result, tremendous
  • environments toward the cobalt metalloradical center, but also function as potential donors to engage in hydrogen bonding with acceptors located at the nitrene moiety in the Co(III)–nitrene radical intermediate [18][35][36]. These secondary hydrogen bonding interactions are expected to lower the energy barrier
  • the porphyrin ring are also omitted in (B). Structures of D2-symmetric chiral cobalt(II) porphyrins. [Co(TPP)]-catalyzed olefin aziridination with DPPA. [Co(P1)]-catalyzed asymmetric olefin aziridination with DPPA. Optimization of catalytic aziridination of styrene with phosphoryl azides by Co(II
PDF
Album
Supp Info
Full Research Paper
Published 04 Jun 2014

Preparation of phosphines through C–P bond formation

  • Iris Wauters,
  • Wouter Debrouwer and
  • Christian V. Stevens

Beilstein J. Org. Chem. 2014, 10, 1064–1096, doi:10.3762/bjoc.10.106

Graphical Abstract
  • catalysis (Table 16) [244]. Besides copper(I) iodide several other copper salts effectuated the reaction albeit in lower yields as did silver(I) iodide, palladium(II) chloride and platinum(II) chloride. Other transition metal catalysts such as gold(I) chloride, nickel(II) chloride and cobalt(II) chloride
PDF
Album
Review
Published 09 May 2014

A new manganese-mediated, cobalt-catalyzed three-component synthesis of (diarylmethyl)sulfonamides

  • Antoine Pignon,
  • Erwan Le Gall and
  • Thierry Martens

Beilstein J. Org. Chem. 2014, 10, 425–431, doi:10.3762/bjoc.10.39

Graphical Abstract
  • related compounds by a new manganese-mediated, cobalt-catalyzed three-component reaction between sulfonamides, carbonyl compounds and organic bromides is described. This organometallic Mannich-like process allows the formation of the coupling products within minutes at room temperature. A possible
  • mechanism, emphasizing the crucial role of manganese is proposed. Keywords: carbonyl compounds; cobalt; manganese; multicomponent reaction; organic bromides; sulfonamides; Introduction (Diarylmethyl)amines constitute an important class of pharmacologically active compounds, displaying e.g. antihistaminic
  • and versatility of multicomponent procedures, we describe herein a new manganese-mediated, cobalt-catalyzed three-component reaction, which circumvents the above-mentioned limitations by allowing the synthesis of an extended range of (diarylmethyl)sulfonamides (and related compounds) within minutes at
PDF
Album
Letter
Published 17 Feb 2014

Boron-substituted 1,3-dienes and heterodienes as key elements in multicomponent processes

  • Ludovic Eberlin,
  • Fabien Tripoteau,
  • François Carreaux,
  • Andrew Whiting and
  • Bertrand Carboni

Beilstein J. Org. Chem. 2014, 10, 237–250, doi:10.3762/bjoc.10.19

Graphical Abstract
  • was produced from 5. If the [4 + 2]-cycloadduct 9 was obtained with N-phenylmaleimide, it failed to give homoallylic alcohols, probably due to steric hindrance [42]. An elegant three-component process was developed by Hilt and co-workers using a cobalt-catalyzed Diels–Alder reaction as the key step in
  • -phenylmaleimide and 4-phenyltriazoline-3,5-dione. Asymmetric synthesis of a α-hydroxyalkylcyclohexane. Tandem [4 + 2]-cycloaddition/allylboration of 3-silyloxy- and 4-alkoxy-dienyl boronates. Metal-mediated cycloisomerization/Diels–Alder reaction/allylboration sequence. Cobalt-catalyzed Diels–Alder/allylboration
PDF
Album
Review
Published 22 Jan 2014

Synthesis of five- and six-membered cyclic organic peroxides: Key transformations into peroxide ring-retaining products

  • Alexander O. Terent'ev,
  • Dmitry A. Borisov,
  • Vera A. Vil’ and
  • Valery M. Dembitsky

Beilstein J. Org. Chem. 2014, 10, 34–114, doi:10.3762/bjoc.10.6

Graphical Abstract
  • the Co(II)/Et3SiH/O2 system (Isayama–Mukaiyama reaction) Peroxysilylation of alkenes with molecular oxygen in the presence of triethylsilane catalyzed by cobalt(II) diketonates was described for the first time by S. Isayama and T. Mukaiyama in 1989 [246][247]. Currently, this approach is one of the
  • -dicyclohexenylpropan-2-yl acetate (56) catalyzed by cobalt complexed with 2,2,6,6-tetramethylheptane-3,5-dione (Co(THD)2) as the first step giving 1,3-bis(1-(triethylsilylperoxy)cyclohexyl)propan-2-yl acetate (57) that was subsequently transformed into the carbonyl-containing diperoxide (1,3-bis(1-(triethylsilylperoxy
  • , desilylation, and recyclization accompanied by a ring opening of oxirane or oxetane (Scheme 62 and Scheme 63). Cobalt(II) acetylacetonate (acac) or bis-2,2,6,6-tetramethylheptane-3,5-dienoate (thd) were used as the catalyst for the peroxidation of 219. The cyclization of the intermediate peroxide 220 was
PDF
Album
Review
Published 08 Jan 2014

Recent advances in transition metal-catalyzed Csp2-monofluoro-, difluoro-, perfluoromethylation and trifluoromethylthiolation

  • Grégory Landelle,
  • Armen Panossian,
  • Sergiy Pazenok,
  • Jean-Pierre Vors and
  • Frédéric R. Leroux

Beilstein J. Org. Chem. 2013, 9, 2476–2536, doi:10.3762/bjoc.9.287

Graphical Abstract
  • ]. In the same paper, the authors showed that cobalt perchlorate could also improve the yield of the uncatalyzed reaction. Iron sulfate, on the other hand, gave the same yield as in the absence of added metals. 4 Catalytic trifluoromethylthiolation Aryl trifluoromethyl sulfides (ArSCF3) play an
PDF
Album
Review
Published 15 Nov 2013

An overview of the synthetic routes to the best selling drugs containing 6-membered heterocycles

  • Marcus Baumann and
  • Ian R. Baxendale

Beilstein J. Org. Chem. 2013, 9, 2265–2319, doi:10.3762/bjoc.9.265

Graphical Abstract
  • pyridine structural class. Pyridine itself is produced industrially by either the traditional Chichibabin pyridine synthesis (Scheme 1, A), the Bönnemann reaction, a cobalt-catalysed cyclotrimerisation of alkynes and nitriles (Scheme 1, B) or the aerobic gas-phase condensation of croton aldehyde
  • crude material in the subsequent Knoevenagel condensation with thiazolidinedione 1.68. In order to reduce the intermediate benzylidene double bond in this example sodium borohydride is used in the presence of cobalt chloride efficiently delivering pioglitazone in high purity. Other syntheses of
PDF
Album
Review
Published 30 Oct 2013

Flexible synthesis of anthracycline aglycone mimics via domino carbopalladation reactions

  • Markus Leibeling and
  • Daniel B. Werz

Beilstein J. Org. Chem. 2013, 9, 2194–2201, doi:10.3762/bjoc.9.258

Graphical Abstract
  • in 88% overall yield (over two steps). Another approach to non-linear systems utilizes a cobalt-mediated intramolecular [2 + 2 + 2]-cycloaddition of a triyne system 9 leading to the fourfold annulated ring system 10 in only one step [16]. Late stage functionalization led to the anticipated structural
PDF
Album
Supp Info
Full Research Paper
Published 24 Oct 2013

A concise enantioselective synthesis of the guaiane sesquiterpene (−)-oxyphyllol

  • Martin Zahel and
  • Peter Metz

Beilstein J. Org. Chem. 2013, 9, 2028–2032, doi:10.3762/bjoc.9.239

Graphical Abstract
  • , 977 cm−1; GC–MS: m/z = 296 [M]+; anal. calcd for C15H20O4S: C 60.79, H 6.80; found: C 60.88, H 6.92. Alcohol 3: Epoxide 4 (100.0 mg, 454 μmol) and cobalt(II) acetylacetonate (23.3 mg, 91 μmol) were dissolved in THF (5 mL), and the solution was cooled to 0 °C. Oxygen was bubbled through the solution
PDF
Album
Supp Info
Full Research Paper
Published 08 Oct 2013

Palladium(II)-catalyzed Heck reaction of aryl halides and arylboronic acids with olefins under mild conditions

  • Tanveer Mahamadali Shaikh and
  • Fung-E Hong

Beilstein J. Org. Chem. 2013, 9, 1578–1588, doi:10.3762/bjoc.9.180

Graphical Abstract
  • ][29][30][31]. Previously, we also reported the synthesis of cobalt-containing SPO ligands and their palladium complex. This was successfully applied as a catalytic precursor in oxidative Heck reactions [32]. However, these reactions were carried out at high temperatures with limited substrate scope
PDF
Album
Supp Info
Full Research Paper
Published 05 Aug 2013
Other Beilstein-Institut Open Science Activities