Search results

Search for "radical cyclization" in Full Text gives 74 result(s) in Beilstein Journal of Organic Chemistry.

Recent total synthesis of natural products leveraging a strategy of enamide cyclization

  • Chun-Yu Mi,
  • Jia-Yuan Zhai and
  • Xiao-Ming Zhang

Beilstein J. Org. Chem. 2025, 21, 999–1009, doi:10.3762/bjoc.21.81

Graphical Abstract
  • bridge cycle [36][37]. The excellent diastereoselectivity in this radical cyclization was further rationalized by DFT calculations, which suggests an energy discrepancy of the hydrogen atom transfer process from different faces of the resulting α-hydroxyl radical. Final reduction of the ketone and amide
PDF
Album
Review
Published 22 May 2025

Formaldehyde surrogates in multicomponent reactions

  • Cecilia I. Attorresi,
  • Javier A. Ramírez and
  • Bernhard Westermann

Beilstein J. Org. Chem. 2025, 21, 564–595, doi:10.3762/bjoc.21.45

Graphical Abstract
  • salts and TEMPO as the radical initiator/oxidant couple that promoted the intramolecular radical cyclization of suitable 1,3-dicarbonyl Ugi adducts 54 and 55 (Scheme 45) [108][109]. The stabilization of the enol in the 1,3-dicarbonyl Ugi adduct allows single-electron transfer (SET) with the anion
PDF
Album
Review
Published 13 Mar 2025

Visible-light-promoted radical cyclisation of unactivated alkenes in benzimidazoles: synthesis of difluoromethyl- and aryldifluoromethyl-substituted polycyclic imidazoles

  • Yujun Pang,
  • Jinglan Yan,
  • Nawaf Al-Maharik,
  • Qian Zhang,
  • Zeguo Fang and
  • Dong Li

Beilstein J. Org. Chem. 2025, 21, 234–241, doi:10.3762/bjoc.21.15

Graphical Abstract
  • , Palestine 10.3762/bjoc.21.15 Abstract An efficient and eco-friendly approach for synthesizing difluoromethyl- and aryldifluoromethyl-substituted polycyclic imidazoles was established via a visible-light-promoted radical cyclization reaction. This method employed the readily accessible and inexpensive
  • of our ongoing interest in radical cyclization reactions [22][23][24][25][26], we report here a sustainable and efficient protocol for synthesizing difluoromethylated and aryldifluoromethylated polycyclic imidazoles via visible-light-promoted cyclization of unactivated alkene-containing imidazoles
  • intermediate D via intramolecular radical cyclization. A single-electron-transfer (SET) process then occurred between the radical B and the radical D, resulting in the generation of cationic intermediate E, difluoroacetate anion and PhI. Finally, the product 3a was obtained after the deprotonation by
PDF
Album
Supp Info
Letter
Published 30 Jan 2025

Recent advances in electrochemical copper catalysis for modern organic synthesis

  • Yemin Kim and
  • Won Jun Jang

Beilstein J. Org. Chem. 2025, 21, 155–178, doi:10.3762/bjoc.21.9

Graphical Abstract
  • reactions, particularly in controlling the high reactivity and selectivity of radical intermediates [13][14]. Early studies on copper-mediated radical reactions, such as Julia’s work on radical cyclization reaction [15], along with advancements in dimerization [16][17], oxidative cleavage [18][19], and
PDF
Album
Review
Published 16 Jan 2025

Advances in radical peroxidation with hydroperoxides

  • Oleg V. Bityukov,
  • Pavel Yu. Serdyuchenko,
  • Andrey S. Kirillov,
  • Gennady I. Nikishin,
  • Vera A. Vil’ and
  • Alexander O. Terent’ev

Beilstein J. Org. Chem. 2024, 20, 2959–3006, doi:10.3762/bjoc.20.249

Graphical Abstract
PDF
Album
Review
Published 18 Nov 2024

A review of recent advances in electrochemical and photoelectrochemical late-stage functionalization classified by anodic oxidation, cathodic reduction, and paired electrolysis

  • Nian Li,
  • Ruzal Sitdikov,
  • Ajit Prabhakar Kale,
  • Joost Steverlynck,
  • Bo Li and
  • Magnus Rueping

Beilstein J. Org. Chem. 2024, 20, 2500–2566, doi:10.3762/bjoc.20.214

Graphical Abstract
  • oxidized to [Co(III)]+ at the anode, while MeOH undergoes cathodic reduction to form MeO− and H2. The MeO− then deprotonates the carbamate, and the resulting conjugated base is oxidized by the cobalt–salen complex [Co(III)]+, generating an amide radical. This amide radical initiates radical cyclization to
PDF
Album
Review
Published 09 Oct 2024

Photoredox-catalyzed intramolecular nucleophilic amidation of alkenes with β-lactams

  • Valentina Giraldi,
  • Giandomenico Magagnano,
  • Daria Giacomini,
  • Pier Giorgio Cozzi and
  • Andrea Gualandi

Beilstein J. Org. Chem. 2024, 20, 2461–2468, doi:10.3762/bjoc.20.210

Graphical Abstract
  • variants. A) Access of clavam derivatives by intramolecular photoredox reaction of alkenes. B) Clavulanic acid and its derivatives. C) Construction of the oxacepham scaffold by radical cyclization. Tentative mechanism for the photo-cyclization reaction. Preparation of alkenyl β-lactam derivatives for the
PDF
Album
Supp Info
Full Research Paper
Published 01 Oct 2024

Efficacy of radical reactions of isocyanides with heteroatom radicals in organic synthesis

  • Akiya Ogawa and
  • Yuki Yamamoto

Beilstein J. Org. Chem. 2024, 20, 2114–2128, doi:10.3762/bjoc.20.182

Graphical Abstract
  • radical; isocyanide; radical addition; radical cyclization; Introduction Carbon monoxide is a very important C1 resource in both synthetic and industrial chemistry and is not only capable of reacting with a variety of active species such as carbon cations, carbon anions, and carbon radicals (Figure 1
  • isocyanides forms boron-substituted imidoyl radical intermediates and rapid β-scission then causes elimination of the substituents on the nitrogen (Scheme 12) [53]. Radical cyclization via formation of imidoyl radical species In the former chapter, we discussed 1,1-addition reactions of typical element
  • imidoyl radicals will be possible by introducing an unsaturated group at an appropriate position in the isocyanide molecule, since intramolecular reactions are generally 103 times faster than intermolecular reactions. This chapter discusses the intramolecular radical cyclization reactions of isocyanides
PDF
Album
Perspective
Published 26 Aug 2024

Multicomponent syntheses of pyrazoles via (3 + 2)-cyclocondensation and (3 + 2)-cycloaddition key steps

  • Ignaz Betcke,
  • Alissa C. Götzinger,
  • Maryna M. Kornet and
  • Thomas J. J. Müller

Beilstein J. Org. Chem. 2024, 20, 2024–2077, doi:10.3762/bjoc.20.178

Graphical Abstract
PDF
Album
Review
Published 16 Aug 2024

Harnessing the versatility of hydrazones through electrosynthetic oxidative transformations

  • Aurélie Claraz

Beilstein J. Org. Chem. 2024, 20, 1988–2004, doi:10.3762/bjoc.20.175

Graphical Abstract
  • point of view, the authors proposed the formation of N-pyridyl radical 18 through the anodic oxidation of in situ-generated anion 17. Subsequent radical cyclization, second anodic cyclization and deprotonation yielded the fused heterocycle 16. Similarly, Youssef and Alajimi disclosed the electrochemical
  • produced hydrazones 29. After deprotonation, the authors proposed that the carboxylate anion underwent SET anodic oxidation/decarboxylation/radical cyclization sequence to form radical intermediates 34. Subsequent second anodic oxidation and deprotonation yielded the desired heteroaromatic 5-membered rings
PDF
Album
Review
Published 14 Aug 2024

Electrochemical radical cation aza-Wacker cyclizations

  • Sota Adachi and
  • Yohei Okada

Beilstein J. Org. Chem. 2024, 20, 1900–1905, doi:10.3762/bjoc.20.165

Graphical Abstract
  • the difference in such reactivities are intramolecular cyclizations (Scheme 1). A radical cyclization generates a five-membered ring with a less-stable primary radical, while a six-membered ring with a secondary cation is obtained through ionic cyclization. When such intramolecular cyclizations are
PDF
Album
Supp Info
Letter
Published 05 Aug 2024

Generation of alkyl and acyl radicals by visible-light photoredox catalysis: direct activation of C–O bonds in organic transformations

  • Mithu Roy,
  • Bitan Sardar,
  • Itu Mallick and
  • Dipankar Srimani

Beilstein J. Org. Chem. 2024, 20, 1348–1375, doi:10.3762/bjoc.20.119

Graphical Abstract
  • organic dye Mes–Acr–MeClO4 as photocatalyst (Scheme 5). They demonstrated intermolecular radical cyclization of o-hydroxybenzoic acid derivatives with terminal alkynes to afford flavone derivatives. Here, functionally diverse flavonoids were synthesized in moderate to excellent yield by reacting various
PDF
Album
Review
Published 14 Jun 2024

Transition-metal-catalyst-free electroreductive alkene hydroarylation with aryl halides under visible-light irradiation

  • Kosuke Yamamoto,
  • Kazuhisa Arita,
  • Masami Kuriyama and
  • Osamu Onomura

Beilstein J. Org. Chem. 2024, 20, 1327–1333, doi:10.3762/bjoc.20.116

Graphical Abstract
  • by preventing overreduction [39]. While the metal-catalyst-free radical cyclization of alkene-tethered aryl halides has been well documented in the literature [40][41][42][43], the efficient intermolecular hydroarylation of alkenes still relies on the use of transition-metal catalysts, including Pd
PDF
Album
Supp Info
Letter
Published 10 Jun 2024

Photoredox catalysis harvesting multiple photon or electrochemical energies

  • Mattia Lepori,
  • Simon Schmid and
  • Joshua P. Barham

Beilstein J. Org. Chem. 2023, 19, 1055–1145, doi:10.3762/bjoc.19.81

Graphical Abstract
  • partners. The scope of the protocol was further expanded to a radical cyclization/aminocarbonylation cascade reaction yielding the bis-carbonylated α-keto amide 26h in 31% yield. 2.1.2 C(sp3)–X activation: The generation of alkyl radicals using alkyl halides as precursors proves very challenging due their
PDF
Album
Review
Published 28 Jul 2023

Photoredox catalysis enabling decarboxylative radical cyclization of γ,γ-dimethylallyltryptophan (DMAT) derivatives: formal synthesis of 6,7-secoagroclavine

  • Alessio Regni,
  • Francesca Bartoccini and
  • Giovanni Piersanti

Beilstein J. Org. Chem. 2023, 19, 918–927, doi:10.3762/bjoc.19.70

Graphical Abstract
  • common synthetic route to ergot alkaloids, providing an advantageous synthetic method for this class of natural products. Further studies on the utility of the decarboxylative radical cyclization and their applications are currently being investigated in our laboratory. (a) Transformations of DMAT to
PDF
Album
Supp Info
Full Research Paper
Published 26 Jun 2023

Synthesis of medium and large phostams, phostones, and phostines

  • Jiaxi Xu

Beilstein J. Org. Chem. 2023, 19, 687–699, doi:10.3762/bjoc.19.50

Graphical Abstract
  • refluxing acetonitrile for 6 h. It underwent a radical cyclization in refluxing benzene for 20 h to give rise to a nine-membered phostone thieno[2,3-d]pyrimidine-fused 2-hydroxy-1,2-oxaphosphonane 2-oxide 46 as a potential inhibitor after the deprotection of the benzyl group in the presence of DABCO in
PDF
Album
Review
Published 15 May 2023

Strategies to access the [5-8] bicyclic core encountered in the sesquiterpene, diterpene and sesterterpene series

  • Cécile Alleman,
  • Charlène Gadais,
  • Laurent Legentil and
  • François-Hugues Porée

Beilstein J. Org. Chem. 2023, 19, 245–281, doi:10.3762/bjoc.19.23

Graphical Abstract
  • construction of the 8-membered ring from an appropriate cyclopentane precursor. The proposed strategies include metathesis, Nozaki–Hiyama–Kishi (NHK) cyclization, Pd-mediated cyclization, radical cyclization, Pauson–Khand reaction, Lewis acid-promoted cyclization, rearrangement, cycloaddition and biocatalysis
  • precursor. The proposed strategies include metathesis, Nozaki–Hiyama–Kishi (NHK) cyclization, Pd-mediated cyclization, radical cyclization (including SmI2), Pauson–Khand reaction, Lewis acid-promoted cyclization, rearrangement, cycloaddition, and biocatalysis. In particular, the purpose will focus on the
  • by a vinyl ketone (compound 135) or a butenolide (compound 137) moiety dramatically influenced the outcome of the reaction and no cycloadduct was observed in both cases (Scheme 27). 4 Radical cyclization (including SmI2) Introduced by Kagan more than four decades ago, samarium diiodide (SmI2) has
PDF
Album
Review
Published 03 Mar 2023

Combining the best of both worlds: radical-based divergent total synthesis

  • Kyriaki Gennaiou,
  • Antonios Kelesidis,
  • Maria Kourgiantaki and
  • Alexandros L. Zografos

Beilstein J. Org. Chem. 2023, 19, 1–26, doi:10.3762/bjoc.19.1

Graphical Abstract
  • polyene 14 (prepared in two steps) in multigram quantities [23]. The reaction employed a divided cell with substoichiometric amounts of magnesium(II) acetate (0.5 equiv) and catalytic copper(II) 3,5-diisopropylsalicylate (0.02 equiv) to allow the redox radical cyclization of polyene in 42% yield. A Tsuji
  • and the aromatic moieties present in these natural products and provided the common synthetic intermediate 70 (Scheme 6). The diverse tetracycles were accessed either via an intramolecular radical cyclization of the reduced congener 73 or through a Heck reaction of intermediate 71. Reaction of 73 with
  • cyclization (using Bu3SnH and AIBN) [46], led to the construction of the key bicyclo[3.2.1]octene carbocyclic core of jungermatrobrunin, which was further elaborated to 87 in up to 61% yield, after alkene cleavage by OsO4 and NaIO4. The described reductive radical cyclization can be scaled up to 2 g without
PDF
Album
Review
Published 02 Jan 2023

Total synthesis of grayanane natural products

  • Nicolas Fay,
  • Rémi Blieck,
  • Cyrille Kouklovsky and
  • Aurélien de la Torre

Beilstein J. Org. Chem. 2022, 18, 1707–1719, doi:10.3762/bjoc.18.181

Graphical Abstract
  • , obtaining excellent selectivity in all cases. Alternatively, the same year, the authors published a vinyl radical cyclization occurring in presence of n-Bu3SnH, providing a stereoselective access to the bicyclo[3.2.1]octane unit corresponding to the CD rings [25]. Newhouse’s synthesis of principinol D In
  • [3.2.1]octane 67 was achieved by a radical cyclization using n-Bu3SnH in refluxing toluene. A sequence involving an ester reduction, Ley–Griffith oxidation and Seyferth–Gilbert homologation with Bestmann–Ohira reagent allowed to obtain the alkynyl bicylo[3.2.1]octane 69. On the other hand, the five
  • radical cyclization of an alkynyl ketone as the key step. The synthesis started by a Cu-catalyzed conjugate addition of the vinyl Grignard reagent, followed by TMS α-propargylation under basic conditions, affording the TMS-alkynyl ketone 76 as the major diastereomer (Scheme 11). Originally a Au-catalyzed
PDF
Album
Review
Published 12 Dec 2022

Polymer and small molecule mechanochemistry: closer than ever

  • José G. Hernández

Beilstein J. Org. Chem. 2022, 18, 1225–1235, doi:10.3762/bjoc.18.128

Graphical Abstract
  • a collision between the ball and a particle of a chitin sample and (b) mechanical treatment of a particle of a lignin sample in a ring-and-puck mill. (a) Ultrasound-induced ATRP using piezoelectric BaTiO3 and (b) mechanochemical atom transfer radical cyclization (ATRC) using BaTiO3 by ball milling
PDF
Album
Perspective
Published 14 Sep 2022

Synthesis of piperidine and pyrrolidine derivatives by electroreductive cyclization of imine with terminal dihaloalkanes in a flow microreactor

  • Yuki Naito,
  • Naoki Shida and
  • Mahito Atobe

Beilstein J. Org. Chem. 2022, 18, 350–359, doi:10.3762/bjoc.18.39

Graphical Abstract
  • ]. Conventional synthetic methods for piperidine derivatives include nucleophilic substitution (route (1) in Scheme 1), reductive amination (route (2)), intramolecular cyclization of amines and alkenes (route (3)), the Diels–Alder reaction and subsequent reduction (route (4)), and the radical cyclization reaction
PDF
Album
Supp Info
Full Research Paper
Published 29 Mar 2022

Iron-catalyzed domino coupling reactions of π-systems

  • Austin Pounder and
  • William Tam

Beilstein J. Org. Chem. 2021, 17, 2848–2893, doi:10.3762/bjoc.17.196

Graphical Abstract
  • [56][57][58]. The authors investigated the effect of alkenyl substitution on the reaction to better understand mechanistic details. On inspection of the results, it is clear the radical cyclization pathway precedes the cross-coupling pathway. Moreover, no dehalogenation or β-hydride elimination
  • ]. The group expanded the reaction to include 1,6-dienes 24 leading to 25 via the formation of three C–C bonds through a radical cyclization/arylation cascade, like that reported by Kang et al. (Scheme 3). The authors hypothesized the alkyl halide could react with aryl iron species 27 to form the alkyl
  • , including kinetic isotope effects and radical trapping, suggested a radical mechanism. The hydroperoxide, in the presence of an iron catalyst, abstracts the hydrogen atom alpha to the heteroatom. The alkyl radical may attack the acrylamide; subsequent intramolecular radical cyclization with the aryl ring
PDF
Album
Review
Published 07 Dec 2021

Synthesis of highly substituted fluorenones via metal-free TBHP-promoted oxidative cyclization of 2-(aminomethyl)biphenyls. Application to the total synthesis of nobilone

  • Ilya A. P. Jourjine,
  • Lukas Zeisel,
  • Jürgen Krauß and
  • Franz Bracher

Beilstein J. Org. Chem. 2021, 17, 2668–2679, doi:10.3762/bjoc.17.181

Graphical Abstract
  • gives only a low cyclization yield (Table 1, entry 12). It is unclear, if water is directly involved with this mechanism, but studies indicate that water may lower the activation barrier for the radical cyclization owing to its solvent effect, as has been previously reported for the radical synthesis of
  • , TBHP-mediated radical cyclization is applicable to a wide variety of primary and secondary benzylamines bearing electron-donating and electron-withdrawing groups to synthesize fluorenones in poor to good yields, and utilized this method for the first total synthesis of the fluorenone natural product
PDF
Album
Supp Info
Correction
Full Research Paper
Published 02 Nov 2021

Recent advances in the syntheses of anthracene derivatives

  • Giovanni S. Baviera and
  • Paulo M. Donate

Beilstein J. Org. Chem. 2021, 17, 2028–2050, doi:10.3762/bjoc.17.131

Graphical Abstract
  • sequential modifications [30], photocyclization of divinylterphenyl derivatives [31], tandem radical cyclization of (Z,Z)-1,4-bis(2-iodostyryl)benzene derivatives [32], and ring-closing olefin metathesis of tetravinylterphenyls [33] as the best-known synthetic routes. Herein, we have classified the synthetic
PDF
Album
Review
Published 10 Aug 2021

Free-radical cyclization approach to polyheterocycles containing pyrrole and pyridine rings

  • Ivan P. Mosiagin,
  • Olesya A. Tomashenko,
  • Dar’ya V. Spiridonova,
  • Mikhail S. Novikov,
  • Sergey P. Tunik and
  • Alexander F. Khlebnikov

Beilstein J. Org. Chem. 2021, 17, 1490–1498, doi:10.3762/bjoc.17.105

Graphical Abstract
  • skeletons that are inaccessible via Pd-catalyzed cyclization. Keywords: arylation; pyridine; pyrrole; radical cyclization; tris(trimethylsilyl)silane; Introduction Polycyclic heteroaromatic molecules, which have a tunable electronic structure and excellent self-assembling properties, are highly desirable
  • , attempts to assemble this framework using Pd-catalyzed intramolecular arylation of compounds C' (X = Br, I) failed [17]. In this work, we report an effective method for the assembly of pyrido[2,1-a]pyrrolo[3,4-c]isoquinoline and related frameworks via a free radical cyclization of pyrrolylpyridinium salts
  • . Results and Discussion Although the intramolecular free-radical cyclization is widely used for the synthesis of heteroaromatic compounds [23][24][25][26], only a few examples of the successful use of radical cyclization for the synthesis of pyrrole-containing fused heteroaromatics are known in the
PDF
Album
Supp Info
Full Research Paper
Published 23 Jun 2021
Other Beilstein-Institut Open Science Activities