Search results

Search for "enzymes" in Full Text gives 481 result(s) in Beilstein Journal of Organic Chemistry. Showing first 200.

4-Hydroxy-3-methyl-2(1H)-quinolone, originally discovered from a Brassicaceae plant, produced by a soil bacterium of the genus Burkholderia sp.: determination of a preferred tautomer and antioxidant activity

  • Dandan Li,
  • Naoya Oku,
  • Yukiko Shinozaki,
  • Yoichi Kurokawa and
  • Yasuhiro Igarashi

Beilstein J. Org. Chem. 2020, 16, 1489–1494, doi:10.3762/bjoc.16.124

Graphical Abstract
  • immunity [33], among which redox enzymes and antioxidants are the direct countermeasures to neutralize the toxicity of ROS [34]. Limited examples of antioxidants include catecholamine melanin from a fungus Cryptococcus neoformans [35], 1,8-dihydroxynaphthalene melanin from fungi Wangiella dermatitidis and
PDF
Album
Supp Info
Letter
Published 26 Jun 2020

Photocatalytic trifluoromethoxylation of arenes and heteroarenes in continuous-flow

  • Alexander V. Nyuchev,
  • Ting Wan,
  • Borja Cendón,
  • Carlo Sambiagio,
  • Job J. C. Struijs,
  • Michelle Ho,
  • Moisés Gulías,
  • Ying Wang and
  • Timothy Noël

Beilstein J. Org. Chem. 2020, 16, 1305–1312, doi:10.3762/bjoc.16.111

Graphical Abstract
  • (Scheme 1A). This property might be responsible for stronger binding affinities of trifluoromethoxylated compounds with the active sites in enzymes, proteins, or other biomolecules [8][9]. Several procedures for the synthesis of trifluoromethyl aryl ethers were reported from the mid-1900s, mostly based on
PDF
Album
Supp Info
Full Research Paper
Published 15 Jun 2020

Synthesis, antiinflammatory activity, and molecular docking studies of bisphosphonic esters as potential MMP-8 and MMP-9 inhibitors

  • Abimelek Cortes-Pacheco,
  • María Adelina Jiménez-Arellanes,
  • Francisco José Palacios-Can,
  • José Antonio Valcarcel-Gamiño,
  • Rodrigo Said Razo-Hernández,
  • María del Carmen Juárez-Vázquez,
  • Adolfo López-Torres and
  • Oscar Abelardo Ramírez-Marroquín

Beilstein J. Org. Chem. 2020, 16, 1277–1287, doi:10.3762/bjoc.16.108

Graphical Abstract
  • molecular docking analysis led us to propose MMP-8 and MMP-9 inhibition as the possible action mechanism of 3–6 due to the good correlation between the antiinflammatory activity of the bisphosphonic esters and the interaction energy with these enzymes (especially MMP-8). Also, a good correlation between the
  • biological effects and interaction of the compounds with the Zn2+ cofactor of these enzymes was observed. Previously reported antiinflammatory bisphosphonates 1 and 2. edema inhibition (in %, carrageenan model, 50 mg/kg) for 1: 7.0; for 2: 22.2. Designed bisphosphonic esters as antiinflammatory agents
  • the test compounds was used.a Antiinflammatory activity of 3–6 with a carrageenan oral model. Test compounds: 25 mg/kg.a Molecular properties of the compounds 3–6. MolDock Score and LE1 values (kcal/mol) for the docking experiments of the molecules 3–6 with MMP-8 and MMP-9 enzymes and the
PDF
Album
Supp Info
Full Research Paper
Published 08 Jun 2020

Fluorinated phenylalanines: synthesis and pharmaceutical applications

  • Laila F. Awad and
  • Mohammed Salah Ayoup

Beilstein J. Org. Chem. 2020, 16, 1022–1050, doi:10.3762/bjoc.16.91

Graphical Abstract
  • protein–protein and protein–ligand interactions and consequently metabolic processes [20][21]. Fluorinated phenylalanines (FPhe) have been incorporated into various proteins and enzymes [22][23][24][25] with advantageous biophysical, chemical, and biological properties, and their effect on the stability
  • and activity of peptides in therapeutic vaccines and enzymes has been studied [19][26][27][28][29][30][31][32][33]. In this review we provide an overview for the various syntheses of FPhes and analogues. Five different categories of FPhe are represented and are classified I–V according to the position
PDF
Album
Review
Published 15 May 2020

Fabclavine diversity in Xenorhabdus bacteria

  • Sebastian L. Wenski,
  • Harun Cimen,
  • Natalie Berghaus,
  • Sebastian W. Fuchs,
  • Selcuk Hazir and
  • Helge B. Bode

Beilstein J. Org. Chem. 2020, 16, 956–965, doi:10.3762/bjoc.16.84

Graphical Abstract
  • the anterior midgut of larvae [43]. Consequently, this mode of action could also be possible for fabclavines. Conclusion This study revealed a large chemical diversity for fabclavine derivatives among different Xenorhabdus strains, which is achieved by the promiscuity of single enzymes or domains
PDF
Album
Supp Info
Full Research Paper
Published 07 May 2020

Copper catalysis with redox-active ligands

  • Agnideep Das,
  • Yufeng Ren,
  • Cheriehan Hessin and
  • Marine Desage-El Murr

Beilstein J. Org. Chem. 2020, 16, 858–870, doi:10.3762/bjoc.16.77

Graphical Abstract
  • -abundant metals, such as copper, with radical ligands is originally known from biological systems such as metalloenzymes [1]. Among the myriad of existing enzymes, galactose oxidase (GAO) is a copper-based enzyme performing the two-electron oxidation of galactose through a mechanism involving the metal and
  • . Among other tasks, copper enzymes are known to be actively involved in electron transfer as exemplified by blue copper enzymes, which have captured the interest of chemists and biochemists. Copper can also cooperate with iron to perform activation of O2 and nitrogen oxides (NOx) in cytochrome c oxidases
  • could be circumvented through ligand modification. Phenol oxidation is ubiquitous in biological systems as demonstrated by the involvement of the copper enzymes tyrosinases (type III) in the melanogenesis process. The regioselectivity and reactivity of the oxidation of phenols are strongly dependent on
PDF
Album
Review
Published 24 Apr 2020

Recent advances in Cu-catalyzed C(sp3)–Si and C(sp3)–B bond formation

  • Balaram S. Takale,
  • Ruchita R. Thakore,
  • Elham Etemadi-Davan and
  • Bruce H. Lipshutz

Beilstein J. Org. Chem. 2020, 16, 691–737, doi:10.3762/bjoc.16.67

Graphical Abstract
  • boron can lead to dative bond formation with enzymes, and therefore increase binding affinity. As shown in Scheme 1, several silicon [9][10][11][12] and boron-containing [13][14][15][16] drugs have already entered the market, or are currently in the drug development pipeline. As the number of drugs
PDF
Album
Review
Published 15 Apr 2020

Design and synthesis of diazine-based panobinostat analogues for HDAC8 inhibition

  • Sivaraman Balasubramaniam,
  • Sajith Vijayan,
  • Liam V. Goldman,
  • Xavier A. May,
  • Kyra Dodson,
  • Sweta Adhikari,
  • Fatima Rivas,
  • Davita L. Watkins and
  • Shana V. Stoddard

Beilstein J. Org. Chem. 2020, 16, 628–637, doi:10.3762/bjoc.16.59

Graphical Abstract
  • involve acetylation/deacetylation of histone proteins by histone deacetylases (HDACs) [1]. HDACs belong to an important family of enzymes consisting of 18 isozymes. They control protein acetylation, which is a change that occurs after translation. In addition, they regulate gene transcription, cell
PDF
Album
Supp Info
Full Research Paper
Published 07 Apr 2020

Synthesis and herbicidal activities of aryloxyacetic acid derivatives as HPPD inhibitors

  • Man-Man Wang,
  • Hao Huang,
  • Lei Shu,
  • Jian-Min Liu,
  • Jian-Qiu Zhang,
  • Yi-Le Yan and
  • Da-Yong Zhang

Beilstein J. Org. Chem. 2020, 16, 233–247, doi:10.3762/bjoc.16.25

Graphical Abstract
  • . Keywords: aryloxyacetic acid; herbicidal activity; 4-hydroxyphenylpyruvate dioxygenase; modification; synthesis; Introduction 4-Hydroxyphenylpyruvate dioxygenase (EC 1.13.11.27, HPPD), which belongs to the family of non-heme FeII-containing enzymes, is a vital enzyme for tyrosine catabolism. This enzyme
PDF
Album
Supp Info
Full Research Paper
Published 19 Feb 2020

Reversible photoswitching of the DNA-binding properties of styrylquinolizinium derivatives through photochromic [2 + 2] cycloaddition and cycloreversion

  • Sarah Kölsch,
  • Heiko Ihmels,
  • Jochen Mattay,
  • Norbert Sewald and
  • Brian O. Patrick

Beilstein J. Org. Chem. 2020, 16, 111–124, doi:10.3762/bjoc.16.13

Graphical Abstract
  • structural changes of the nucleic acid. In turn, both of these processes interfere with biologically relevant recognition processes between DNA and enzymes, e.g., topoisomerase [10]. Therefore, many potential lead structures of chemotherapeutic anticancer drugs exhibit DNA-binding properties [1][2][3][4][5
PDF
Album
Supp Info
Full Research Paper
Published 23 Jan 2020

Understanding the role of active site residues in CotB2 catalysis using a cluster model

  • Keren Raz,
  • Ronja Driller,
  • Thomas Brück,
  • Bernhard Loll and
  • Dan T. Major

Beilstein J. Org. Chem. 2020, 16, 50–59, doi:10.3762/bjoc.16.7

Graphical Abstract
  • cascade can provide important information towards a biosynthetic strategy for cyclooctatin and the biomanufacturing of related terpene structures. Keywords: active site; CotB2 cyclase; diterpene; mechanism; quantum mechanics; Introduction Enzymes catalyze numerous complex biochemical reactions in
  • reactivity of the isolated species and provided crucial mechanistic insights, the biorelevant mechanism cannot be fully understood without taking into account the enzyme–solvent environment. A common problem when studying these enzymes is the lack of high-resolution crystal structures that are biologically
PDF
Album
Supp Info
Full Research Paper
Published 08 Jan 2020

Functionalization of the imidazo[1,2-a]pyridine ring in α-phosphonoacrylates and α-phosphonopropionates via microwave-assisted Mizoroki–Heck reaction

  • Damian Kusy,
  • Agata Wojciechowska,
  • Joanna Małolepsza and
  • Katarzyna M. Błażewska

Beilstein J. Org. Chem. 2020, 16, 15–21, doi:10.3762/bjoc.16.3

Graphical Abstract
  • composed of both, an imidazo[1,2-a]pyridine ring and the phosphoryl group. The combination of these functional groups can be found in bisphosphonates and phosphonocarboxylates [8][9][10] – inhibitors of the therapeutically important enzymes, farnesyl pyrophosphate synthase (FPPS) and Rab geranylgeranyl
PDF
Album
Supp Info
Full Research Paper
Published 03 Jan 2020

Synthesis of C-glycosyl phosphonate derivatives of 4-amino-4-deoxy-α-ʟ-arabinose

  • Lukáš Kerner and
  • Paul Kosma

Beilstein J. Org. Chem. 2020, 16, 9–14, doi:10.3762/bjoc.16.2

Graphical Abstract
  • ; lipopolysaccharide; Introduction Glycosyltransferases are important enzymes that accomplish the transfer of activated sugar phosphates onto their respective acceptor molecules [1]. In most cases, nucleotide diphosphate sugars serve as the reactive species, but lipid-linked diphosphate derivatives are equally
  • were inactive towards enzyme upstream of the biosynthetic pathway to undecaprenyl Ara4N, the peracetylated 4-azido derivative showed modest reduction of Ara4N incorporation into the lipid A part of Salmonella typhimurium [8]. We have recently set out to study the substrate specificity of ArnT enzymes
PDF
Album
Supp Info
Full Research Paper
Published 02 Jan 2020

Regioselectivity of glycosylation reactions of galactose acceptors: an experimental and theoretical study

  • Enrique A. Del Vigo,
  • Carlos A. Stortz and
  • Carla Marino

Beilstein J. Org. Chem. 2019, 15, 2982–2989, doi:10.3762/bjoc.15.294

Graphical Abstract
  • with more than one free hydroxy group allows reducing the usage of protecting groups, and thus developing simpler reaction sequences for the synthesis of oligosaccharides and glycoconjugates. A current alternative is the use of biocatalysts [4][5], although limited specific enzymes are available
PDF
Album
Supp Info
Full Research Paper
Published 19 Dec 2019

Bacterial terpene biosynthesis: challenges and opportunities for pathway engineering

  • Eric J. N. Helfrich,
  • Geng-Min Lin,
  • Christopher A. Voigt and
  • Jon Clardy

Beilstein J. Org. Chem. 2019, 15, 2889–2906, doi:10.3762/bjoc.15.283

Graphical Abstract
  • potential with molecular structure is severely restricted. The canonical terpene biosynthetic pathway uses a single enzyme to form a cyclized hydrocarbon backbone followed by modifications with a suite of tailoring enzymes that can generate dozens of different products from a single backbone. This
  • can be further modified by tailoring enzymes, but the core structure can be inferred from the organization of the biosynthetic genes and the modular architecture of the associated proteins [7][8]. Terpene biosynthesis has a very different logic. Five-carbon units called isoprenes are joined to create
  • . Biosynthetic core enzymes of well-characterized classes of natural products, such as modular thiotemplate assembly lines (NRPSs, PKSs), are usually highly specific and produce only a few closely related natural product analogs. Adenylation domains in NRPSs [26][27][28], acyltransferase (AT) domains in cis-AT
PDF
Album
Supp Info
Review
Published 29 Nov 2019

Emission and biosynthesis of volatile terpenoids from the plasmodial slime mold Physarum polycephalum

  • Xinlu Chen,
  • Tobias G. Köllner,
  • Wangdan Xiong,
  • Guo Wei and
  • Feng Chen

Beilstein J. Org. Chem. 2019, 15, 2872–2880, doi:10.3762/bjoc.15.281

Graphical Abstract
  • synthases (TPSs) are pivotal enzymes for the production of diverse terpenes, including monoterpenes, sesquiterpenes, and diterpenes. In our recent studies, dictyostelid social amoebae, also known as cellular slime molds, were found to contain TPS genes for making volatile terpenes. For comparison, here we
  • note that under our standard assay conditions, neither PpolyTPS2 nor PpolyTPS3 showed activity with either GPP or FPP. Because catalytic motifs are present in both TPSs (Figure 2), the inactivity is somehow puzzling. Some efforts are needed to discern whether they are instable enzymes, active with
PDF
Album
Supp Info
Full Research Paper
Published 28 Nov 2019

Palladium-catalyzed synthesis and nucleotide pyrophosphatase inhibition of benzo[4,5]furo[3,2-b]indoles

  • Hoang Huy Do,
  • Saif Ullah,
  • Alexander Villinger,
  • Joanna Lecka,
  • Jean Sévigny,
  • Peter Ehlers,
  • Jamshed Iqbal and
  • Peter Langer

Beilstein J. Org. Chem. 2019, 15, 2830–2839, doi:10.3762/bjoc.15.276

Graphical Abstract
  • NPP3, while compounds 5b, 5d, and 5h were more active against NPP3 than NPP1. Compounds 5j and 5i, containing aliphatic groups, were found to be much less active against both of the two enzymes. Compounds 6b and 6c with fluorinated functional groups (F-C6H4 and CF3C6H4) proved to be highly selective
  • ']diindoles 6 exhibited an even stronger activity than derivatives 5 which might be caused by their bigger heterocyclic moiety. All compounds 5 and 6 were active to inhibit enzymes h-NPP-3, which suggests that the furoindole core structure is the main pharmacophore for the inhibition against h-NPP, while
  • changes of the substitution pattern allow for a modification of the selectivity and activity of these compounds to these enzymes. Docking studies of h-ENPP1 inhibitors Molecular docking of the most potent compounds 5c and 6a (for ENPP1) and for 6e (exhibiting dual inhibition for both isozymes) were
PDF
Album
Supp Info
Full Research Paper
Published 22 Nov 2019

Diversity-oriented synthesis of spirothiazolidinediones and their biological evaluation

  • Sambasivarao Kotha,
  • Gaddamedi Sreevani,
  • Lilya U. Dzhemileva,
  • Milyausha M. Yunusbaeva,
  • Usein M. Dzhemilev and
  • Vladimir A. D’yakonov

Beilstein J. Org. Chem. 2019, 15, 2774–2781, doi:10.3762/bjoc.15.269

Graphical Abstract
  • × 105 cells per 24 well plates in RPMI with 10% FBS. MTT Assay: The MTT assay is a colorimetric assay for evaluation of cell metabolic activity. The NADPH-dependent cellular oxidoreductases present in the living cell can reflect, under certain conditions, the cell viability. These enzymes can reduce the
PDF
Album
Supp Info
Full Research Paper
Published 18 Nov 2019

A review of asymmetric synthetic organic electrochemistry and electrocatalysis: concepts, applications, recent developments and future directions

  • Munmun Ghosh,
  • Valmik S. Shinde and
  • Magnus Rueping

Beilstein J. Org. Chem. 2019, 15, 2710–2746, doi:10.3762/bjoc.15.264

Graphical Abstract
  • to the corresponding amino acid via electrochemical reduction of FAD in AOx by electron mediator ADPy. It should be noted that the authors also reported the limitation of this electrochemical method in terms of substrate selectivity of the enzymes used [44]. Electrochemical asymmetric oxidation using
  • potentiostatic electrolysis, styrene derivatives 143 could be transformed into their asymmetric epoxides 144 via direct electrochemical regeneration of FADH2. The authors claimed that this method is superior with respect to substitution of the complex native regeneration cycle, which consists of three enzymes
  • chloroperoxidase catalyst. H2O2 generated in situ from the cathodic reduction of oxygen was proposed to be responsible for the enzyme-mediated thiol ether oxidation (Scheme 47) [82]. Vitamin B12-dependent enzymes are an exciting representative in the family of chiral inductors for electroorganic chemistry. These
PDF
Album
Review
Published 13 Nov 2019

Nanangenines: drimane sesquiterpenoids as the dominant metabolite cohort of a novel Australian fungus, Aspergillus nanangensis

  • Heather J. Lacey,
  • Cameron L. M. Gilchrist,
  • Andrew Crombie,
  • John A. Kalaitzis,
  • Daniel Vuong,
  • Peter J. Rutledge,
  • Peter Turner,
  • John I. Pitt,
  • Ernest Lacey,
  • Yit-Heng Chooi and
  • Andrew M. Piggott

Beilstein J. Org. Chem. 2019, 15, 2631–2643, doi:10.3762/bjoc.15.256

Graphical Abstract
  • analyses above, a biosynthetic pathway to the nanangenines was proposed (Figure 3). Unlike the ast cluster, where there are multiple HAD-like enzymes encoded (one terpene synthase and two phosphatases), the putative nanangenine cluster only encodes one such enzyme, FE257_006542. However, given that
PDF
Album
Supp Info
Full Research Paper
Published 05 Nov 2019

A toolbox of molecular photoswitches to modulate the CXCR3 chemokine receptor with light

  • Xavier Gómez-Santacana,
  • Sabrina M. de Munnik,
  • Tamara A. M. Mocking,
  • Niels J. Hauwert,
  • Shanliang Sun,
  • Prashanna Vijayachandran,
  • Iwan J. P. de Esch,
  • Henry F. Vischer,
  • Maikel Wijtmans and
  • Rob Leurs

Beilstein J. Org. Chem. 2019, 15, 2509–2523, doi:10.3762/bjoc.15.244

Graphical Abstract
  • activity and physiological events with light. A number of protein targets have been explored with photochromic small-molecule ligands, such as ion channels, microtubules, enzymes and GPCRs (G protein-coupled receptors) [1][10]. We focus our photopharmacology research on GPCRs [3][7][11], which constitute a
PDF
Album
Supp Info
Full Research Paper
Published 23 Oct 2019

In search of visible-light photoresponsive peptide nucleic acids (PNAs) for reversible control of DNA hybridization

  • Lei Zhang,
  • Greta Linden and
  • Olalla Vázquez

Beilstein J. Org. Chem. 2019, 15, 2500–2508, doi:10.3762/bjoc.15.243

Graphical Abstract
  • switching capacities and duplex formation were analyzed. Our group has recently demonstrated that photoresponsive peptides can affect the transcription of genes via inhibition of histone-modifying enzymes [37]. Repression of enzymes is achievable at nucleic acid level too. Therefore, in this project we
PDF
Album
Supp Info
Letter
Published 22 Oct 2019

Current understanding and biotechnological application of the bacterial diterpene synthase CotB2

  • Ronja Driller,
  • Daniel Garbe,
  • Norbert Mehlmer,
  • Monika Fuchs,
  • Keren Raz,
  • Dan Thomas Major,
  • Thomas Brück and
  • Bernhard Loll

Beilstein J. Org. Chem. 2019, 15, 2355–2368, doi:10.3762/bjoc.15.228

Graphical Abstract
  • MI614-43F2 comprises four enzymes: GGDP synthase (CotB1), a diterpene cyclase (CotB2) and two P450 cytochromes (Figure 1) [31]. The cyclization of GGDP 3 to cyclooctat-9-en-7-ol (4) is performed by the TPS CotB2. Compound 4 is further decorated with two hydroxy functions introduced by two P450
  • enzymes that is widely distributed among plants, fungi and bacteria. CotB2 has evolved to convert the acyclic, achiral substrate GGDP to the 5–8–5 ring motif of cyclooctat-9-en-7-ol that contains six chiral stereocenters. Hence, CotB2 has been fine tuned to perform a highly specific regio- and
  • acyclic substrate GGDP (3) is stereospecifically cyclized by CotB2 to cyclooctat-9-en-7-ol (4), with a fusicoccane 5–8–5 fused ring system. Two cytochrome P450 enzymes, CotB3 and CotB4, subsequently functionalize cyclooctat-9-en-7-ol (4) to the bioactive compound cyclooctatin (5). The bacterial diterpene
PDF
Album
Review
Published 02 Oct 2019

Genome mining in Trichoderma viride J1-030: discovery and identification of novel sesquiterpene synthase and its products

  • Xiang Sun,
  • You-Sheng Cai,
  • Yujie Yuan,
  • Guangkai Bian,
  • Ziling Ye,
  • Zixin Deng and
  • Tiangang Liu

Beilstein J. Org. Chem. 2019, 15, 2052–2058, doi:10.3762/bjoc.15.202

Graphical Abstract
  • three types based on their amino acid sequence. Type I TPSs are metal-dependent enzymes that initiate cyclisation by the elimination of diphosphate groups from precursors and carbocation formation, and type II TPSs initiate the catalytic process by the protonation of an olefinic double bond [7]. The
  • structurally diverse (poly)cyclic core skeletons [3][12]. A set of post-modification enzymes can transform core sesquiterpene skeletons into different kinds of sesquiterpenoids with potential anticancer, cytotoxic and antibiotic functions [13]. More than 121 skeleton structures derived from the sesquiterpene
  • of 89.66% and 85.23% with the enzymes from the strain T. virens Gv29-8 [27] and T. reesei QM6a [28], respectively, with only predicted functions. Thereafter, an amino acid sequence alignment with several known terpene synthases showed that Tvi09626 had the typical highly conserved 128DDxxD/E
PDF
Album
Supp Info
Full Research Paper
Published 28 Aug 2019

Isolation and characterisation of irinans, androstane-type withanolides from Physalis peruviana L.

  • Annika Stein,
  • Dave Compera,
  • Bianka Karge,
  • Mark Brönstrup and
  • Jakob Franke

Beilstein J. Org. Chem. 2019, 15, 2003–2012, doi:10.3762/bjoc.15.196

Graphical Abstract
  • [27]. Then, the bifunctional P450c17 acts as a 17α-hydroxylase and 17,20-lyase to give rise to androstanes [27]. Related enzymes have not been reported from plants. We searched transcriptome data of P. peruviana for putative homologues of these enzymes [28]. The best hits only had amino acid sequence
  • identities of 22–28%, indicating that no P450 enzymes of these clans exist in P. peruviana. Although enzymes with similar catalytic activity might have evolved convergently in plants, the different substitution pattern in the side chain suggests that a side-chain cleavage mechanism distinct from mammals is
  • directly linked to the known withanolides 4ß-hydroxywithanolide E (1), withanolide F (5) and withanolide S [23], respectively (Figure S20, Supporting Information File 1). If the fragmentation occurred early in the biosynthesis, this would imply that several biosynthetic enzymes have to tolerate substrates
PDF
Album
Supp Info
Full Research Paper
Published 23 Aug 2019
Other Beilstein-Institut Open Science Activities