Search results

Search for "electrophiles" in Full Text gives 309 result(s) in Beilstein Journal of Organic Chemistry. Showing first 200.

Aldehydes as powerful initiators for photochemical transformations

  • Maria A. Theodoropoulou,
  • Nikolaos F. Nikitas and
  • Christoforos G. Kokotos

Beilstein J. Org. Chem. 2020, 16, 833–857, doi:10.3762/bjoc.16.76

Graphical Abstract
  • aliphatic acids and the coupling of the residual chain with various electrophiles. Metal-based catalysts are common in reactions that require a high redox potential for a single electron transfer (SET) procedure to take place. On the other hand, even if organocatalysts have lower redox potentials, they are
PDF
Album
Review
Published 23 Apr 2020

Reaction of indoles with aromatic fluoromethyl ketones: an efficient synthesis of trifluoromethyl(indolyl)phenylmethanols using K2CO3/n-Bu4PBr in water

  • Thanigaimalai Pillaiyar,
  • Masoud Sedaghati and
  • Gregor Schnakenburg

Beilstein J. Org. Chem. 2020, 16, 778–790, doi:10.3762/bjoc.16.71

Graphical Abstract
  • advantages of this protocol. Keywords: C–C-bond formation; C3-funtionalization of indole; diindolylmethane; Friedel–Crafts reaction; indole; indole-3-carbinol; large-scale synthesis; recyclability; Introduction (1H-Indol-3-yl)methanols have emerged as versatile pre-electrophiles for C–C functionalization
  • cycle. 3-Indolylmethanols are versatile pre-electrophiles for C–C functionalization at the 3-position of indoles. Particularly, the Friedel–Crafts alkylation of 3-indolylmethanols with indoles has become a useful method for the preparation of 3,3'-, and 3,6'-DIMs, which are known to possess a wide
  • protocol for the preparation of trifluoromethyl(indolyl)phenylmethanols, which are of significant interest serving as pre-electrophiles for C–C functionalization at the 3-position of indoles. Particularly, the Friedel–Crafts alkylation of 3-indolylmethanols with indoles has become a useful method for the
PDF
Album
Supp Info
Full Research Paper
Published 20 Apr 2020

Recent advances in Cu-catalyzed C(sp3)–Si and C(sp3)–B bond formation

  • Balaram S. Takale,
  • Ruchita R. Thakore,
  • Elham Etemadi-Davan and
  • Bruce H. Lipshutz

Beilstein J. Org. Chem. 2020, 16, 691–737, doi:10.3762/bjoc.16.67

Graphical Abstract
  • silyl ethers 89–92 (Scheme 18), thus showcasing the synergistic relationship between Pd and Cu catalysis [43]. Driven by the success of earlier results, the authors utilized 78 for reductive couplings between ketones 93 and imines 97 as electrophiles to form unsymmetrical 1,2-diols 94–96 and 1,2-amino
  • 122. Moreover, the intermediates could be trapped in the presence of electrophiles, such as aldehydes or alkyl halides to afford interesting α-substituted products 124 and 125. This phenomenon was further studied in detail on different dienones [58]. In 2013, Procter and co-workers [59] extended the
  • enantioselectivity was reported by Hartwig et al. in 2016 [99]. The newly formed C–B bond reacted with a range of electrophiles to deliver products containing C–C, C–N, and C–X (X = Br, Cl) bonds (e.g., 349, 350). Efforts to explore the mechanism revealed a decrease in regioselectivity when the C=C bond is further
PDF
Album
Review
Published 15 Apr 2020

Direct borylation of terrylene and quaterrylene

  • Haruka Kano,
  • Keiji Uehara,
  • Kyohei Matsuo,
  • Hironobu Hayashi,
  • Hiroko Yamada and
  • Naoki Aratani

Beilstein J. Org. Chem. 2020, 16, 621–627, doi:10.3762/bjoc.16.58

Graphical Abstract
  • quite limited because they must suffer the harsh conditions of the rylene skeleton preparation. Basic reactivity of rylenes with electrophiles is predicted from perylene in which the most reactive sites are the 3,4,9,10-positions [21]. On the other hand, the regioselectivity of the iridium (Ir
PDF
Album
Supp Info
Letter
Published 06 Apr 2020

Regioselectively α- and β-alkynylated BODIPY dyes via gold(I)-catalyzed direct C–H functionalization and their photophysical properties

  • Takahide Shimada,
  • Shigeki Mori,
  • Masatoshi Ishida and
  • Hiroyuki Furuta

Beilstein J. Org. Chem. 2020, 16, 587–595, doi:10.3762/bjoc.16.53

Graphical Abstract
  • nature of BODIPY, the reactivity of the 2,6-positions is intrinsically low toward electrophiles, which hampers the β-selective functionalization. We, therefore, tested the corresponding reaction using tetramethyl-substituted BODIPY 1b that is expected to have an enhanced electron density of the BODIPY
PDF
Album
Supp Info
Full Research Paper
Published 01 Apr 2020

Controlling alkyne reactivity by means of a copper-catalyzed radical reaction system for the synthesis of functionalized quaternary carbons

  • Goki Hirata,
  • Yu Yamane,
  • Naoya Tsubaki,
  • Reina Hara and
  • Takashi Nishikata

Beilstein J. Org. Chem. 2020, 16, 502–508, doi:10.3762/bjoc.16.45

Graphical Abstract
  • related coupling reactions [2][3][4]. Although there are many reports on alkyne transformations, one recent development in this area has been the reaction of alkynes with tertiary alkyl electrophiles to produce functionalized quaternary carbon atoms via addition [5][6][7][8][9][10] or coupling [11][12][13
PDF
Album
Supp Info
Letter
Published 26 Mar 2020

Copper-catalyzed enantioselective conjugate addition of organometallic reagents to challenging Michael acceptors

  • Delphine Pichon,
  • Jennifer Morvan,
  • Christophe Crévisy and
  • Marc Mauduit

Beilstein J. Org. Chem. 2020, 16, 212–232, doi:10.3762/bjoc.16.24

Graphical Abstract
  • vinyl sulfones as electrophiles (Scheme 3). Of note, both the anti- and the syn-product could be predominantly formed (with a anti:syn ratio from 83:17 to 15:85), and no diastereocontrol occurred in the absence of the organocatalyst. Interestingly, this simple protocol was successfully applied to the
  • enantioselective synthesis of valnoctamide, a commercialized mild tranquilizer. Finally, this methodology was extended to the sequential Michael/halogenation reaction using NFSI or NCS as electrophiles, with similar efficiency. Similarly, a cocatalyzed enantioselective β-functionalization of enals was developed by
PDF
Album
Review
Published 17 Feb 2020

Regioselectivity of glycosylation reactions of galactose acceptors: an experimental and theoretical study

  • Enrique A. Del Vigo,
  • Carlos A. Stortz and
  • Carla Marino

Beilstein J. Org. Chem. 2019, 15, 2982–2989, doi:10.3762/bjoc.15.294

Graphical Abstract
  • functions describe better soft–soft interactions between nucleophiles and electrophiles [8][37][38]. The charge density was calculated for both methods using the Merz–Singh–Kollman scheme (MK) [39][40]. For the calculation of Fukui functions, besides the known computation of differences in atomic charges
PDF
Album
Supp Info
Full Research Paper
Published 19 Dec 2019

1,5-Phosphonium betaines from N-triflylpropiolamides, triphenylphosphane, and active methylene compounds

  • Vito A. Fiore,
  • Chiara Freisler and
  • Gerhard Maas

Beilstein J. Org. Chem. 2019, 15, 2603–2611, doi:10.3762/bjoc.15.253

Graphical Abstract
  • vinylphosphonium ion, and a proton transfer finally yields the 1,4-betaine. A kinetic study of the PPh3/DMAD/Meldrum’s acid reaction by spectrophotometric and stopped-flow methods has been published [14]. The initial 1,3-betaine has also been trapped with other electrophiles. The stable 1,4-betaines betaines III
PDF
Album
Supp Info
Full Research Paper
Published 01 Nov 2019

A new approach to silicon rhodamines by Suzuki–Miyaura coupling – scope and limitations

  • Thines Kanagasundaram,
  • Antje Timmermann,
  • Carsten S. Kramer and
  • Klaus Kopka

Beilstein J. Org. Chem. 2019, 15, 2569–2576, doi:10.3762/bjoc.15.250

Graphical Abstract
  • added the double Grignard reagent 4 to methyl esters 5 [26]. A similar approach was established by Lavis, herein electrophiles (anhydrides or esters) were added to lithium or magnesium organyls 4 [27]. Johnsson and co-workers could establish dye formation by addition of aryllithium 7 to the silicon
PDF
Album
Supp Info
Full Research Paper
Published 29 Oct 2019

Functionalization of 4-bromobenzo[c][2,7]naphthyridine via regioselective direct ring metalation. A novel approach to analogues of pyridoacridine alkaloids

  • Benedikt C. Melzer,
  • Alois Plodek and
  • Franz Bracher

Beilstein J. Org. Chem. 2019, 15, 2304–2310, doi:10.3762/bjoc.15.222

Graphical Abstract
  • metalation at C-5 with TMPMgCl∙LiCl at −40 °C. Quenching with various electrophiles gives a broad range of 5-substituted products, which are building blocks for the synthesis of heterocyclic natural products and analogues thereof. In combination with a Parham-type cyclization a novel approach to pyrido[4,3,2
  • ] (Figure 2C). The successful directed remote metalation of 4-arylbenzo[c][2,7]naphthyridines 10 prompted us to investigate direct ring metalation of the readily available 4-bromo intermediate 9d [14]. Trapping of the envisaged 5-metalated intermediate with various electrophiles, followed by transformations
  • hindered amide base TMPMgCl∙LiCl as crucial step, the Knochel–Hauser base was again the metalation reagent of our choice. Metalation of 4-bromobenzo[c][2,7]naphthyridine (9d) using 1.1 equivalents TMPMgCl∙LiCl at −40 °C, followed by the reaction with various electrophiles gave, in most cases, the expected
PDF
Album
Supp Info
Full Research Paper
Published 26 Sep 2019

Recent advances in transition-metal-catalyzed incorporation of fluorine-containing groups

  • Xiaowei Li,
  • Xiaolin Shi,
  • Xiangqian Li and
  • Dayong Shi

Beilstein J. Org. Chem. 2019, 15, 2213–2270, doi:10.3762/bjoc.15.218

Graphical Abstract
  • –CF3 bond formation and Cu(OAc)2 can increase the catalytic turnover (Scheme 63). Based on three different modes of the ArPd(II) species reaction with nucleophiles, electrophiles and highly oxidizing reagents, three possible reaction pathways (A, B and C, respectively) are envisaged, that can follow
  • trifluoromethylation of triflate electrophiles, while the use of TESCF3 and RbF gave better results for nonaflate electrophiles. Subsequently, the Yu [15][125] and Shi group [126] independently reported the palladium-catalyzed ortho-trifluoromethylation of an aromatic C–H bond with Umemoto’s trifluoromethylation
PDF
Album
Review
Published 23 Sep 2019

An overview of the cycloaddition chemistry of fulvenes and emerging applications

  • Ellen Swan,
  • Kirsten Platts and
  • Anton Blencowe

Beilstein J. Org. Chem. 2019, 15, 2113–2132, doi:10.3762/bjoc.15.209

Graphical Abstract
  • are thermally unstable, sensitive to oxygen [7][14][49][50][51][52][53][54][55], and photosensitive [42][54][56][57]. Fulvenes react with both nucleophiles and electrophiles (according to frontier orbital theory) [1][2][58], and are prone to acid- and cation-catalysed polymerisations [7][14][44][55
PDF
Album
Review
Published 06 Sep 2019

Reactions of 2-carbonyl- and 2-hydroxy(or methoxy)alkyl-substituted benzimidazoles with arenes in the superacid CF3SO3H. NMR and DFT studies of dicationic electrophilic species

  • Dmitry S. Ryabukhin,
  • Alexey N. Turdakov,
  • Natalia S. Soldatova,
  • Mikhail O. Kompanets,
  • Alexander Yu. Ivanov,
  • Irina A. Boyarskaya and
  • Aleksander V. Vasilyev

Beilstein J. Org. Chem. 2019, 15, 1962–1973, doi:10.3762/bjoc.15.191

Graphical Abstract
  • ][20][21][22][23]. These carbonyl-substituted heteroarenes possess basic sites (nitrogen or oxygen atoms of the heterocyclic system), which are fully protonated in acid, so that upon subsequent protonation of the carbonyl oxygen, more reactive dicationic electrophiles can be generated. Previously
  • should be reactive electrophiles. While, in the case of hydroxyalkylbenzimidazoles 3–8, N,O-diprotonated species III, V, VII, VIII, the most probably, may be reactive intermediates. The calculation of electrophilic properties of these cations show that species I and II have higher values of
PDF
Album
Supp Info
Full Research Paper
Published 19 Aug 2019

Superelectrophilic carbocations: preparation and reactions of a substrate with six ionizable groups

  • Sean H. Kennedy,
  • Makafui Gasonoo and
  • Douglas A. Klumpp

Beilstein J. Org. Chem. 2019, 15, 1515–1520, doi:10.3762/bjoc.15.153

Graphical Abstract
  • sufficiently acidic media, cationic electrophiles such as the nitronium ion may undergo protonation, leading to the nitronium dication (1), and a greatly enhanced electrophilic reactivity. In superacidic solutions, nitronium salts have been shown to react with deactivated arenes and saturated hydrocarbons
  • electrophiles based on the triarylmethyl cation scaffold (3–5, Scheme 1) [11][12]. These systems utilized pyridyl rings to produce increasing amounts of positive charge adjacent to the carbocation center. Both theoretical calculations and experimental results indicated that the carbocation center undergoes a
PDF
Album
Supp Info
Full Research Paper
Published 09 Jul 2019
Graphical Abstract
  • electrophiles, such as sulfenyl, selenyl, and telluryl chlorides, were used in reactions with these allenes. However, only a few studies have been focused on reactions of phosphorylallenes with Brønsted acids [11][12]. These reactions proceed through an intermediate formation of the corresponding 2,5-dihydro
PDF
Album
Supp Info
Full Research Paper
Published 08 Jul 2019

Alkylation of lithiated dimethyl tartrate acetonide with unactivated alkyl halides and application to an asymmetric synthesis of the 2,8-dioxabicyclo[3.2.1]octane core of squalestatins/zaragozic acids

  • Herman O. Sintim,
  • Hamad H. Al Mamari,
  • Hasanain A. A. Almohseni,
  • Younes Fegheh-Hassanpour and
  • David M. Hodgson

Beilstein J. Org. Chem. 2019, 15, 1194–1202, doi:10.3762/bjoc.15.116

Graphical Abstract
  • work, which concluded that only especially reactive halides (methyl, benzylic, allylic) were feasible electrophiles; with iodoethane, 1-iodo-2-methylpropane and chloromethoxymethane no alkylation products were formed [17][18][19]. Given these rather discouraging observations in the context of our
  • is not readily deprotonated at −78 °C. Clearly, monoalkylated tartrate can be deprotonated and trapped with electrophiles if the system is warmed above −78 °C: to −30 °C by Molander and Harris [29], whereas −50 °C was sufficient for the enolate oxidation steps in Scheme 6 and Scheme 7. Indeed
  • tartrate 41 in 71% yield, and used only a slight excess of tartrate 7 and LDA (1.2 and 1.5 equiv, respectively) for 72 h at −78 °C [13]. These examples demonstrate the viability of the tartrate alkylation chemistry with more complex and valuable electrophiles. While monoalkylated tartrate acetonides were
PDF
Album
Supp Info
Full Research Paper
Published 31 May 2019

Electrophilic oligodeoxynucleotide synthesis using dM-Dmoc for amino protection

  • Shahien Shahsavari,
  • Dhananjani N. A. M. Eriyagama,
  • Bhaskar Halami,
  • Vagarshak Begoyan,
  • Marina Tanasova,
  • Jinsen Chen and
  • Shiyue Fang

Beilstein J. Org. Chem. 2019, 15, 1116–1128, doi:10.3762/bjoc.15.108

Graphical Abstract
  • aniline is needed to induce the β-elimination (see Scheme 1) and to prevent the side product 1 from reacting with the deprotected ODN via Michael addition [40]. Aniline is a weak base and only mildly nucleophilic. Electrophiles that are compatible with ODNs but reactive toward it are rare. However, using
  • a large excess of aniline could be a significant drawback. For example, many electrophiles could be considered unreactive to it, but in the presence of a large excess of it, problems might arise. In addition, its boiling point is high, alternative techniques other than simple evaporation has to be
PDF
Album
Supp Info
Full Research Paper
Published 20 May 2019

Switchable selectivity in Pd-catalyzed [3 + 2] annulations of γ-oxy-2-cycloalkenones with 3-oxoglutarates: C–C/C–C vs C–C/O–C bond formation

  • Yang Liu,
  • Julie Oble and
  • Giovanni Poli

Beilstein J. Org. Chem. 2019, 15, 1107–1115, doi:10.3762/bjoc.15.107

Graphical Abstract
  • , bottom reaction). We next decided to extend the scope of this strategy to dialkyl-3-oxoglutarates I as the bis-nucleophile partners [33] in the reaction with cyclic α,β-unsaturated-γ-oxycarbonyl derivatives II as the bis-electrophiles (Scheme 2). Interestingly, this new bis-nucleophile/bis-electrophile
  • optimized conditions A, at room temperature in DMSO, the six- (2a) as well as the seven-membered (2c) bis-electrophiles reacted smoothly giving the furocycloalkanones 4a and 4c in good yields (Scheme 3). Furthermore, the protocol could be scaled up to 1 mmol without significant yield erosion. Treatment of
PDF
Album
Supp Info
Full Research Paper
Published 16 May 2019

An improved synthesis of adefovir and related analogues

  • David J. Jones,
  • Eileen M. O’Leary and
  • Timothy P. O’Sullivan

Beilstein J. Org. Chem. 2019, 15, 801–810, doi:10.3762/bjoc.15.77

Graphical Abstract
  • the synthesis of acyclic nucleoside phosphonates including mesylates [42], tosylates [16][43][44] and alkyl chlorides [45][46][47][48][49][50][51]. Alkylation reactions conducted with these electrophiles generally require higher temperatures. Furthermore, these reagents typically afford products in
  • low to moderate yields as the reactions fail to reach completion or else furnish multiple side-products. The successful application of such iodide-based electrophiles is precedented, as demonstrated by the work of Ubasawa et al. in their preparation of purine analogue 17 from 15 (Scheme 3) [52]. A
  • favoured alkylation at N7 and 29 was isolated in 79% yield following purification by column chromatography (Scheme 6c). Pal and co-workers previously reported the N7-selective alkylation of 28 using other electrophiles [56]. They confirmed that the reaction had occurred at N7 via HMBC analysis and the
PDF
Album
Supp Info
Full Research Paper
Published 29 Mar 2019

Diastereo- and enantioselective preparation of cyclopropanol derivatives

  • Marwan Simaan and
  • Ilan Marek

Beilstein J. Org. Chem. 2019, 15, 752–760, doi:10.3762/bjoc.15.71

Graphical Abstract
  • cyclopropylmetal species reacted with retention of configuration with those electrophiles opening a new approach to O-heterosubstituted cyclopropyl rings. Experimental General procedure for the carbocupration reaction of 3a,c with RCuCNLi To a suspension of CuCN (1.5 equiv) in 8 mL of Et2O was added alkyllithium
PDF
Album
Supp Info
Full Research Paper
Published 21 Mar 2019

The LANCA three-component reaction to highly substituted β-ketoenamides – versatile intermediates for the synthesis of functionalized pyridine, pyrimidine, oxazole and quinoxaline derivatives

  • Tilman Lechel,
  • Roopender Kumar,
  • Mrinal K. Bera,
  • Reinhold Zimmer and
  • Hans-Ulrich Reissig

Beilstein J. Org. Chem. 2019, 15, 655–678, doi:10.3762/bjoc.15.61

Graphical Abstract
  • F that reacts with electrophiles at C-1. The three-component reaction with nitriles and carboxylic acids then leads to the corresponding β-ketoenamides KEAr in moderate yields. The reaction sequence is illustrated in Scheme 7 also showing the three products KE78 [22], KE79 [45] and KE80 [46] that
PDF
Album
Review
Published 13 Mar 2019

Syntheses and chemical properties of β-nicotinamide riboside and its analogues and derivatives

  • Mikhail V. Makarov and
  • Marie E. Migaud

Beilstein J. Org. Chem. 2019, 15, 401–430, doi:10.3762/bjoc.15.36

Graphical Abstract
PDF
Album
Review
Published 13 Feb 2019

Sigmatropic rearrangements of cyclopropenylcarbinol derivatives. Access to diversely substituted alkylidenecyclopropanes

  • Guillaume Ernouf,
  • Jean-Louis Brayer,
  • Christophe Meyer and
  • Janine Cossy

Beilstein J. Org. Chem. 2019, 15, 333–350, doi:10.3762/bjoc.15.29

Graphical Abstract
  • isomerized into 1-methyl-3,3-difluorocyclopropene (A”) [21] (Scheme 1, reaction 1). Another approach relies on the reaction of cyclopropenylmethyl organometallic species C with electrophiles through an SE2’ process leading to substituted alkylidenecyclopropanes D (Scheme 1, reaction 2). Examples of those
  • transformations include the carboxylation of a (trimethylsilylmethyl)cyclopropene in the presence of a fluoride promoter [22], and also the addition of electrophiles to (lithiomethyl)cyclopropenes generated by lithiation of the corresponding methylcyclopropenylsulfone [23] or -sulfoxide [24]. More recently, the
PDF
Album
Review
Published 05 Feb 2019

Synthesis of 1,2-divinylcyclopropanes by metal-catalyzed cyclopropanation of 1,3-dienes with cyclopropenes as vinyl carbene precursors

  • Jesús González,
  • Alba de la Fuente,
  • María J. González,
  • Laura Díez de Tejada,
  • Luis A. López and
  • Rubén Vicente

Beilstein J. Org. Chem. 2019, 15, 285–290, doi:10.3762/bjoc.15.25

Graphical Abstract
  • cyclopropanecarboxaldehydes [10] or reactions of metallated vinylcyclopropanes with suitable electrophiles are commonly employed (Scheme 1a) [11][12][13]. In a more convergent approach where the cyclopropane ring is created at the last stage, divinylcyclopropanes can be prepared by cyclopropanation of 1,3-dienes with metal
PDF
Album
Supp Info
Letter
Published 30 Jan 2019
Other Beilstein-Institut Open Science Activities