Search results

Search for "organometallic" in Full Text gives 327 result(s) in Beilstein Journal of Organic Chemistry. Showing first 200.

Recent advances in transition-metal-catalyzed incorporation of fluorine-containing groups

  • Xiaowei Li,
  • Xiaolin Shi,
  • Xiangqian Li and
  • Dayong Shi

Beilstein J. Org. Chem. 2019, 15, 2213–2270, doi:10.3762/bjoc.15.218

Graphical Abstract
  • fluorination methods to these building blocks, such as Friedel–Crafts-type electrophilic halogenation [10][11], Sandmeyer-type reactions of diazonium salts [12], and halogenations of preformed organometallic reagents [13], commonly involve multiple steps, harsh reaction conditions, and the use of
  • review covers mainly two types of transition-metal-catalyzed reactions: 1) cross-couplings with a fluorinated organometallic species or a halogenated fluorinated species and 2) the direct introduction of fluorinated moieties into nonfunctionalized substrates with a fluorinated reagent. We hope that this
  • formed from A with Selectfluor or NFSI instead of an organometallic intermediate as usual. Then, the activated Pd(IV)–F electrophile B would be capable of electrophilic fluorination of weakly nucleophilic arenes. This unusual mechanism of catalysis may provide a new idea to the catalysis of C–H
PDF
Album
Review
Published 23 Sep 2019

An overview of the cycloaddition chemistry of fulvenes and emerging applications

  • Ellen Swan,
  • Kirsten Platts and
  • Anton Blencowe

Beilstein J. Org. Chem. 2019, 15, 2113–2132, doi:10.3762/bjoc.15.209

Graphical Abstract
  • properties, synthetic transformations, organometallic chemistry and metal-catalysed reactions, an excellent review was recently published by Radhakrishnan and co-workers [33]. This highlight article is intended to give the reader an overview of the varied and exceptional cycloaddition chemistry of fulvenes
PDF
Album
Review
Published 06 Sep 2019

Halide metathesis in overdrive: mechanochemical synthesis of a heterometallic group 1 allyl complex

  • Ross F. Koby,
  • Nicholas R. Rightmire,
  • Nathan D. Schley,
  • Timothy P. Hanusa and
  • William W. Brennessel

Beilstein J. Org. Chem. 2019, 15, 1856–1863, doi:10.3762/bjoc.15.181

Graphical Abstract
  • ; metathesis; potassium; Introduction Halide (or ‘salt’) metathesis is a broadly useful synthetic technique in organometallic chemistry, applicable to elements across the entire periodic table. A typical instance involves the reaction of a metal halide (M'Xn) with an organoalkali metal compound (RM; M = Li
  • , which promotes reactions through grinding or milling with no, or minimal, use of solvents, has been used in conjunction with halide metathesis to form organometallic compounds of the transition metals [3][4][5][6][7] and both s- [8][9] and p-block [10][11] main group elements. The extent to which the
  • between M'X and MX becomes particularly small? Here we describe the application of mechanochemistry in an organometallic context to examine alkali metal halide exchange unassisted by solvents. The organic group used is the bulky 1,3-bis(trimethylsilyl)allyl anion, [1,3-(SiMe3)2C3H3]− ([A']−) [13][14], for
PDF
Album
Supp Info
Full Research Paper
Published 02 Aug 2019

Recent advances on the transition-metal-catalyzed synthesis of imidazopyridines: an updated coverage

  • Gagandeep Kour Reen,
  • Ashok Kumar and
  • Pratibha Sharma

Beilstein J. Org. Chem. 2019, 15, 1612–1704, doi:10.3762/bjoc.15.165

Graphical Abstract
  • dimethylamino- or nitro-substituted aldehydes did not result in the target compound that might be due to the deactivation caused by coordination of these groups with the catalyst. Metal–carbene complexes attracted the attention of organic chemists and have become an important branch of organometallic chemistry
PDF
Album
Review
Published 19 Jul 2019

Transient and intermediate carbocations in ruthenium tetroxide oxidation of saturated rings

  • Manuel Pedrón,
  • Laura Legnani,
  • Maria-Assunta Chiacchio,
  • Pierluigi Caramella,
  • Tomás Tejero and
  • Pedro Merino

Beilstein J. Org. Chem. 2019, 15, 1552–1562, doi:10.3762/bjoc.15.158

Graphical Abstract
  • substituents effects (Scheme 2) [15]. Three years later, Waegell et al. proposed a (2 + 2) concerted mechanism [12], although the intimate nature of the organometallic intermediates was not completely elucidated [16]. After some discussion in which Bakke et al. confirmed their initial proposal [17][18] and
PDF
Album
Supp Info
Full Research Paper
Published 11 Jul 2019

Borylation and rearrangement of alkynyloxiranes: a stereospecific route to substituted α-enynes

  • Ruben Pomar Fuentespina,
  • José Angel Garcia de la Cruz,
  • Gabriel Durin,
  • Victor Mamane,
  • Jean-Marc Weibel and
  • Patrick Pale

Beilstein J. Org. Chem. 2019, 15, 1416–1424, doi:10.3762/bjoc.15.141

Graphical Abstract
  • coupling reactions of either terminal or organometallic alkynes with vinyl halides or of alkynyl halides with vinylic organometallics [20]. However, both routes may lead to mixtures of stereoisomers and synthetic approaches to stereodefined substituted α-enynes remain scarce and thus still represent a
PDF
Album
Supp Info
Full Research Paper
Published 27 Jun 2019

Synthesis of aryl cyclopropyl sulfides through copper-promoted S-cyclopropylation of thiophenols using cyclopropylboronic acid

  • Emeline Benoit,
  • Ahmed Fnaiche and
  • Alexandre Gagnon

Beilstein J. Org. Chem. 2019, 15, 1162–1171, doi:10.3762/bjoc.15.113

Graphical Abstract
  • this method, particularly with respect to medicinal chemistry where expedient methods from easily accessible substrates are needed. Organobismuth compounds are organometallic reagents that possess a C–Bi bond and which can be synthesized from inexpensive and low-toxic bismuth salts [24][25]. Due to the
PDF
Album
Supp Info
Letter
Published 27 May 2019

Diastereo- and enantioselective preparation of cyclopropanol derivatives

  • Marwan Simaan and
  • Ilan Marek

Beilstein J. Org. Chem. 2019, 15, 752–760, doi:10.3762/bjoc.15.71

Graphical Abstract
  • ) across the double bond of cyclopropenes [42], a very large number of groups have reported the addition of organometallic species demonstrating the generality of this approach for the preparation of cyclopropanes [43][44][45][46][47][48][49][50][51][52][53][54][55][56][57][58][59][60][61][62][63]. To
  • organometallic species. The presence of a bulky substituent (alkyl or aryl) at the opposite face at the C3 position might equally be important as it might induce an additional steric parameter leading to a potentially more selective carbometalation reaction. The substitution pattern on the double bond needs to
  • be addressed carefully as it plays an important role in the control of the regioselectivity of the reaction pathway. An alkyl group on the C1 position of the cyclopropene should control the regioselectivity of the addition of the organometallic species to give the more stable secondary
PDF
Album
Supp Info
Full Research Paper
Published 21 Mar 2019

Synthesis of polydicyclopentadiene using the Cp2TiCl2/Et2AlCl catalytic system and thin-layer oxidation of the polymer in air

  • Zhargolma B. Bazarova,
  • Ludmila S. Soroka,
  • Alex A. Lyapkov,
  • Мekhman S. Yusubov and
  • Francis Verpoort

Beilstein J. Org. Chem. 2019, 15, 733–745, doi:10.3762/bjoc.15.69

Graphical Abstract
  • obtain a polymer with particular properties – polydicyclopentadiene (PDCPD) [8][9]. Cationic polymerization of DCPD takes place with metal-halide-based catalyst systems and organometallic compounds. A number of scientific reports were dedicated to the investigation of DCPD polymerization based on these
  • interaction of organometallic transition metal complexes with organic aluminum compounds. The formation of such unstable bis(cyclopentadienyl)titanium dichloride complexes with a Ti=CHR fragment is possible as well in this case. The obtained complex is polarized in such a way that the metal has a positive
PDF
Album
Full Research Paper
Published 20 Mar 2019

Aqueous olefin metathesis: recent developments and applications

  • Valerio Sabatino and
  • Thomas R. Ward

Beilstein J. Org. Chem. 2019, 15, 445–468, doi:10.3762/bjoc.15.39

Graphical Abstract
  • from the incorporation of a catalytically active organometallic moiety within a protein scaffold. Such biohybrid catalysts enable a chemogenetic optimization of their catalytic performances. As olefin metathesis is bioorthogonal, it offers attractive features for the manipulation of biological systems
  • . Comprehensive reviews on ArMs can be found elsewhere [63][64]. Several artificial metalloenzymes able to perform metathesis, coined artificial metathases, have been reported since 2011. The artificial metathases rely on different strategies to anchor the organometallic moiety to the protein scaffold and include
  • -diallyltoluenesulfonamide (21) in aqueous media, achieving encouraging results at pH 4 and in the presence of MgCl2 [65]. The chemical optimization of the organometallic moiety revealed catalyst 60, which was combined with streptavidin (Sav) to afford ArM 1 (Scheme 13). Ward and co-workers reported another artificial
PDF
Album
Review
Published 14 Feb 2019

Syntheses and chemical properties of β-nicotinamide riboside and its analogues and derivatives

  • Mikhail V. Makarov and
  • Marie E. Migaud

Beilstein J. Org. Chem. 2019, 15, 401–430, doi:10.3762/bjoc.15.36

Graphical Abstract
  • -dihydropyridine derivatives may be also accomplished by using catalysis with organometallic complexes [72][73][74][75][76][77][78][79] or platinum nanoparticles [80]. This recently developed approach stems from an independent field of research, which focuses on the regeneration of NAD(P)H from NAD(P)+ [81][82
PDF
Album
Review
Published 13 Feb 2019

Sigmatropic rearrangements of cyclopropenylcarbinol derivatives. Access to diversely substituted alkylidenecyclopropanes

  • Guillaume Ernouf,
  • Jean-Louis Brayer,
  • Christophe Meyer and
  • Janine Cossy

Beilstein J. Org. Chem. 2019, 15, 333–350, doi:10.3762/bjoc.15.29

Graphical Abstract
  • isomerized into 1-methyl-3,3-difluorocyclopropene (A”) [21] (Scheme 1, reaction 1). Another approach relies on the reaction of cyclopropenylmethyl organometallic species C with electrophiles through an SE2’ process leading to substituted alkylidenecyclopropanes D (Scheme 1, reaction 2). Examples of those
  • addition of cyclopropenylmethylboronates to aldehydes was also reported [25]. A complementary strategy involves the addition of nucleophiles, in particular organometallic reagents, to cyclopropenylcarbinols or their derivatives E, which leads to alkylidenecyclopropanes F through a formal SN2’ process
PDF
Album
Review
Published 05 Feb 2019

Regioselective addition of Grignard reagents to N-acylpyrazinium salts: synthesis of substituted 1,2-dihydropyrazines and Δ5-2-oxopiperazines

  • Valentine R. St. Hilaire,
  • William E. Hopkins,
  • Yenteeo S. Miller,
  • Srinivasa R. Dandepally and
  • Alfred L. Williams

Beilstein J. Org. Chem. 2019, 15, 72–78, doi:10.3762/bjoc.15.8

Graphical Abstract
  • the nucleophilic addition of Grignard reagents to N-acylpyrazinium salts. A literature search showed this organometallic reagent reacting with pyrazine N-oxides towards the one-pot synthesis of N-Boc-protected N-hydroxy-substituted piperazines in good yields [6]. Methylmagnesium iodide was observed
PDF
Album
Supp Info
Full Research Paper
Published 08 Jan 2019

Mechanistic studies of an L-proline-catalyzed pyridazine formation involving a Diels–Alder reaction with inverse electron demand

  • Anne Schnell,
  • J. Alexander Willms,
  • S. Nozinovic and
  • Marianne Engeser

Beilstein J. Org. Chem. 2019, 15, 30–43, doi:10.3762/bjoc.15.3

Graphical Abstract
  • -proline-catalyzed aldol reaction. Organocatalysis has become a major research field with many applications and has proven to be a valuable complementary approach to organometallic or enzymatic catalysis [29][30][31][32][33][34]. The advantages especially in comparison to organometallic catalysis lie in a
PDF
Album
Supp Info
Full Research Paper
Published 03 Jan 2019

Organometallic vs organic photoredox catalysts for photocuring reactions in the visible region

  • Aude-Héloise Bonardi,
  • Frédéric Dumur,
  • Guillaume Noirbent,
  • Jacques Lalevée and
  • Didier Gigmes

Beilstein J. Org. Chem. 2018, 14, 3025–3046, doi:10.3762/bjoc.14.282

Graphical Abstract
  • regenerates the catalyst. As it is a fast-growing field, this review will be mainly focused on an overview of the recent advances concerning the development of organic and organometallic photoredox catalysts for the photoreticulation of multifunctional monomers for a rapid and efficient access to 3D polymer
  • observed for organometallic compounds for example with organic molecules as ligands. This ligand possesses σ, σ*, π, π* and n molecular orbitals [21]. When orbitals of this ligand are fully occupied, a charge transfer is possible from it to the empty or partially filled metal d-orbitals as illustrated in
PDF
Album
Review
Published 12 Dec 2018

Nucleofugal behavior of a β-shielded α-cyanovinyl carbanion

  • Rudolf Knorr and
  • Barbara Schmidt

Beilstein J. Org. Chem. 2018, 14, 3018–3024, doi:10.3762/bjoc.14.281

Graphical Abstract
  • formally) heterolytic cleavage of C–C single bonds can provide cases of interest if it generates organometallic compounds under unusual conditions. The well-known cases of alkoxide fission [1][2][3] (top line of Scheme 1) may be viewed as a reversed formation of an alkoxide A1M1 from an organometallic C–M1
  • alkoxides A1M1 and A2M1 may be obtained under thermodynamic control. (b) Trapping of the other equilibrium component (R1)2C=O by a nucleophile might accumulate the organometallic compound C–M1. (c) A1M1 may be used to replace M1 by M2 with intent to study a different organometallic C–M2 (bottom part of
  • a nucleophile was not tried here but might serve to accumulate the organometallic equilibrium component for the purpose of spectroscopic characterization or X-ray diffraction analyses. (iv) Fission of the lithium alkoxide of the adduct 13 of adamantan-2-one appeared to be comparably fast on the
PDF
Album
Supp Info
Full Research Paper
Published 11 Dec 2018

Olefin metathesis catalysts embedded in β-barrel proteins: creating artificial metalloproteins for olefin metathesis

  • Daniel F. Sauer,
  • Johannes Schiffels,
  • Takashi Hayashi,
  • Ulrich Schwaneberg and
  • Jun Okuda

Beilstein J. Org. Chem. 2018, 14, 2861–2871, doi:10.3762/bjoc.14.265

Graphical Abstract
  • enzymes is quite limited. Apart from engineering natural enzymes, the approach of connecting abiotic co-factors (such as organometallic complexes) to natural or re-engineered protein scaffolds offers an attractive combination of both, broad reaction scope of chemical transformations as well as control of
  • limited. Covalent anchoring of an organometallic complex offers the precise positioning of a catalyst within a protein scaffold. Formation of the covalent bond between cofactor and protein ensures an irreversible binding of the active site (i.e., the metal complex). This approach is highly versatile
  • transporter and removed the cork domain that is responsible for the iron transport [58]. This generated an “empty” barrel offering sufficient space to incorporate bulky organometallic catalysts. The variant lacking the cork domain is termed FhuA Δ1-159 (amino acids from 1 to 159 are deleted compared to the
PDF
Album
Review
Published 19 Nov 2018

Transition metal-free oxidative and deoxygenative C–H/C–Li cross-couplings of 2H-imidazole 1-oxides with carboranyl lithium as an efficient synthetic approach to azaheterocyclic carboranes

  • Lidia A. Smyshliaeva,
  • Mikhail V. Varaksin,
  • Pavel A. Slepukhin,
  • Oleg N. Chupakhin and
  • Valery N. Charushin

Beilstein J. Org. Chem. 2018, 14, 2618–2626, doi:10.3762/bjoc.14.240

Graphical Abstract
  • of promising heterocyclic carboranes: (i) condensation of decaborane (B10H14) with substituted acetylenes [27][28][29][30], (ii) carboryne-based cycloaddition reactions [31][32][33], and (iii) C–X/C–M cross coupling of halogenated azaheterocycles (X = Br, Cl, F) with carborane organometallic
PDF
Album
Supp Info
Letter
Published 12 Oct 2018

Learning from B12 enzymes: biomimetic and bioinspired catalysts for eco-friendly organic synthesis

  • Keishiro Tahara,
  • Ling Pan,
  • Toshikazu Ono and
  • Yoshio Hisaeda

Beilstein J. Org. Chem. 2018, 14, 2553–2567, doi:10.3762/bjoc.14.232

Graphical Abstract
  • methylcobalamin and adenosylcobalamin (coenzyme B12) that serve as organometallic cofactors in B12-dependent enzymes. The photolysis (thermolysis) of alkylcob(III)alamins leads to the formation of the corresponding alkyl radical and cob(II)alamin with homolytic Co(III)–C bond cleavage (Figure 1b). This high
  • functions of B12 are exploited by bound apoenzymes. B12 is recycled or reactivated in vivo as observed in methyonine synthetases. Understanding the mechanisms of B12 enzyme reactions and the role of B12 is very important from the viewpoint of bioinorganic and organometallic chemistry, organic syntheses, and
PDF
Album
Review
Published 02 Oct 2018

Synergistic approach to polycycles through Suzuki–Miyaura cross coupling and metathesis as key steps

  • Sambasivarao Kotha,
  • Milind Meshram and
  • Chandravathi Chakkapalli

Beilstein J. Org. Chem. 2018, 14, 2468–2481, doi:10.3762/bjoc.14.223

Graphical Abstract
  • (SM) cross-coupling reaction is also considered as one of the most versatile methods for C–C bond formation [8][9][10][11][12]. Application of a wide range of organometallic reagents (e.g., organoboron reagents) are possible due to their commercial availability. Owing to the mild reaction conditions
PDF
Album
Review
Published 21 Sep 2018

Efficient catalytic alkyne metathesis with a fluoroalkoxy-supported ditungsten(III) complex

  • Henrike Ehrhorn,
  • Janin Schlösser,
  • Dirk Bockfeld and
  • Matthias Tamm

Beilstein J. Org. Chem. 2018, 14, 2425–2434, doi:10.3762/bjoc.14.220

Graphical Abstract
  • , MMPO = 1-methoxy-2-methylpropan-2-ol) was isolated which catalyzed alkyne metathesis of 1-heptyne at elevated temperatures [68] and to date represents the only well-defined ditungsten complex which has been successfully used in alkyne metathesis. The organometallic chemistry of the M2X6 complexes (X
PDF
Album
Supp Info
Full Research Paper
Published 18 Sep 2018

A challenging redox neutral Cp*Co(III)-catalysed alkylation of acetanilides with 3-buten-2-one: synthesis and key insights into the mechanism through DFT calculations

  • Andrew Kenny,
  • Alba Pisarello,
  • Arron Bird,
  • Paula G. Chirila,
  • Alex Hamilton and
  • Christopher J. Whiteoak

Beilstein J. Org. Chem. 2018, 14, 2366–2374, doi:10.3762/bjoc.14.212

Graphical Abstract
  • ketone oxygen to form Int 1. This allows for reasonably close proximity of the Csp²-H proton for internal abstraction by the acetate group. The C–H activation step has an energy span barrier of 17.8 kcal mol−1, leading to the formation of the 6-membered organometallic cobaltacycle (Int 2AcOH) with an
  • in molecules (QTAIM) analysis using Multiwfn software [28] of the two intermediate structures, identifying the relevant parameters at the bond critical points (bcp) of interest. QTAIM analysis has been used previously in the field of transition metal organometallic complexes to understand ligand
  • benzamide example, the key step of co-ordination of the unsaturated coupling partner to the organometallic intermediate is significantly less favourable, thus a number of resting states of the catalyst become energetically more accessible, providing the reason for the requirement of more forcing conditions
PDF
Album
Supp Info
Full Research Paper
Published 10 Sep 2018

A novel and practical asymmetric synthesis of eptazocine hydrobromide

  • Ruipeng Li,
  • Zhenren Liu,
  • Liang Chen,
  • Jing Pan,
  • Kuaile Lin and
  • Weicheng Zhou

Beilstein J. Org. Chem. 2018, 14, 2340–2347, doi:10.3762/bjoc.14.209

Graphical Abstract
  • the unwanted isomer [3][4][5][6]. Other asymmetric syntheses of 1 have been reported in the literature. These relied either on organometallic catalysis [7], asymmetric tandem addition to chiral tetrahydronaphthalenes [8], bioenzymatic steps [9] or diastereoselective Evans alkylation from oxazolidinone
PDF
Album
Supp Info
Full Research Paper
Published 06 Sep 2018

Bi-mediated allylation of aldehydes in [bmim][Br]: a mechanistic investigation

  • Mrunesh Koli,
  • Sucheta Chatterjee,
  • Subrata Chattopadhyay and
  • Dibakar Goswami

Beilstein J. Org. Chem. 2018, 14, 2198–2203, doi:10.3762/bjoc.14.193

Graphical Abstract
  • reaction. In other RTILs, the reaction was either not proceeding at all, or was very sluggish. The specific advantages provided by [bmim][Br] prompted us for further mechanistic studies as discussed below. Mechanistic studies For this, we first probed the nature of the organometallic species responsible
PDF
Album
Supp Info
Full Research Paper
Published 22 Aug 2018

Evaluation of dispersion type metal···π arene interaction in arylbismuth compounds – an experimental and theoretical study

  • Ana-Maria Preda,
  • Małgorzata Krasowska,
  • Lydia Wrobel,
  • Philipp Kitschke,
  • Phil C. Andrews,
  • Jonathan G. MacLellan,
  • Lutz Mertens,
  • Marcus Korb,
  • Tobias Rüffer,
  • Heinrich Lang,
  • Alexander A. Auer and
  • Michael Mehring

Beilstein J. Org. Chem. 2018, 14, 2125–2145, doi:10.3762/bjoc.14.187

Graphical Abstract
  • ]. With regard to this the high relevance of London dispersion type interactions in molecular organometallic chemistry was recently summarized by Liptrot and Power [9]. It should be noted that in this context and more generally organometallic bismuth compounds are witnessing growing attention since
  • applications in the field of supramolecular chemistry [10][11][12] and pharmacology are of interest [13][14][15]. Lately, several studies regarding the metal···π interactions in organometallic compounds of antimony and bismuth [16][17][18][19] have been reported including intramolecular [20][21][22] and
  • dispersion type interactions including bismuth···π interaction in the solid state. This prompted us to have a closer look at these simple organometallic compounds. Noteworthy, the first report on the synthesis of Ph3Bi dates back to 1887, which was based on the reaction of sodium alloy and bromobenzene [46
PDF
Album
Supp Info
Full Research Paper
Published 15 Aug 2018
Other Beilstein-Institut Open Science Activities