Search results

Search for "trifluoroacetic acid" in Full Text gives 310 result(s) in Beilstein Journal of Organic Chemistry. Showing first 200.

Synthesis and biological investigation of (+)-3-hydroxymethylartemisinin

  • Toni Smeilus,
  • Farnoush Mousavizadeh,
  • Johannes Krieger,
  • Xingzhao Tu,
  • Marcel Kaiser and
  • Athanassios Giannis

Beilstein J. Org. Chem. 2019, 15, 567–570, doi:10.3762/bjoc.15.51

Graphical Abstract
  • containing methylene blue as photosensitizer was exposed to sunlight and oxygen. The treatment of the resulting intermediate hydroperoxide with a small amount of trifluoroacetic acid as previously described [17][18], afforded in the frame of a Hock cleavage (+)-3-hydroxymethyl-9-desmethylartemisinin (16) in
PDF
Album
Supp Info
Full Research Paper
Published 27 Feb 2019

Syntheses and chemical properties of β-nicotinamide riboside and its analogues and derivatives

  • Mikhail V. Makarov and
  • Marie E. Migaud

Beilstein J. Org. Chem. 2019, 15, 401–430, doi:10.3762/bjoc.15.36

Graphical Abstract
  • the corresponding protected derivative 30 was low (Scheme 15). Yet, this particular protecting group is easily removed under mild acidic conditions, such as diluted HCl in organic solvents (THF/MeOH) or 90% aqueous trifluoroacetic acid or hydrogenolysis. 3.3. Reduction of the pyridinium core of NR
  • . Subsequent deprotection of the NMN acetonide 33 using trifluoroacetic acid in DCM/water mixture or HCl in methanol was followed by C18 reverse phase chromatography to afford NMN in 90% and 67%, respectively. Meyer and Hilz [86] reported the synthesis of the bisphosphonate analogue of β-NAD+ 36 using a
PDF
Album
Review
Published 13 Feb 2019

Synthesis of C3-symmetric star-shaped molecules containing α-amino acids and dipeptides via Negishi coupling as a key step

  • Sambasivarao Kotha and
  • Saidulu Todeti

Beilstein J. Org. Chem. 2019, 15, 371–377, doi:10.3762/bjoc.15.33

Graphical Abstract
  • )4) as catalyst to provide the Negishi coupling product 10 (68%). Having the trimeric AAA derivative 10 in hand, it was treated with trifluoroacetic acid (TFA) in CH2Cl2 (1:1) at room temperature for 1 h to deliver the Boc-deprotected compound. Then, without further purification the deprotected
  • , m/z): [M + Na]+ calcd for C51H63N3NaO12, 932.4304; found, 932.4302; IR (neat) : 3661, 2349, 1716, 1495, 1163, 1044, 755 cm−1. General procedure for the mono- and dipeptide products 11, 12 and 13 Negishi coupling product 10 was dissolved in dichloromethane/trifluoroacetic acid (CH2Cl2/TFA 1:1) and
PDF
Album
Supp Info
Full Research Paper
Published 08 Feb 2019

Sigmatropic rearrangements of cyclopropenylcarbinol derivatives. Access to diversely substituted alkylidenecyclopropanes

  • Guillaume Ernouf,
  • Jean-Louis Brayer,
  • Christophe Meyer and
  • Janine Cossy

Beilstein J. Org. Chem. 2019, 15, 333–350, doi:10.3762/bjoc.15.29

Graphical Abstract
  • not be achieved cleanly upon exposure of 69b to a large excess of trifluoroacetic acid, this operation could be accomplished in a sequential manner by addition of trifluoroacetic acid (2 equiv, CH2Cl2, 0 °C) and then by treatment of the resulting N-Boc carbamate 70 (97%) with trimethylsilyl triflate
PDF
Album
Review
Published 05 Feb 2019

Novel solid-phase strategy for the synthesis of ligand-targeted fluorescent-labelled chelating peptide conjugates as a theranostic tool for cancer

  • Sagnik Sengupta,
  • Mena Asha Krishnan,
  • Premansh Dudhe,
  • Ramesh B. Reddy,
  • Bishnubasu Giri,
  • Sudeshna Chattopadhyay and
  • Venkatesh Chelvam

Beilstein J. Org. Chem. 2018, 14, 2665–2679, doi:10.3762/bjoc.14.244

Graphical Abstract
  • afford rhodamine B conjugated polypeptide chain 12. Amino acid protecting groups such as Boc, tert-butyl and Trt of diaminopropionic acid, aspartic acid and cysteine thiol moieties, respectively, in 12 were cleaved traceless using a cocktail of trifluoroacetic acid, triisopropylsilane, ethanedithiol in
  • such as Boc, tert-butyl and Trt present in diaminopropionic acid, aspartic acid and cysteine thiol aminoacids, respectively, were cleaved using a cocktail of trifluoroacetic acid, triisopropyl silane, ethanedithiol in water to give folate receptor targeted chelating rhodamine B conjugate 17 in high
  • bubbling nitrogen for 10 minutes through the swelled resin beads. The procedure was repeated thrice (1 × 4 mL; 2 × 3 mL) to ensure complete deprotection of Fmoc protecting group. General procedure for peptide cleavage from resin beads A mixture of 9.25 mL trifluoroacetic acid (TFA), 0.25 mL
PDF
Album
Supp Info
Full Research Paper
Published 18 Oct 2018

Synthesis of a leopolic acid-inspired tetramic acid with antimicrobial activity against multidrug-resistant bacteria

  • Luce Mattio,
  • Loana Musso,
  • Leonardo Scaglioni,
  • Andrea Pinto,
  • Piera Anna Martino and
  • Sabrina Dallavalle

Beilstein J. Org. Chem. 2018, 14, 2482–2487, doi:10.3762/bjoc.14.224

Graphical Abstract
  • tert-butyl ester was easily cleaved by trifluoroacetic acid in DCM at room temperature to furnish the corresponding acid 19 (yield 95%), which was activated by pentafluorophenol, DCC in EtOAc to give the pentafluorophenylester ureido-dipeptide 20 (60%, Scheme 2). With both key fragments 13 and 20 in
  • ) triphosgene, DIEA, DCM, rt, 3 h, 50%; d) trifluoroacetic acid, DCM, rt, 3 h, 95%; e) pentafluorophenol, DCC, EtOAc, 0 °C, 1h, then rt, 3 h, 60%. Synthesis of compound 1. Reagents and conditions: a) n-BuLi, THF, −60 °C, 220 min, 60%; b) H2, Pd/C 10%, AcOEt, rt, 100 min, 72%. Supporting Information Supporting
PDF
Album
Supp Info
Letter
Published 24 Sep 2018

Synthesis of indolo[1,2-c]quinazolines from 2-alkynylaniline derivatives through Pd-catalyzed indole formation/cyclization with N,N-dimethylformamide dimethyl acetal

  • Antonio Arcadi,
  • Sandro Cacchi,
  • Giancarlo Fabrizi,
  • Francesca Ghirga,
  • Antonella Goggiamani,
  • Antonia Iazzetti and
  • Fabio Marinelli

Beilstein J. Org. Chem. 2018, 14, 2411–2417, doi:10.3762/bjoc.14.218

Graphical Abstract
  • cyclization to 3 and elimination of trifluoroacetic acid (Scheme 1). Later, a procedure that allows the introduction of a variety of substituents other than CF3 in the 6-position (without the substituent in the 12-position) was reported by Wang and co-workers [22]. More recently, we showed that the Pd
PDF
Album
Supp Info
Full Research Paper
Published 14 Sep 2018

Determining the predominant tautomeric structure of iodine-based group-transfer reagents by 17O NMR spectroscopy

  • Nico Santschi,
  • Cody Ross Pitts,
  • Benson J. Jelier and
  • René Verel

Beilstein J. Org. Chem. 2018, 14, 2289–2294, doi:10.3762/bjoc.14.203

Graphical Abstract
  • represent 4c in solution. Does the compound resemble the molecular structure obtained in the solid state with oxygen still coordinated to iodine or would a free alcohol be a more accurate representation? In order to generate 4c, reagent 4a was treated with five equivalents of trifluoroacetic acid (TFA) and
  • chemical shifts (δobs). Protonation of 4a with trifluoroacetic acid (5 equiv) affords 4c, followed by 17O NMR spectroscopy. Compilation of δiso, δobs and δcalc values. Supporting Information Supporting Information File 238: 17O NMR spectra and calculated molecular geometries. Acknowledgements This work
PDF
Album
Supp Info
Full Research Paper
Published 30 Aug 2018

A switchable [2]rotaxane with two active alkenyl groups

  • Xiu-Li Zheng,
  • Rong-Rong Tao,
  • Rui-Rui Gu,
  • Wen-Zhi Wang and
  • Da-Hui Qu

Beilstein J. Org. Chem. 2018, 14, 2074–2081, doi:10.3762/bjoc.14.181

Graphical Abstract
  • trifluoroacetic acid were added to reprotonate the -NH- moiety, the 1H NMR spectrum restored to the initial state, showing that the macrocyclic compound 9 moved back to the DBA recognition site. Therefore, the reversible shuttling movement of DB24C8 moiety along the thread between two recognition sites driven by
PDF
Album
Supp Info
Full Research Paper
Published 08 Aug 2018

A self-assembled photoresponsive gel consisting of chiral nanofibers

  • Lei Zou,
  • Dan Han,
  • Zhiyi Yuan,
  • Dongdong Chang and
  • Xiang Ma

Beilstein J. Org. Chem. 2018, 14, 1994–2001, doi:10.3762/bjoc.14.174

Graphical Abstract
  • , 28.17, 27.07, 25.09; HRMS m/z: [M + H]+ calcd for C34H36N7O4+, 606.2829; found, 606.2830. Synthesis of compound 3 Compound 2 was easily prepared according to a literature method [45]. Five mL of trifluoroacetic acid was dropped into a 25 mL CH2Cl2 solution of compound 1 (1.0 g, 1.65 mmol), then the
  • mixture was stirred at room temperature for 2 h under an Ar atmosphere. Evaporation of the resulting red solution was performed under reduced pressure, and small amounts of CH2Cl2 was frequently added to the bottle until the trifluoroacetic acid was removed entirely. The resulting yellow solid was added
PDF
Album
Supp Info
Letter
Published 01 Aug 2018

Diazirine-functionalized mannosides for photoaffinity labeling: trouble with FimH

  • Femke Beiroth,
  • Tomas Koudelka,
  • Thorsten Overath,
  • Stefan D. Knight,
  • Andreas Tholey and
  • Thisbe K. Lindhorst

Beilstein J. Org. Chem. 2018, 14, 1890–1900, doi:10.3762/bjoc.14.163

Graphical Abstract
  • the squaric acid monoester 10 employing squaric acid diester 9. The monoester 10 was reacted with N-Boc-ethylendiamine to obtain the squaric acid diamide 11. Then removal of the Boc protecting group with trifluoroacetic acid followed by peptide coupling with the diazirine 8 led to target molecule 4
  • . Subsequently, the solution was irradiated under ice cooling with a medium pressure mercury vapor lamp for 10 min. Afterwards, 50 µL double distilled water were added and 2 µL of this solution given to 20 µL of a 0.1% trifluoroacetic acid (TFA) solution, desalted with a C18 µZipTip and spotted on a MALDI-plate
  • from p-nitrophenyl α-D-mannopyranoside (1), which was first reduced to the corresponding amine 6 [26][27] by catalytic hydrogenation (Scheme 1). HATU-mediated peptide coupling with Boc-protected glycine under basic conditions led to 7. After removal of the Boc protecting group using trifluoroacetic
PDF
Album
Supp Info
Full Research Paper
Published 24 Jul 2018

Recent advances in hypervalent iodine(III)-catalyzed functionalization of alkenes

  • Xiang Li,
  • Pinhong Chen and
  • Guosheng Liu

Beilstein J. Org. Chem. 2018, 14, 1813–1825, doi:10.3762/bjoc.14.154

Graphical Abstract
  • chiral hypervalent iodine catalyst [47][48]. Additionally, mCPBA and trifluoroacetic acid were utilized as terminal oxidants and activators, respectively. This reaction provided a series of 4-oxyisochroman-1-ones, which are found in natural products and bioactive polyketide metabolites. For example, the
PDF
Album
Review
Published 18 Jul 2018

Synthesis of spirocyclic scaffolds using hypervalent iodine reagents

  • Fateh V. Singh,
  • Priyanka B. Kole,
  • Saeesh R. Mangaonkar and
  • Samata E. Shetgaonkar

Beilstein J. Org. Chem. 2018, 14, 1778–1805, doi:10.3762/bjoc.14.152

Graphical Abstract
  •  24). Additionally, trifluoroacetic acid (TFA) was used as an additive in the reaction. In 2015, Wang’s group [97] reported an iodine(III)-mediated approach for the intermolecular spirocyclization of amides 72 with sulfonylhydrazides 73 to spirolactams 75. In this method, functionalized amides 72
  • systems. In 2015, Jain and Ciufolini [124] developed PIDA-mediated spirocyclization of 2-naphtholic sulfonamides 124 to spiropyrrolidine derivatives 125. The spirocyclization reactions were carried out by treating N-sulfonamide substrates 124 with (diacetoxyiodo)benzene (15) in trifluoroacetic acid (TFA
PDF
Album
Review
Published 17 Jul 2018

β-Hydroxy sulfides and their syntheses

  • Mokgethwa B. Marakalala,
  • Edwin M. Mmutlane and
  • Henok H. Kinfe

Beilstein J. Org. Chem. 2018, 14, 1668–1692, doi:10.3762/bjoc.14.143

Graphical Abstract
  • hydrolyzes in the work-up to provide the β-hydroxy sulfide 15 as shown in Scheme 32 [68]. The protocol is a supplement to the lead(IV)-promoted addition of disulfides to alkenes in dichloromethane–trifluoroacetic acid to give, after hydrolysis, products of hydroxysulfination of simple diaryl and dialkyl
PDF
Album
Review
Published 05 Jul 2018

Design and biological characterization of novel cell-penetrating peptides preferentially targeting cell nuclei and subnuclear regions

  • Anja Gronewold,
  • Mareike Horn and
  • Ines Neundorf

Beilstein J. Org. Chem. 2018, 14, 1378–1388, doi:10.3762/bjoc.14.116

Graphical Abstract
  • (Marktredwitz, Germany). Other chemicals and consumables including 1-[bis(dimethylamino)methylene]-1H-1,2,3-triazolo[4,5-b]pyridinium 3-oxide hexafluorophosphate (HATU), N,N-diisopropylethylamine (DIPEA), acetonitrile (ACN), and trifluoroacetic acid (TFA), dimethylformamide (DMF), N-methylpyrrolidine (NMP
  • rt as described previously [20]. CF-polymers were cleaved by treatment with 20% piperidine for 45 min. The successful coupling was verified by a Kaiser test [43]. To cleave the peptides from the resin, a mixture of triisopropylsilane (TIS), H2O and concentrated trifluoroacetic acid (TFA) (1:1:38 v/v
PDF
Album
Supp Info
Full Research Paper
Published 07 Jun 2018

Novel unit B cryptophycin analogues as payloads for targeted therapy

  • Eduard Figueras,
  • Adina Borbély,
  • Mohamed Ismail,
  • Marcel Frese and
  • Norbert Sewald

Beilstein J. Org. Chem. 2018, 14, 1281–1286, doi:10.3762/bjoc.14.109

Graphical Abstract
  • modified unit B (13 or 14), affording the according linear cryptophycins 18 and 19 in acceptable yields (51–59%). Compounds 18 and 19 were treated with trifluoroacetic acid for simultaneous Boc and t-Bu removal, which also cleaved the dioxolane ring. Subsequently, macrolactamization was performed under
PDF
Album
Supp Info
Full Research Paper
Published 01 Jun 2018

A selective removal of the secondary hydroxy group from ortho-dithioacetal-substituted diarylmethanols

  • Anna Czarnecka,
  • Emilia Kowalska,
  • Agnieszka Bodzioch,
  • Joanna Skalik,
  • Marek Koprowski,
  • Krzysztof Owsianik and
  • Piotr Bałczewski

Beilstein J. Org. Chem. 2018, 14, 1229–1237, doi:10.3762/bjoc.14.105

Graphical Abstract
  • was observed instead [23]. Diarylmethanes were also obtained in the Friedel–Crafts reactions of arenes with primary benzyl alcohols, aryl acetals, and benzyl esters [1]. Benzyl fluorides (in 1,1,1,3,3,3-hexafluoroisopropanol in the presence of a catalytic amount of trifluoroacetic acid [24]) as well
PDF
Album
Supp Info
Full Research Paper
Published 29 May 2018

One hundred years of benzotropone chemistry

  • Arif Dastan,
  • Haydar Kilic and
  • Nurullah Saracoglu

Beilstein J. Org. Chem. 2018, 14, 1120–1180, doi:10.3762/bjoc.14.98

Graphical Abstract
PDF
Album
Review
Published 23 May 2018

Iodine(III)-mediated halogenations of acyclic monoterpenoids

  • Laure Peilleron,
  • Tatyana D. Grayfer,
  • Joëlle Dubois,
  • Robert H. Dodd and
  • Kevin Cariou

Beilstein J. Org. Chem. 2018, 14, 1103–1111, doi:10.3762/bjoc.14.96

Graphical Abstract
  • 3 is not so straightforward. For instance, submitting 1a to NBS in the presence of trifluoroacetic acid led to a complex mixture of products, the major one being allylic bromide 6a’. For X = I, the steric bulk would preclude the formation of the vicinal diiodide and only pathway a would thus be
PDF
Album
Supp Info
Full Research Paper
Published 18 May 2018

Selective carboxylation of reactive benzylic C–H bonds by a hypervalent iodine(III)/inorganic bromide oxidation system

  • Toshifumi Dohi,
  • Shohei Ueda,
  • Kosuke Iwasaki,
  • Yusuke Tsunoda,
  • Koji Morimoto and
  • Yasuyuki Kita

Beilstein J. Org. Chem. 2018, 14, 1087–1094, doi:10.3762/bjoc.14.94

Graphical Abstract
  • addition, it was revealed that more acidic benzoic acids were also suitable substrates for our method. However, even more acidic acids, such as trifluoroacetic acid and methanesulfonic acid, were not effectively introduced by our benzylic C–H carboxylation procedures. We believe that the reaction mechanism
PDF
Album
Supp Info
Letter
Published 16 May 2018
Graphical Abstract
  • noticeable amounts of starting material were visible by TLC. Upon completion of the reaction, methanol was evaporated under reduced pressure and the crude Ugi products, without any purification, dissolved in a CH2Cl2 and trifluoroacetic acid mixture (1:1, 2 mL) and subsequently stirred at room temperature
  • . The reaction was allowed to stir until no noticeable amounts of starting material were visible using TLC. Upon completion of the reaction, methanol was evaporated under reduced pressure and the crude Ugi products, without any purification, was dissolved in a CH2Cl2 and trifluoroacetic acid mixture (1
PDF
Album
Supp Info
Full Research Paper
Published 18 Apr 2018

Synthesis and in vitro biochemical evaluation of oxime bond-linked daunorubicin–GnRH-III conjugates developed for targeted drug delivery

  • Sabine Schuster,
  • Beáta Biri-Kovács,
  • Bálint Szeder,
  • Viktor Farkas,
  • László Buday,
  • Zsuzsanna Szabó,
  • Gábor Halmos and
  • Gábor Mező

Beilstein J. Org. Chem. 2018, 14, 756–771, doi:10.3762/bjoc.14.64

Graphical Abstract
  • -hydroxybenzotriazole hydrate (HOBt), N,N’-diisopropylcarbodiimide (DIC), triisopropylsilane (TIS), piperidine, 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU), trifluoroacetic acid (TFA), diisopropylethylamine (DIPEA), acetic anhydride (Ac2O), methanol (MeOH), n-butyric anhydride and solvent for HPLC (acetonitrile (ACN
PDF
Album
Supp Info
Full Research Paper
Published 04 Apr 2018

Diastereoselective auxiliary- and catalyst-controlled intramolecular aza-Michael reaction for the elaboration of enantioenriched 3-substituted isoindolinones. Application to the synthesis of a new pazinaclone analogue

  • Romain Sallio,
  • Stéphane Lebrun,
  • Frédéric Capet,
  • Francine Agbossou-Niedercorn,
  • Christophe Michon and
  • Eric Deniau

Beilstein J. Org. Chem. 2018, 14, 593–602, doi:10.3762/bjoc.14.46

Graphical Abstract
  • treatment with trifluoroacetic acid to provide in-situ the corresponding benzoic acids 14a–e and 15. The direct coupling of these functionalized carboxylic acids with chiral benzylic primary amines, (R) or (S)-16 (NH2-CH(Me)Ph) and (R)-17 (NH2CH(Me)p-MeO-C6H4), afforded the required parent amides 6a–d, 7a–e
  • crystallization (70% yield, >96% de). Lactam (2R,3S)-25 bearing a α-methyl-para-methoxyphenyl chiral auxiliary was then deprotected with trifluoroacetic acid at room temperature to deliver the NH-free isoindolinone (3S)-26 (76% yield, 98% ee) which is a key building block in the synthesis of benzodiazepine
PDF
Album
Supp Info
Full Research Paper
Published 09 Mar 2018

Mannich base-connected syntheses mediated by ortho-quinone methides

  • Petra Barta,
  • Ferenc Fülöp and
  • István Szatmári

Beilstein J. Org. Chem. 2018, 14, 560–575, doi:10.3762/bjoc.14.43

Graphical Abstract
  • ortho-amidoalkylation of phenols in which a tandem Knoevenagel condensation occurs through o-QM followed by the formation of an unstable oxazine intermediate [64]. Later, the same research group published a similar reaction extended by various lactams carried out in trifluoroacetic acid in water [65
PDF
Album
Review
Published 06 Mar 2018

Synthesis and stability of strongly acidic benzamide derivatives

  • Frederik Diness,
  • Niels J. Bjerrum and
  • Mikael Begtrup

Beilstein J. Org. Chem. 2018, 14, 523–530, doi:10.3762/bjoc.14.38

Graphical Abstract
  • ) or trifluoroacetic acid (3) are not readily modified, and changing substituents on these acids will heavily impact their pKa value (Figure 1). In contrast, halogenated benzoic acid derivatives are easily functionalized through cross-coupling [4][5] or nucleophilic aromatic substitution reactions
  • )benzimidamides (also termed benzamidines) have been generated, but only one report describes their syntheses [10]. The N-triflylbenzamides are stronger acids than any of the carboxylic acids, including trifluoroacetic acid (3). The N,N’-bis(triflyl)benzimidamides are very strong organic acids, much stronger than
PDF
Album
Supp Info
Full Research Paper
Published 27 Feb 2018
Other Beilstein-Institut Open Science Activities