Search results

Search for "organic transformations" in Full Text gives 116 result(s) in Beilstein Journal of Organic Chemistry.

Red light excitation: illuminating photocatalysis in a new spectrum

  • Lucas Fortier,
  • Corentin Lefebvre and
  • Norbert Hoffmann

Beilstein J. Org. Chem. 2025, 21, 296–326, doi:10.3762/bjoc.21.22

Graphical Abstract
  • catalysis in recent years not only with heavy metals such as ruthenium and iridium [1][2][3][4][5], but also with lighter elements [6][7][8]. This field of light-mediated organic transformations relies on the use of a photocatalyst to promote radical reactions through electron transfer between this former
PDF
Album
Review
Published 07 Feb 2025

Recent advances in electrochemical copper catalysis for modern organic synthesis

  • Yemin Kim and
  • Won Jun Jang

Beilstein J. Org. Chem. 2025, 21, 155–178, doi:10.3762/bjoc.21.9

Graphical Abstract
  • electrochemistry and copper catalysis for various organic transformations. Keywords: copper; electrochemistry; radical chemistry; single-electron transfer; sustainable catalysis; Introduction Transition-metal-catalyzed cross-coupling has emerged as an effective method for forming carbon–carbon (C–C) and carbon
PDF
Album
Review
Published 16 Jan 2025

Advances in the use of metal-free tetrapyrrolic macrocycles as catalysts

  • Mandeep K. Chahal

Beilstein J. Org. Chem. 2024, 20, 3085–3112, doi:10.3762/bjoc.20.257

Graphical Abstract
  • recognition, and supramolecular assemblies [9][10][11][12][13]. There are numerous examples of using metalloporphyrins as artificial photosynthesis models, enzyme mimics, and catalysts for various organic transformations, where a metal center acts as an active site [14][15][16][17]. However, metal-free (or
  • macrocycles, both synthetic and found in nature, and their ability to act as organocatalysts, metal-free porphyrin macrocycles have a potential to be excellent candidates for green, cost-effective catalysts of various organic transformations including asymmetric synthesis. 2 Metal-free tetrapyrrolic
PDF
Album
Review
Published 27 Nov 2024

Recent advances in transition-metal-free arylation reactions involving hypervalent iodine salts

  • Ritu Mamgain,
  • Kokila Sakthivel and
  • Fateh V. Singh

Beilstein J. Org. Chem. 2024, 20, 2891–2920, doi:10.3762/bjoc.20.243

Graphical Abstract
  • capability to function as radical initiators. The use of diaryliodonium salts as efficient electrophilic arylating reagents in a wide range of organic transformations is due to their unique features such as solid-state nature, excellent stability, and the presence of a robust leaving group [39][40][41][42
PDF
Album
Review
Published 13 Nov 2024

A review of recent advances in electrochemical and photoelectrochemical late-stage functionalization classified by anodic oxidation, cathodic reduction, and paired electrolysis

  • Nian Li,
  • Ruzal Sitdikov,
  • Ajit Prabhakar Kale,
  • Joost Steverlynck,
  • Bo Li and
  • Magnus Rueping

Beilstein J. Org. Chem. 2024, 20, 2500–2566, doi:10.3762/bjoc.20.214

Graphical Abstract
PDF
Album
Review
Published 09 Oct 2024

Harnessing the versatility of hydrazones through electrosynthetic oxidative transformations

  • Aurélie Claraz

Beilstein J. Org. Chem. 2024, 20, 1988–2004, doi:10.3762/bjoc.20.175

Graphical Abstract
  • reaction conditions to selectively oxidize the desired compound. In some cases, the use of an electromediatior such as an iodide anion helped in achieving the desired selectivity. In line with the continuing increasing interest for both electrosynthetic organic transformations and the chemistry of
PDF
Album
Review
Published 14 Aug 2024

Generation of alkyl and acyl radicals by visible-light photoredox catalysis: direct activation of C–O bonds in organic transformations

  • Mithu Roy,
  • Bitan Sardar,
  • Itu Mallick and
  • Dipankar Srimani

Beilstein J. Org. Chem. 2024, 20, 1348–1375, doi:10.3762/bjoc.20.119

Graphical Abstract
  • facilitate important chemical reactions. Thus, we will focus on the reports detailing organic transformations that proceed via visible-light-induced deoxygenative generation of acyl radicals from carboxylic acids and acid anhydrides that have appeared since 2019. Review General mechanism of photoredox
  • catalysis In recent times, visible-light-mediated photoredox chemistry has evolved as a unique tool for various organic transformations. In contrast to traditional catalysis, the photochemical process uses an electron or energy transfer mechanism to form reactive intermediates. Typically, a photocatalyst is
  • triggered to carry out energy transfer and electron transfer or proton-coupled electron transfer when it absorbs light of an appropriate wavelength (Figure 2). These processes generate highly reactive species, such as radical cations or anions, which can initiate the desired organic transformations
PDF
Album
Review
Published 14 Jun 2024
Graphical Abstract
  • second step of this reaction, regio- and stereochemically controlled intramolecular cyclization leads to the formation of versatile nitrogen-containing tricyclic systems. However, these useful organic transformations are usually carried out in highly toxic organic solvents such as benzene, toluene
  • prediction that their resources will run out in the near future has led 'green chemists' to explore solvents that can be derived from renewable resources and used effectively in various organic transformations. In this context, we have shown for the first time that the 100% atom-economical tandem Diels–Alder
  • applications [15][16]. These oils are of increasing interest for the production of a wide range of polymeric materials [17][18][19][20][21][22][23], drug delivery systems [24][25][26][27][28][29], less toxic anticancer drugs [30][31][32][33] and intermediates suitable for various organic transformations [14
PDF
Album
Supp Info
Full Research Paper
Published 06 Jun 2024

(E,Z)-1,1,1,4,4,4-Hexafluorobut-2-enes: hydrofluoroolefins halogenation/dehydrohalogenation cascade to reach new fluorinated allene

  • Nataliia V. Kirij,
  • Andrey A. Filatov,
  • Yurii L. Yagupolskii,
  • Sheng Peng and
  • Lee Sprague

Beilstein J. Org. Chem. 2024, 20, 452–459, doi:10.3762/bjoc.20.40

Graphical Abstract
  • on an industrial scale [2]. These hydrofluoroolefins belong to the newest 4th generation of fluorocarbon refrigerants and are promising compounds and starting materials. Due to this, interest in the use of (E)- and (Z)-butenes 1a,b as synthons in various organic transformations has recently grown
PDF
Album
Supp Info
Full Research Paper
Published 27 Feb 2024

Green and sustainable approaches for the Friedel–Crafts reaction between aldehydes and indoles

  • Periklis X. Kolagkis,
  • Eirini M. Galathri and
  • Christoforos G. Kokotos

Beilstein J. Org. Chem. 2024, 20, 379–426, doi:10.3762/bjoc.20.36

Graphical Abstract
  • and viability of these synthetic protocols, organic chemists have been opting towards the use of greener catalysts and solvents in drug development. Chemists dream to perform reactions under solvent-free conditions, which provide a greener approach towards organic transformations. Nowadays, the use of
  • solvent-free reaction conditions has been introduced as a popular alternative to common organic solvents for many different organic transformations. The lack of an organic solvent can result in improved yields and reaction rates, more facile work-up processes and reduced waste, which are among the goals
  • intriguing tool in the catalysis of various organic transformations that were previously considered unfeasible [89]. In 2003, the reaction of indoles with aldehydes and ketones under XB catalysis was reported by Bandgar and his research group utilizing I2 as the catalyst and acetonitrile as the optimum
PDF
Album
Review
Published 22 Feb 2024

1-Butyl-3-methylimidazolium tetrafluoroborate as suitable solvent for BF3: the case of alkyne hydration. Chemistry vs electrochemistry

  • Marta David,
  • Elisa Galli,
  • Richard C. D. Brown,
  • Marta Feroci,
  • Fabrizio Vetica and
  • Martina Bortolami

Beilstein J. Org. Chem. 2023, 19, 1966–1981, doi:10.3762/bjoc.19.147

Graphical Abstract
  • complex organic compounds, widely used both in organic chemistry and in electrochemistry as raw materials for the preparation of different molecules of pharmaceutical and industrial interest [1][2][3][4][5][6][7][8][9]. Among the different organic transformations involving alkynes, their hydration is a
PDF
Album
Supp Info
Full Research Paper
Published 28 Dec 2023

Recent advancements in iodide/phosphine-mediated photoredox radical reactions

  • Tinglan Liu,
  • Yu Zhou,
  • Junhong Tang and
  • Chengming Wang

Beilstein J. Org. Chem. 2023, 19, 1785–1803, doi:10.3762/bjoc.19.131

Graphical Abstract
  • groundbreaking work of Shang and Fu on photocatalytic decarboxylative alkylations in 2019, a wide range of organic transformations, such as alkylation, alkenylation, cyclization, amination, iodination, and monofluoromethylation, have been progressively achieved using a combination of iodide and PPh3. In this
PDF
Album
Review
Published 22 Nov 2023

N-Sulfenylsuccinimide/phthalimide: an alternative sulfenylating reagent in organic transformations

  • Fatemeh Doraghi,
  • Seyedeh Pegah Aledavoud,
  • Mehdi Ghanbarlou,
  • Bagher Larijani and
  • Mohammad Mahdavi

Beilstein J. Org. Chem. 2023, 19, 1471–1502, doi:10.3762/bjoc.19.106

Graphical Abstract
  • article, we focus on the application of these alternative sulfenylating reagents in organic transformations. Keywords: electrophile; N-(sulfenyl)succinimides/phthalimides; organic transformations; organosulfur; sulfenylation; Introduction Sulfur-containing compounds are of high importance in organic
PDF
Album
Review
Published 27 Sep 2023

Photoredox catalysis harvesting multiple photon or electrochemical energies

  • Mattia Lepori,
  • Simon Schmid and
  • Joshua P. Barham

Beilstein J. Org. Chem. 2023, 19, 1055–1145, doi:10.3762/bjoc.19.81

Graphical Abstract
  • SET with an electron acceptor (A), leading to PC•+ and A•−. The ground state photocatalyst is then regenerated by an SET reaction with an electron donor (D), affording also D•+. Both species described can be further involved in various organic transformations to form the target products (or byproducts
  • applied cell potential. These divergent reactivity features make the two techniques totally complementary, allowing the exploration of a large portion of SET-driven organic transformations using at least one of them at a time. Since ‘radical ion’ conPET/e-PRC are proposed to involve the same radical ion
PDF
Album
Review
Published 28 Jul 2023
Graphical Abstract
  • exclusively explored to assist substitutions of aromatic C–H bonds by other bonds and this area of research is more than a century old. However, many disadvantages are associated with metal-mediated organic transformations including harsh reaction conditions (e.g., high temperature) and toxic solvents. With
PDF
Album
Review
Published 28 Jun 2023

Pyridine C(sp2)–H bond functionalization under transition-metal and rare earth metal catalysis

  • Haritha Sindhe,
  • Malladi Mounika Reddy,
  • Karthikeyan Rajkumar,
  • Akshay Kamble,
  • Amardeep Singh,
  • Anand Kumar and
  • Satyasheel Sharma

Beilstein J. Org. Chem. 2023, 19, 820–863, doi:10.3762/bjoc.19.62

Graphical Abstract
  • . Also, metal–NHC complexes have wide application in catalysis and various organic transformations and a range of metal–NHCs served as catalysts. In 2010, using NHC ligands, Yap and co-workers [90] developed a method for the direct para and meta-C–H alkenylation of pyridines with 4-octyne (107) using a
PDF
Album
Review
Published 12 Jun 2023

Sulfate radical anion-induced benzylic oxidation of N-(arylsulfonyl)benzylamines to N-arylsulfonylimines

  • Joydev K. Laha,
  • Pankaj Gupta and
  • Amitava Hazra

Beilstein J. Org. Chem. 2023, 19, 771–777, doi:10.3762/bjoc.19.57

Graphical Abstract
  • their unique stability, defined reactivity, and versatility in organic synthesis [2]. Leveraging their electron-deficient nature, N-arylsulfonylimines are widely used in organic transformations including nucleophilic addition, cycloaddition, imino-aldol reaction, ene reactions, aza-Friedel–Crafts
PDF
Album
Supp Info
Full Research Paper
Published 05 Jun 2023

Group 13 exchange and transborylation in catalysis

  • Dominic R. Willcox and
  • Stephen P. Thomas

Beilstein J. Org. Chem. 2023, 19, 325–348, doi:10.3762/bjoc.19.28

Graphical Abstract
  • and develop new catalytic processes, examples of which are the focus of this review. Keywords: catalysis; group 13 exchange; hydroboration; main group; transborylation; Introduction Group 13 compounds have found widespread use in stoichiometric organic transformations, typically in the
PDF
Album
Review
Published 21 Mar 2023

An efficient metal-free and catalyst-free C–S/C–O bond-formation strategy: synthesis of pyrazole-conjugated thioamides and amides

  • Shubham Sharma,
  • Dharmender Singh,
  • Sunit Kumar,
  • Vaishali,
  • Rahul Jamra,
  • Naveen Banyal,
  • Deepika,
  • Chandi C. Malakar and
  • Virender Singh

Beilstein J. Org. Chem. 2023, 19, 231–244, doi:10.3762/bjoc.19.22

Graphical Abstract
  • , we concluded that CH3CN and DMF were the ideal solvents for this transformation towards the effective formation of the product. As per literature reports, K2CO3 shows remarkable efficacy in various organic transformations [82]. Hence, this reaction was also examined under the influences of K2CO3 (2
PDF
Album
Supp Info
Full Research Paper
Published 02 Mar 2023

Functionalization of imidazole N-oxide: a recent discovery in organic transformations

  • Koustav Singha,
  • Imran Habib and
  • Mossaraf Hossain

Beilstein J. Org. Chem. 2022, 18, 1575–1588, doi:10.3762/bjoc.18.168

Graphical Abstract
PDF
Album
Review
Published 22 Nov 2022

Lewis acid-catalyzed Pudovik reaction–phospha-Brook rearrangement sequence to access phosphoric esters

  • Jin Yang,
  • Dang-Wei Qian and
  • Shang-Dong Yang

Beilstein J. Org. Chem. 2022, 18, 1188–1194, doi:10.3762/bjoc.18.123

Graphical Abstract
  • previously reported base-catalyzed transformations. Keywords: Lewis acid; phospha-Brook rearrangement; phosphoric esters; Pudovik reaction; Introduction Phosphoric esters are widely used in agrochemistry, biological sciences, clinical treatments, as well as in general organic transformations [1][2][3][4][5
PDF
Album
Supp Info
Letter
Published 09 Sep 2022

Electrochemical hydrogenation of enones using a proton-exchange membrane reactor: selectivity and utility

  • Koichi Mitsudo,
  • Haruka Inoue,
  • Yuta Niki,
  • Eisuke Sato and
  • Seiji Suga

Beilstein J. Org. Chem. 2022, 18, 1055–1061, doi:10.3762/bjoc.18.107

Graphical Abstract
  • environmentally benign organic transformations. Despite these advantages, the utility of PEM reactors in precise organic synthesis has long been unclear. Recently, however, Atobe and co-workers showed that PEM reactors can be used as a powerful and novel tool for precise organic synthesis [22][23][24][25][26
PDF
Album
Supp Info
Full Research Paper
Published 19 Aug 2022

Automated grindstone chemistry: a simple and facile way for PEG-assisted stoichiometry-controlled halogenation of phenols and anilines using N-halosuccinimides

  • Dharmendra Das,
  • Akhil A. Bhosle,
  • Amrita Chatterjee and
  • Mainak Banerjee

Beilstein J. Org. Chem. 2022, 18, 999–1008, doi:10.3762/bjoc.18.100

Graphical Abstract
  • of mechanochemistry, Toda et al.’s “grindstone chemistry” [48] has also been proved as a useful technique for various organic transformations [49]. It is generally carried out by hand-grinding which is not only a labor-intensive process but also raises some concerns on the reaction kinetics
PDF
Album
Supp Info
Full Research Paper
Published 09 Aug 2022

First example of organocatalysis by cathodic N-heterocyclic carbene generation and accumulation using a divided electrochemical flow cell

  • Daniele Rocco,
  • Ana A. Folgueiras-Amador,
  • Richard C. D. Brown and
  • Marta Feroci

Beilstein J. Org. Chem. 2022, 18, 979–990, doi:10.3762/bjoc.18.98

Graphical Abstract
  • cathodic reduction in a divided cell using flow electrochemistry technique, and to compare the results with the corresponding batch process. Once established, the flow electrochemistry NHC synthesis would be combined with applications as an organocatalyst in some organic transformations of cinnamaldehyde
PDF
Album
Full Research Paper
Published 05 Aug 2022

Morita–Baylis–Hillman reaction of 3-formyl-9H-pyrido[3,4-b]indoles and fluorescence studies of the products

  • Nisha Devi and
  • Virender Singh

Beilstein J. Org. Chem. 2022, 18, 926–934, doi:10.3762/bjoc.18.92

Graphical Abstract
  • reaction has gained considerable attention from the past two decades as these MBH adducts are highly functionalized and offer various points of diversity. Due to these amazing features, these MBH adducts act as starting material on which various organic transformations can be performed leading to the
PDF
Album
Supp Info
Full Research Paper
Published 26 Jul 2022
Other Beilstein-Institut Open Science Activities