Search for "selective fluorination" in Full Text gives 25 result(s) in Beilstein Journal of Organic Chemistry.
Beilstein J. Org. Chem. 2024, 20, 2280–2304, doi:10.3762/bjoc.20.196
Graphical Abstract
Figure 1: Schematic depiction of available data sources for predictive modelling, each with its advantages an...
Figure 2: Schematic depiction of different kinds of molecular representations for fluoronitroethane. Among th...
Figure 3: Depiction of the energy diagram of a generic enantioselective reaction. In the centre, catalyst and...
Figure 4: Hammett parameters are derived from the equilibrium constant of substituted benzoic acids (example ...
Figure 5: Selected examples of popular descriptors applied to model organocatalytic reactions. Descriptors en...
Figure 6: Example bromocyclization reaction from Toste and co-workers using a DABCOnium catalyst system and C...
Figure 7: Example from Neel et al. using a chiral ion pair catalyst for the selective fluorination of allylic...
Figure 8: Data set created by Denmark and co-workers for the CPA-catalysed thiol addition to N-acylimines [67]. T...
Figure 9: Selected examples of ML developments that used the dataset from Denmark and co-workers [67]. (A) Varnek...
Figure 10: Study from Reid and Sigman developing statistical models for CPA-catalysed nucleophilic addition re...
Figure 11: Selected examples of studies where mechanistic transferability was exploited to model multiple reac...
Figure 12: Generality approach by Denmark and co-workers [132] for the iodination of arylpyridines. From the releva...
Figure 13: Betinol et al. [133] clustered the relevant chemical space and then evaluated the average ee for every c...
Figure 14: Corminboeuf and co-workers [134] chose a representative subset of the reaction space (indicated by dark ...
Figure 15: Example for data-driven modelling to improve substrate and catalyst design. (A) C–N coupling cataly...
Figure 16: Example for utilising a genetic algorithm for catalyst design. (A) Morita–Baylis–Hillman reaction s...
Figure 17: Organocatalysed synthesis of spirooxindole analogues by Kondo et al. [171] (A) Reaction scheme of dienon...
Figure 18: Schematic depiction of required developments in order to overcome current limitations of ML for org...
Beilstein J. Org. Chem. 2024, 20, 1572–1579, doi:10.3762/bjoc.20.140
Graphical Abstract
Figure 1: a) Pseudoequatorial and pseudoaxial conformations of pyrrolidine. b) Cis- and trans-isomers of 3-fl...
Figure 2: Flat representations of 2,3-, 3,4-, and 2,4-difluoropyrrolidines. The potential effects resulting f...
Figure 3: MAE comparing the geometry parameters (bond length, bond angle, and dihedral angle) obtained from D...
Figure 4: Exhaustive illustration of all conformational, configurational, and constitutional isomers of diflu...
Figure 5: Stable difluorinated pyrrolidines derived from gas-phase calculations performed at the B3LYP-D3BJ/6...
Figure 6: σCH→σ*CF fluorine gauche interaction, which also occurred in 19, and anomeric interaction in isomer ...
Beilstein J. Org. Chem. 2024, 20, 1527–1547, doi:10.3762/bjoc.20.137
Graphical Abstract
Figure 1: A) Benzylic fluorides in bioactive compounds, with B) the relative BDEs of different benzylic C–H b...
Figure 2: Base-mediated benzylic fluorination with Selectfluor.
Figure 3: Sonochemical base-mediated benzylic fluorination with Selectfluor.
Figure 4: Mono- and difluorination of nitrogen-containing heteroaromatic benzylic substrates.
Figure 5: Palladium-catalysed benzylic C–H fluorination with N-fluoro-2,4,6-trimethylpyridinium tetrafluorobo...
Figure 6: Palladium-catalysed, PIP-directed benzylic C(sp3)–H fluorination of α-amino acids and proposed mech...
Figure 7: Palladium-catalysed monodentate-directed benzylic C(sp3)–H fluorination of α-amino acids.
Figure 8: Palladium-catalysed bidentate-directed benzylic C(sp3)–H fluorination.
Figure 9: Palladium-catalysed benzylic fluorination using a transient directing group approach. Ratio refers ...
Figure 10: Outline for benzylic C(sp3)–H fluorination via radical intermediates.
Figure 11: Iron(II)-catalysed radical benzylic C(sp3)–H fluorination using Selectfluor.
Figure 12: Silver and amino acid-mediated benzylic fluorination.
Figure 13: Copper-catalysed radical benzylic C(sp3)–H fluorination using NFSI.
Figure 14: Copper-catalysed C(sp3)–H fluorination of benzylic substrates with electrochemical catalyst regener...
Figure 15: Iron-catalysed intramolecular fluorine-atom-transfer from N–F amides.
Figure 16: Vanadium-catalysed benzylic fluorination with Selectfluor.
Figure 17: NDHPI-catalysed radical benzylic C(sp3)–H fluorination with Selectfluor.
Figure 18: Potassium persulfate-mediated radical benzylic C(sp3)–H fluorination with Selectfluor.
Figure 19: Benzylic fluorination using triethylborane as a radical chain initiator.
Figure 20: Heterobenzylic C(sp3)–H radical fluorination with Selectfluor.
Figure 21: Benzylic fluorination of phenylacetic acids via a charge-transfer complex. NMR yields in parenthese...
Figure 22: Oxidative radical photochemical benzylic C(sp3)–H strategies.
Figure 23: 9-Fluorenone-catalysed photochemical radical benzylic fluorination with Selectfluor.
Figure 24: Xanthone-photocatalysed radical benzylic fluorination with Selectfluor II.
Figure 25: 1,2,4,5-Tetracyanobenzene-photocatalysed radical benzylic fluorination with Selectfluor.
Figure 26: Xanthone-catalysed benzylic fluorination in continuous flow.
Figure 27: Photochemical phenylalanine fluorination in peptides.
Figure 28: Decatungstate-photocatalyzed versus AIBN-initiated selective benzylic fluorination.
Figure 29: Benzylic fluorination using organic dye Acr+-Mes and Selectfluor.
Figure 30: Palladium-catalysed benzylic C(sp3)–H fluorination with nucleophilic fluoride.
Figure 31: Manganese-catalysed benzylic C(sp3)–H fluorination with AgF and Et3N·3HF and proposed mechanism. 19...
Figure 32: Iridium-catalysed photocatalytic benzylic C(sp3)–H fluorination with nucleophilic fluoride and N-ac...
Figure 33: Iridium-catalysed photocatalytic benzylic C(sp3)–H fluorination with TBPB HAT reagent.
Figure 34: Silver-catalysed, amide-promoted benzylic fluorination via a radical-polar crossover pathway.
Figure 35: General mechanism for oxidative electrochemical benzylic C(sp3)–H fluorination.
Figure 36: Electrochemical benzylic C(sp3)–H fluorination with HF·amine reagents.
Figure 37: Electrochemical benzylic C(sp3)–H fluorination with 1-ethyl-3-methylimidazolium trifluoromethanesul...
Figure 38: Electrochemical benzylic C(sp3)–H fluorination of phenylacetic acid esters with HF·amine reagents.
Figure 39: Electrochemical benzylic C(sp3)–H fluorination of triphenylmethane with PEG and CsF.
Figure 40: Electrochemical benzylic C(sp3)–H fluorination with caesium fluoride and fluorinated alcohol HFIP.
Figure 41: Electrochemical secondary and tertiary benzylic C(sp3)–H fluorination. GF = graphite felt. DCE = 1,...
Figure 42: Electrochemical primary benzylic C(sp3)–H fluorination of electron-poor toluene derivatives. Ring f...
Figure 43: Electrochemical primary benzylic C(sp3)–H fluorination utilizing pulsed current electrolysis.
Beilstein J. Org. Chem. 2022, 18, 872–880, doi:10.3762/bjoc.18.88
Graphical Abstract
Scheme 1: Electrochemical gem-difluorination of sulfides bearing α-electron-withdrawing groups.
Scheme 2: Electrochemical gem-difluorodesulfurization of dithioacetals.
Scheme 3: Electrochemical gem-difluorodesulfurization of dithiocarbonate.
Scheme 4: Cathodic reduction of 1.
Figure 1: Cyclic voltammograms of (a) PhSCF2Br (1, 8 mM) in 0.1 M n-Bu4NClO4/MeCN; (b) o-phthalonitrile (4 mM...
Scheme 5: Indirect cathodic reduction of 1 using o-phthalonitrile as mediator.
Scheme 6: Mechanism for the formation of product 3.
Scheme 7: Reaction of compound 1 with PhS anions.
Scheme 8: Cathodic reduction of compound 1 in the presence of α-methylstyrene at a high current density.
Scheme 9: Indirect cathodic reduction of compound 1 in CD3CN.
Scheme 10: Indirect cathodic reduction of compound 1 in the presence of 1,1-diphenylethylene.
Scheme 11: Reaction mechanism.
Beilstein J. Org. Chem. 2021, 17, 1733–1751, doi:10.3762/bjoc.17.122
Graphical Abstract
Scheme 1: Mn-catalyzed late-stage fluorination of sclareolide (1) and complex steroid 3.
Figure 1: Proposed reaction mechanism of C–H fluorination by a manganese porphyrin catalyst.
Scheme 2: Late-stage radiofluorination of biologically active complex molecules.
Figure 2: Proposed mechanism of C–H radiofluorination.
Scheme 3: Late-stage C–H azidation of bioactive molecules. a1.5 mol % of Mn(TMP)Cl (5) was used. bMethyl acet...
Figure 3: Proposed reaction mechanism of manganese-catalyzed C–H azidation.
Scheme 4: Mn-catalyzed late-stage C–H azidation of bioactive molecules via electrophotocatalysis. a2.5 mol % ...
Figure 4: Proposed reaction mechanism of electrophotocatalytic azidation.
Scheme 5: Manganaelectro-catalyzed late-stage azidation of bioactive molecules.
Figure 5: Proposed reaction pathway of manganaelectro-catalyzed late-stage C–H azidation.
Scheme 6: Mn-catalyzed late-stage amination of bioactive molecules. a3 Å MS were used. Protonation with HBF4⋅...
Figure 6: Proposed mechanism of manganese-catalyzed C–H amination.
Scheme 7: Mn-catalyzed C–H methylation of heterocyclic scaffolds commonly found in small-molecule drugs. aDAS...
Scheme 8: Examples of late-stage C–H methylation of bioactive molecules. aDAST activation. bFor insoluble sub...
Scheme 9: A) Mn-catalyzed late-stage C–H alkynylation of peptides. B) Intramolecular late-stage alkynylative ...
Figure 7: Proposed reaction mechanism of Mn(I)-catalyzed C–H alkynylation.
Scheme 10: Late-stage Mn-catalyzed C–H allylation of peptides and bioactive motifs.
Scheme 11: Intramolecular C–H allylative cyclic peptide formation.
Scheme 12: Late-stage C–H glycosylation of tryptophan analogues.
Scheme 13: Late-stage C–H glycosylation of tryptophan-containing peptides.
Scheme 14: Late-stage C–H alkenylation of tryptophan-containing peptides.
Scheme 15: A) Late-stage C–H macrocyclization of tryptophan-containing peptides and B) traceless removal of py...
Beilstein J. Org. Chem. 2020, 16, 2151–2192, doi:10.3762/bjoc.16.183
Graphical Abstract
Figure 1: Fluorine-containing drugs.
Figure 2: Fluorinated agrochemicals.
Scheme 1: Selectivity of fluorination reactions.
Scheme 2: Different mechanisms of photocatalytic activation. Sub = substrate.
Figure 3: Jablonski diagram showing visible-light-induced energy transfer pathways: a) absorption, b) IC, c) ...
Figure 4: Schematic illustration of TTET.
Figure 5: Organic triplet PSCats.
Figure 6: Additional organic triplet PSCats.
Figure 7: A) Further organic triplet PSCats and B) transition metal triplet PSCats.
Figure 8: Different fluorination reagents grouped by generation.
Scheme 3: Synthesis of Selectfluor®.
Scheme 4: General mechanism of PS TTET C(sp3)–H fluorination.
Scheme 5: Selective benzylic mono- and difluorination using 9-fluorenone and xanthone PSCats, respectively.
Scheme 6: Chen’s photosensitized monofluorination: reaction scope.
Scheme 7: Chen’s photosensitized benzylic difluorination reaction scope.
Scheme 8: Photosensitized monofluorination of ethylbenzene on a gram scale.
Scheme 9: Substrate scope of Tan’s AQN-photosensitized C(sp3)–H fluorination.
Scheme 10: AQN-photosensitized C–H fluorination reaction on a gram scale.
Scheme 11: Reaction mechanism of the AQN-assisted fluorination.
Figure 9: 3D structures of the singlet ground and triplet excited states of Selectfluor®.
Scheme 12: Associated transitions for the activation of acetophenone by violet light.
Scheme 13: Ethylbenzene C–H fluorination with various PSCats and conditions.
Scheme 14: Effect of different PSCats on the C(sp3)–H fluorination of cyclohexane (39).
Scheme 15: Reaction scope of Chen’s acetophenone-photosensitized C(sp3)–H fluorination reaction.
Figure 10: a) Site-selectivity of Chen’s acetophenone-photosensitized C–H fluorination reaction [201]. b) Site-sele...
Scheme 16: Formation of the AQN–Selectfluor® exciplex Int1.
Scheme 17: Generation of the C3 2° pentane radical and the Selectfluor® N-radical cation from the exciplex.
Scheme 18: Hydrogen atom abstraction by the Selectfluor® N-radical cation from pentane to give the C3 2° penta...
Scheme 19: Fluorine atom transfer from Selectfluor® to the C3 2° pentane radical to yield 3-fluoropentane and ...
Scheme 20: Barrierless fluorine atom transfer from Int1 to the C3 2° pentane radical to yield 3-fluoropentane,...
Scheme 21: Ketone-directed C(sp3)–H fluorination.
Scheme 22: Ketone-directed fluorination through a 5- and a 6-membered transition state, respectively.
Scheme 23: Effect of different PSCats on the photosensitized C(sp3)–H fluorination of 47.
Scheme 24: Substrate scope of benzil-photoassisted C(sp3)–H fluorinations.
Scheme 25: A) Benzil-photoassisted enone-directed C(sp3)–H fluorination. B) Classification of the reaction mod...
Scheme 26: A) Xanthone-photoassisted ketal-directed C(sp3)–H fluorination. B) Substrate scope. C) C–H fluorina...
Scheme 27: Rationale for the selective HAT at the C2 C–H bond of galactose acetonide.
Scheme 28: Photosensitized C(sp3)–H benzylic fluorination of a peptide using different PSCats.
Scheme 29: Peptide scope of 5-benzosuberenone-photoassisted C(sp3)–H fluorinations.
Scheme 30: Continuous flow PS TTET monofluorination of 72.
Scheme 31: Photosensitized C–H fluorination of N-butylphthalimide as a PSX.
Scheme 32: Substrate scope and limitations of the PSX C(sp3)–H monofluorination.
Scheme 33: Substrate crossover monofluorination experiment.
Scheme 34: PS TTET mechanism proposed by Hamashima and co-workers.
Scheme 35: Photosensitized TFM of 78 to afford α-trifluoromethylated ketone 80.
Scheme 36: Substrate scope for photosensitized styrene TFM to give α-trifluoromethylated ketones.
Scheme 37: Control reactions for photosensitized TFM of styrenes.
Scheme 38: Reaction mechanism for photosensitized TFM of styrenes to afford α-trifluoromethylated ketones.
Scheme 39: Reaction conditions for TFMs to yield the cis- and the trans-product, respectively.
Scheme 40: Substrate scope of trifluoromethylated (E)-styrenes.
Scheme 41: Strategies toward trifluoromethylated (Z)-styrenes.
Scheme 42: Substrate scope of trifluoromethylated (Z)-styrenes.
Scheme 43: Reaction mechanism for photosensitized TFM of styrenes to afford E- or Z-products.
Beilstein J. Org. Chem. 2020, 16, 1411–1417, doi:10.3762/bjoc.16.117
Graphical Abstract
Scheme 1: Selective fluorination of isoxazoles and one-pot synthesis of 4-fluoroisoxazoles.
Scheme 2: One-pot reaction for the synthesis of 3,5-disubstituted 4-fluoroisoxazoles 3. aIsolated yield. bIso...
Figure 1: UV–vis and fluorescence (FL) spectra of compounds 3b and 3c.
Scheme 3: Synthesis of BKIs 6 either from 1,3-diketones 1 or from isoxazoles 2.
Scheme 4: Synthesis of enaminoketones 5 and 8 and their conversion to BKIs (yields refer to isolated yields; a...
Scheme 5: Attempted selective fluorination of BKI 6b.
Scheme 6: Ring-opening reaction of 4-fluoroisoxazoles 3 and their conversion into F-BKIs 9 (yields refer to i...
Figure 2: Photochemical properties comparisons of BKIs and F-BKIs. (a–c) BKI 6b: photograph (a), UV–vis (b), ...
Beilstein J. Org. Chem. 2019, 15, 2990–2999, doi:10.3762/bjoc.15.295
Graphical Abstract
Figure 1: Representative structures of bacterial glycans containing sialic acid.
Scheme 1: Concise synthesis of 2,7-anhydrosialic acid derivatives 2–6. Conditions for the preparation of 2 an...
Figure 2: a) ORTEP diagram of compound 4. Thermal ellipsoids indicate 50% probability. b) HMBC spectrum of 6.
Scheme 2: N- and C-1-functionalization of 2.
Scheme 3: Mechanism of the SnCl4-catalyzed acetolysis of 2,7-anhydro derivatives 15. R = Me, Bn, PG = electro...
Scheme 4: Synthesis and acetolysis of 2,7-anhydro derivatives 21 and 25.
Figure 3: HMBC spectrum of carbohydrate 22.
Scheme 5: Attempted acetolysis of 2,7-anhydro-NeuN3-based disaccharides 29, 33, and 37.
Beilstein J. Org. Chem. 2019, 15, 2213–2270, doi:10.3762/bjoc.15.218
Graphical Abstract
Scheme 1: The main three strategies of fluorination: nucleophilic, electrophilic and radical fluorination.
Scheme 2: Doyle’s Pd-catalyzed fluorination of allylic chlorides.
Scheme 3: Allylic fluorination of 2- and 3-substituted propenyl esters.
Scheme 4: Regioselective allylic fluorination of cinnamyl phosphorothioate esters.
Scheme 5: Palladium-catalyzed aliphatic C–H fluorination reported by Doyle.
Scheme 6: Pd-catalyzed enantioselective fluorination of α-ketoesters followed by stereoselective reduction to...
Scheme 7: Pd-catalyzed C(sp3)–H fluorination of oxindoles.
Scheme 8: C–H fluorination of 8-methylquinoline derivatives with F− reagents.
Scheme 9: Fluorination of α-cyano acetates reported by van Leeuwen.
Scheme 10: The catalytic enantioselective electrophilic C–H fluorination of α-chloro-β-keto phosphonates.
Scheme 11: Fluorination of unactivated C(sp3)–H bonds directed by the bidentate PIP auxiliary.
Scheme 12: Fluorination of C(sp3)–H bonds at the β-position of carboxylic acids.
Scheme 13: Enantioselective benzylic C–H fluorination with a chiral transient directing group.
Scheme 14: Microwave-heated Pd-catalyzed fluorination of aryl alcohols.
Scheme 15: Fluorination of aryl potassium trifluoroborates.
Scheme 16: C(sp2)–F bond formation using precatalyst [L·Pd]2(cod).
Scheme 17: Pd-catalyzed fluorination of (hetero)aryl triflates and bromides.
Scheme 18: The Pd-catalyzed C–H fluorination of arenes with Selectfluor/NFSI.
Scheme 19: Pd(II)-catalyzed ortho-monofluorination protocol for benzoic acids.
Scheme 20: Pd-catalyzed C(sp2)–H bond fluorination of 2-arylbenzothiazoles.
Scheme 21: Nitrate-promoted fluorination of aromatic and olefinic C(sp2)–H bonds and proposed mechanism.
Scheme 22: Fluorination of oxalyl amide-protected benzylamine derivatives.
Scheme 23: C–H fluorination of benzaldehydes with orthanilic acids as transient directing group.
Scheme 24: Pd(II)-catalyzed aryl C–H fluorination with various directing groups.
Scheme 25: Cu-catalyzed aliphatic, allylic, and benzylic fluorination.
Scheme 26: Cu-catalyzed SN2 fluorination of primary and secondary alkyl bromides.
Scheme 27: Copper-catalyzed fluorination of alkyl triflates.
Scheme 28: Cu-catalyzed fluorination of allylic bromides and chlorides.
Scheme 29: Synthetic strategy for the fluorination of active methylene compounds.
Scheme 30: Fluorination of β-ketoesters using a tartrate-derived bidentate bisoxazoline-Cu(II) complex.
Scheme 31: Highly enantioselective fluorination of β-ketoesters and N-Boc-oxindoles.
Scheme 32: Amide group-assisted site-selective fluorination of α-bromocarbonyl compounds.
Scheme 33: Cu-mediated aryl fluorination reported by Sanford [77].
Scheme 34: Mono- or difluorination reactions of benzoic acid derivatives.
Scheme 35: Cu-catalyzed fluorination of diaryliodonium salts with KF.
Scheme 36: Copper(I)-catalyzed cross-coupling of 2-pyridylaryl bromides.
Scheme 37: AgNO3-catalyzed decarboxylative fluorination of aliphatic carboxylic acids.
Scheme 38: The Mn-catalyzed aliphatic and benzylic C–H fluorination.
Scheme 39: Iron(II)-promoted C–H fluorination of benzylic substrates.
Scheme 40: Ag-catalyzed fluorodecarboxylation of carboxylic acids.
Scheme 41: Vanadium-catalyzed C(sp3)–H fluorination.
Scheme 42: AgNO3-catalyzed radical deboronofluorination of alkylboronates and boronic acids.
Scheme 43: Selective heterobenzylic C–H fluorination with Selectfluor reported by Van Humbeck.
Scheme 44: Fe(II)-catalyzed site-selective fluorination guided by an alkoxyl radical.
Scheme 45: Fluorination of allylic trichloroacetimidates reported by Nguyen et al.
Scheme 46: Iridium-catalyzed fluorination of allylic carbonates with TBAF(t-BuOH)4.
Scheme 47: Iridium-catalyzed asymmetric fluorination of allylic trichloroacetimidates.
Scheme 48: Cobalt-catalyzed α-fluorination of β-ketoesters.
Scheme 49: Nickel-catalyzed α-fluorination of various α-chloro-β-ketoesters.
Scheme 50: Ni(II)-catalyzed enantioselective fluorination of oxindoles and β-ketoesters.
Scheme 51: Scandium(III)-catalyzed asymmetric C–H fluorination of unprotected 3-substituted oxindoles.
Scheme 52: Iron-catalyzed directed C–H fluorination.
Scheme 53: Electrophilic silver-catalyzed Ar–F bond-forming reaction from arylstannanes.
Figure 1: Nucleophilic, electrophilic and radical CF3 sources.
Scheme 54: Cu(I)-catalyzed allylic trifluoromethylation of unactivated terminal olefins.
Scheme 55: Direct copper-catalyzed trifluoromethylation of allylsilanes.
Scheme 56: Cupper-catalyzed enantioselective trifluoromethylation of five and six-membered ring β-ketoesters.
Scheme 57: Cu-catalyzed highly stereoselective trifluoromethylation of secondary propargyl sulfonates.
Scheme 58: Remote C(sp3)–H trifluoromethylation of carboxamides and sulfonamides.
Scheme 59: Trifluoromethylation of allylsilanes with photoredox catalysis.
Scheme 60: Ag-catalyzed decarboxylative trifluoromethylation of aliphatic carboxylic acids in aqueous CH3CN.
Scheme 61: Decarboxylative trifluoromethylation of aliphatic carboxylic acids via combined photoredox and copp...
Scheme 62: Palladium-catalyzed Ar–CF3 bond-forming reaction.
Scheme 63: Palladium-catalyzed trifluoromethylation of arenes with diverse heterocyclic directing groups.
Scheme 64: Pd-catalyzed trifluoromethylation of indoles as reported by Liu.
Scheme 65: Pd-catalyzed trifluoromethylation of vinyl triflates and vinyl nonaflates.
Scheme 66: Pd(II)-catalyzed ortho-trifluoromethylation of aromatic C–H bonds.
Scheme 67: Visible-light-induced Pd(OAc)2-catalyzed ortho-trifluoromethylation of acetanilides with CF3SO2Na.
Scheme 68: CuI-catalyzed trifluoromethylation of aryl- and alkenylboronic acids.
Scheme 69: Cu-catalyzed trifluoromethylation of aryl- and vinylboronic acids.
Scheme 70: Copper-catalyzed trifluoromethylation of α,β-unsaturated carboxylic acids.
Scheme 71: Formation of C(sp2)–CF3 bond catalyzed by copper(I) complex.
Scheme 72: Loh’s Cu(I)-catalyzed trifluoromethylation of enamides and electron-deficient alkenes.
Scheme 73: Copper and iron-catalyzed decarboxylative tri- and difluoromethylation.
Scheme 74: Cu-catalyzed trifluoromethylation of hydrazones developed by Bouyssi.
Scheme 75: Cu(I)-catalyzed trifluoromethylation of terminal alkenes.
Scheme 76: Cu/Ag-catalyzed decarboxylative trifluoromethylation of cinnamic acids.
Scheme 77: Copper-catalyzed direct alkenyl C–H trifluoromethylation.
Scheme 78: Copper(I/II)-catalyzed direct trifluoromethylation of styrene derivatives.
Scheme 79: Regioselective trifluoromethylation of pivalamido arenes and heteroarenes.
Scheme 80: Synthesis of trifluoromethylquinones in the presence of copper(I).
Scheme 81: Oxidative trifluoromethylation of imidazoheterocycles in ionic liquid/water.
Scheme 82: A mild and fast continuous-flow trifluoromethylation of coumarins using a CuI/CF3SO2Na/TBHP system.
Scheme 83: Copper-catalyzed oxidative trifluoromethylation of various 8-aminoquinolines.
Scheme 84: PA-directed copper-catalyzed trifluoromethylation of anilines.
Scheme 85: Trifluoromethylation of potassium vinyltrifluoroborates catalyzed by Fe(II).
Scheme 86: Alkenyl trifluoromethylation catalyzed by Ru(phen)3Cl2 as photocatalyst.
Scheme 87: Ru-catalyzed trifluoromethylation of alkenes by Akita’s group.
Scheme 88: Ir-catalyzed Cvinyl–CF3 bond formation of α,β-unsaturated carboxylic acids.
Scheme 89: Ag(I)-catalyzed denitrative trifluoromethylation of β-nitrostyrenes.
Scheme 90: Photocatalyzed direct trifluoromethylation of aryl and heteroaryl C–H bonds.
Scheme 91: Rhenium (MTO)-catalyzed direct trifluoromethylation of aromatic substrates.
Scheme 92: Trifluoromethylation of unprotected anilines under [Ir(ppy)3] catalyst.
Scheme 93: Oxidative trifluoromethylation of imidazopyridines and imidazoheterocycles.
Scheme 94: Ruthenium-catalyzed trifluoromethylation of (hetero)arenes with trifluoroacetic anhydride.
Scheme 95: Phosphovanadomolybdic acid-catalyzed direct C–H trifluoromethylation.
Scheme 96: Picolinamide-assisted ortho-trifluoromethylation of arylamines.
Scheme 97: A nickel-catalyzed C–H trifluoromethylation of free anilines.
Scheme 98: Cu-mediated trifluoromethylation of terminal alkynes reported by Qing.
Scheme 99: Huang’s C(sp)–H trifluoromethylation using Togni’s reagent.
Scheme 100: Cu-catalyzed methods for trifluoromethylation with Umemoto’s reagent.
Scheme 101: The synthesis of alkynyl-CF3 compounds in the presence of fac-[Ir(ppy)3] under visible-light irradi...
Scheme 102: Pd-catalyzed Heck reaction reported by Reutrakul.
Scheme 103: Difluoromethylation of enamides and ene-carbamates.
Scheme 104: Difluoromethylation of α,β-unsaturated carboxylic acids.
Scheme 105: Copper-catalyzed direct C(sp2)–H difluoroacetylation reported by Pannecoucke and co-workers.
Scheme 106: Difluoroalkylation of aldehyde-derived hydrazones with functionalized difluoromethyl bromides.
Scheme 107: Photoredox-catalyzed C–H difluoroalkylation of aldehyde-derived hydrazones.
Scheme 108: Synergistic ruthenium(II)-catalyzed C–H difluoromethylation reported by Ackermann.
Scheme 109: Visible-light photocatalytic decarboxylation of α,β-unsaturated carboxylic acids.
Scheme 110: Synthesis of difluorinated ketones via S-alkyl dithiocarbamates obtained from acyl chlorides and po...
Scheme 111: Synthesis of aryl and heteroaryl difluoromethylated phosphonates.
Scheme 112: Difluoroalkylation of secondary propargyl sulfonates using Cu as the catalyst.
Scheme 113: Ru(II)-mediated para-selective difluoromethylation of anilides and their derivatives.
Scheme 114: Bulky diamine ligand promoted cross-coupling of difluoroalkyl bromides.
Scheme 115: Copper-catalyzed C3–H difluoroacetylation of quinoxalinones.
Scheme 116: Copper(I) chloride-catalyzed trifluoromethylthiolation of enamines, indoles and β-ketoesters.
Scheme 117: Copper-boxmi-catalyzed asymmetric trifluoromethylthiolation of β-ketoesters.
Scheme 118: Direct Cu-catalyzed trifluoromethylthiolation of boronic acids and alkynes.
Scheme 119: Cu-catalyzed synthesis of α-trifluoromethylthio-substituted ketones.
Scheme 120: Trifluoromethylthiolation reactions promoted by diazotriflone and copper.
Scheme 121: Halide activation of N-(trifluoromethylthio)phthalimide.
Scheme 122: The visible light-promoted trifluoromethylthiolation reported by Glorius.
Scheme 123: Synthesis of α-trifluoromethylthioesters via Goossen’s approach.
Scheme 124: Photoinduced trifluoromethylthiolation of diazonium salts.
Scheme 125: Ag-mediated trifluoromethoxylation of aryl stannanes and arylboronic acids.
Scheme 126: Catalytic (hetero)aryl C–H trifluoromethoxylation under visible light.
Scheme 127: Photoinduced C–H-bond trifluromethoxylation of (hetero)arenes.
Beilstein J. Org. Chem. 2018, 14, 2035–2064, doi:10.3762/bjoc.14.179
Graphical Abstract
Figure 1: Depiction of the energy levels of a typical organic molecule and the photophysical processes it can...
Figure 2: General catalytic cycle of a photocatalyst in a photoredox organocatalysed reaction. [cat] – photoc...
Figure 3: Structures and names of the most common photocatalysts encountered in the reviewed literature.
Figure 4: General example of a reductive quenching catalytic cycle. [cat] – photocatalyst, [cat]* – photocata...
Figure 5: General example of an oxidative quenching catalytic cycle. [cat] – photocatalyst, [cat]* – photocat...
Scheme 1: Oxidative coupling of aldehydes and amines to amides using acridinium salt photocatalysis.
Figure 6: Biologically active molecules containing a benzamide linkage.
Scheme 2: The photocatalytic reduction of amino acids to produce the corresponding free or protected amines.
Scheme 3: The organocatalysed photoredox base-mediated oxidation of thiols to disulfides.
Scheme 4: C-Terminal modification of peptides and proteins using organophotoredox catalysis.
Scheme 5: The reduction and aryl coupling of aryl halides using a doubly excited photocatalyst (PDI).
Figure 7: Mechanism for the coupling of aryl halides using PDI, which is excited sequentially by two photons.
Scheme 6: The arylation of five-membered heteroarenes using arenediazonium salts under organophotoredox condi...
Scheme 7: The C–H (hetero)arylation of five-membered heterocycles under Eosin Y photocatalysis.
Scheme 8: The C–H sulfurisation of imidazoheterocycles using Eosin B-catalyzed photochemical methods.
Scheme 9: The introduction of the thiocyanate group using Eosin Y photocatalysis.
Scheme 10: Sulfonamidation of pyrroles using oxygen as the terminal oxidant.
Scheme 11: DDQ-catalysed C–H amination of arenes and heteroarenes.
Scheme 12: Photoredox-promoted radical Michael addition reactions of allylic or benzylic carbons.
Figure 8: Proposed mechanistic rationale for the observed chemoselectivities.
Scheme 13: The photocatalytic manipulation of C–H bonds adjacent to amine groups.
Scheme 14: The perylene-catalysed organophotoredox tandem difluoromethylation–acetamidation of styrene-type al...
Figure 9: Examples of biologically active molecules containing highly functionalised five membered heterocycl...
Scheme 15: The [3 + 2]-cycloaddition leading to the formation of pyrroles, through the reaction of 2H-azirines...
Figure 10: Proposed intermediate that determines the regioselectivity of the reaction.
Figure 11: Comparison of possible pathways of reaction and various intermediates involved.
Scheme 16: The acridinium salt-catalysed formation of oxazoles from aldehydes and 2H-azirines.
Scheme 17: The synthesis of oxazolines and thiazolines from amides and thioamides using organocatalysed photor...
Figure 12: Biologically active molecules on the market containing 1,3,4-oxadiazole moieties.
Scheme 18: The synthesis of 1,3,4-oxadiazoles from aldehyde semicarbazones using Eosin Y organophotocatalysis.
Scheme 19: The dimerization of primary thioamides to 1,2,4-thiadiazoles catalysed by the presence of Eosin Y a...
Scheme 20: The radical cycloaddition of o-methylthioarenediazonium salts and substituted alkynes towards the f...
Scheme 21: The dehydrogenative cascade reaction for the synthesis of 5,6-benzofused heterocyclic systems.
Figure 13: Trifluoromethylated version of compounds which have known biological activities.
Scheme 22: Eosin Y-catalysed photoredox formation of 3-substituted benzimidazoles.
Scheme 23: Oxidation of dihydropyrimidines by atmospheric oxygen using photoredox catalysis.
Scheme 24: Photoredox-organocatalysed transformation of 2-substituted phenolic imines to benzoxazoles.
Scheme 25: Visible light-driven oxidative annulation of arylamidines.
Scheme 26: Methylene blue-photocatalysed direct C–H trifluoromethylation of heterocycles.
Scheme 27: Photoredox hydrotrifluoromethylation of terminal alkenes and alkynes.
Scheme 28: Trifluoromethylation and perfluoroalkylation of aromatics and heteroaromatics.
Scheme 29: The cooperative asymmetric and photoredox catalysis towards the functionalisation of α-amino sp3 C–...
Scheme 30: Organophotoredox-catalysed direct C–H amidation of aromatics.
Scheme 31: Direct C–H alkylation of heterocycles using BF3K salts. CFL – compact fluorescent lamp.
Figure 14: The modification of camptothecin, demonstrating the use of the Molander protocol in LSF.
Scheme 32: Direct C–H amination of aromatics using acridinium salts.
Scheme 33: Photoredox-catalysed nucleophilic aromatic substitution of nucleophiles onto methoxybenzene derivat...
Scheme 34: The direct C–H cyanation of aromatics with a focus on its use for LSF.
Beilstein J. Org. Chem. 2018, 14, 389–396, doi:10.3762/bjoc.14.27
Graphical Abstract
Figure 1: Cyclic voltammograms of 0.1 M Bu4NBF4/MeCN with a Pt disk working electrode in the absence (brown l...
Figure 2: Calculated HOMO diagram of 1a.
Figure 3: Calculated HOMO diagrams of 1h, 1i and 1j.
Scheme 1: Plausible reaction paths of the anodic oxidation of 1i in Et4NF·4HF/CH2Cl2.
Scheme 2: Anodic fluorination of 1k.
Scheme 3: Anodic fluorination of cyclic derivative 1l.
Scheme 4: Anodic oxidation of 1m and 1n in Et4NF·4HF/CH2Cl2.
Scheme 5: General reaction mechanism for the anodic fluorination of 1.
Scheme 6: Reaction mechanism for the anodic oxidation of carboxylic acids 1m and 1n in the presence of a fluo...
Beilstein J. Org. Chem. 2017, 13, 2364–2371, doi:10.3762/bjoc.13.233
Graphical Abstract
Scheme 1: Fluorination of diol derivative (±)-1.
Scheme 2: Fluorination of diol derivative (±)-4.
Figure 1: X-ray structure of fluorohydrine derivative (±)-5.
Scheme 3: Fluorination of diol derivative (±)-6.
Scheme 4: Fluorination of cyclohexane-derived diol (±)-8.
Scheme 5: Proposed route for the formation of compounds (±)-10 and (±)-11.
Scheme 6: Fluorination of diol derivative (±)-12.
Scheme 7: Fluorination of diol derivative (±)-14.
Scheme 8: Proposed route for the formation of compounds (±)-15, (±)-16 and (±)-17.
Scheme 9: Fluorination of N-Cbz-protected diol derivative (±)-18.
Scheme 10: Fluorination of diol derivative (±)-20.
Scheme 11: Fluorination of meso diol derivative 24.
Beilstein J. Org. Chem. 2016, 12, 2823–2827, doi:10.3762/bjoc.12.281
Graphical Abstract
Figure 1: Selected fluorinated polar alicyclic scaffolds.
Scheme 1: Retrosynthetic plan to the preparation of 1,1,3,3-tetrafluorocyclohexane structures.
Scheme 2: Preparation of starting materials 5c and 6a–c.
Scheme 3: Deoxofluorination of diketones 5. Reagents and conditions: a) DAST, DCM, rt, overnight, 4a (traces)...
Scheme 4: Fluorodesulfurisation of bis-dithianes 6. Reagents and conditions: a) NIS, HF·Py, DCM, −78 °C to rt...
Figure 2: X-ray structure of compound 4c. The image shows two molecules stacked with the non-fluorine face po...
Figure 3: 1H NMR spectra of 4c. A) shows the spectrum in [2H8]-toluene, and B) shows the spectrum in chlorofo...
Figure 4: Electrostatic potential map for 4c calculated at the B3LYP/6-311G(d,p) level for an optimised struc...
Beilstein J. Org. Chem. 2015, 11, 2661–2670, doi:10.3762/bjoc.11.286
Graphical Abstract
Scheme 1: Trifluoromethylation using trifluoroacetate.
Scheme 2: Decarboxylative pentafluoroethylation and its application.
Scheme 3: Trifluoromethyation with trifluoroacetate in a flow system.
Scheme 4: Trifluoromethylation of 4-bromotoluene by [(NHC)Cu(TFA)].
Scheme 5: Trifluoromethylation of aryl iodides with small amounts of Cu and Ag2O. aThe yield was determined b...
Scheme 6: C–H trifluoromethylation of arenes using trifluoroacetic acid.
Scheme 7: CF3Cu generated from chlorofluoroacetate and CuI.
Scheme 8: [18F]Trifluoromethyation with difluorocarbenes for PET. aRadiochemical yield determined by HPLC.
Scheme 9: Trifluoromethylation with trifluoroacetate and copper iodide.
Scheme 10: Preparation of trifluoromethylcopper from trifluoromethyl ketone.
Scheme 11: Trifluoromethylation of aryl iodides. aIsolated yield. b1 equivalent each of CF3Cu reagent and 1,10...
Scheme 12: Pentafluoroethylation of aryl bromides. aYield was determined by 19F NMR analysis using benzotriflu...
Scheme 13: Perfluoroalkylation reactions of arylboronic acids. aIsolated yield. bDMF was used instead of tolue...
Scheme 14: Trifluoromethylation with silylated hemiaminal of fluoral.
Scheme 15: Catalytic trifluoromethylation with a fluoral derivative.
Scheme 16: The scope of Cu-catalyzed aromatic trifluoromethylation. The yield was determined by 19F NMR analys...
Scheme 17: Plausible mechanism of Cu-catalyzed aromatic trifluoromethylation [53].
Beilstein J. Org. Chem. 2015, 11, 2132–2144, doi:10.3762/bjoc.11.230
Graphical Abstract
Scheme 1: Copper-catalyzed C–H bond halogenation of 2-arylpyridine.
Scheme 2: ortho-Chlorination of 2-arylpridines with acyl chlorides.
Scheme 3: Copper-catalyzed chlorination of 2-arylpyridines using LiCl.
Scheme 4: Copper-catalyzed C–H halogenation of 2-arylpyridines using LiX.
Scheme 5: Copper-mediated selective C–H halogenations of 2-arylpyridine.
Scheme 6: Copper-catalyzed C–H o-halogenation using removable DG.
Scheme 7: Copper-catalyzed C–H halogenations using PIP as DG.
Scheme 8: Copper-catalyzed quinoline C–H chlorination.
Scheme 9: Copper-catalyzed arene C–H fluorination of benzamides.
Scheme 10: Copper-catalyzed arene C–H iodination of 1,3-azoles.
Scheme 11: Copper-catalyzed C–H halogenations of phenols.
Scheme 12: Proposed mechanism for the C–H halogenation of phenols.
Scheme 13: Copper-catalyzed halogenation of electron enriched arenes.
Scheme 14: Copper-catalyzed C–H bromination of arenes.
Scheme 15: CuI-mediated synthesis of iododibenzo[b,d]furans via C–H functionalization.
Scheme 16: Cu-Mn spinel oxide-catalyzed phenol and heteroarene halogenation.
Scheme 17: Copper-catalyzed halogenations of 2-amino-1,3thiazoles.
Scheme 18: Copper-mediated chlorination and bromination of indolizines.
Scheme 19: Copper-catalyzed three-component synthesis of bromoindolizines.
Scheme 20: Copper-mediated C–H halogenation of azacalix[1]arene[3]pyridines.
Scheme 21: Copper-mediated cascade synthesis of halogenated pyrrolones.
Scheme 22: Copper-mediated alkene C–H chlorination in spirothienooxindole.
Scheme 23: Copper-catalyzed remote C–H chlorination of alkyl hydroperoxides.
Scheme 24: Copper-catalyzed C–H fluorination of alkanes.
Scheme 25: Copper-catalyzed or mediated C–H halogenations of active C(sp3)-bonds.
Beilstein J. Org. Chem. 2015, 11, 85–91, doi:10.3762/bjoc.11.12
Graphical Abstract
Scheme 1: Anodic fluorination of sulfides having an electron-withdrawing group.
Scheme 2: Anodic fluorination of dithioacetals.
Figure 1: Dependency of fluorinated product selectivity on a series of fluoride salts (a) Et3N·nHF (n = 3–5) ...
Scheme 3: Plausible reaction mechanism for anodic fluorination of 1b, 1d, and 1f.
Scheme 4: Mechanism for suppression of the elimination of HF (deprotonation) and preferable desulfurization o...
Beilstein J. Org. Chem. 2014, 10, 1213–1219, doi:10.3762/bjoc.10.119
Graphical Abstract
Scheme 1: SNAr reaction of 2-fluoronitrobenzene (2a) with diethyl 2-fluoromalonate (1).
Figure 1: Molecular structure of 3.
Scheme 2: Synthesis of benzyl fluoride derivative 5.
Figure 2: Molecular structure of methyl ester 6a.
Scheme 3: Synthesis of pyridyl fluoride 7.
Figure 3: Molecular structure of 7.
Beilstein J. Org. Chem. 2013, 9, 2793–2802, doi:10.3762/bjoc.9.314
Graphical Abstract
Scheme 1: Direct fluorination using microreactor systems.
Scheme 2: Use of DAST in continuous-flow reactors.
Scheme 3: Flow microreactor synthesis of fluorinated epoxides.
Scheme 4: Highly controlled isomerization of gem-difluoroalkenes.
Scheme 5: Flow system for catalytic aromatic fluorination.
Scheme 6: Continuous-flow reactor for electrophilic aromatic fluorination.
Scheme 7: Examples of [18F]-radiolabeled molecular imaging probes.
Scheme 8: Flow microreactor synthesis of dipeptides.
Scheme 9: Flow synthesis involving SNAr reactions.
Scheme 10: Flow synthesis of fluoroquinolone antibiotics.
Scheme 11: Highly controlled formation of PFPMgBr.
Scheme 12: Selective flow synthesis of photochromic diarylethenes.
Scheme 13: Flow microreactor system for perfluoroalkylation by generation of perfluoroalkyllithiums in the pre...
Scheme 14: Integrated flow microreactor system for perfluoroalkylation by generation of perfluoroalkyllithiums...
Beilstein J. Org. Chem. 2013, 9, 2696–2708, doi:10.3762/bjoc.9.306
Graphical Abstract
Figure 1: Fluorination alters the reactivity of aziridines.
Scheme 1: Fluorination makes β-lactam derivatives more reactive towards lipase-catalysed methanolysis.
Figure 2: The ring pucker in azetidine derivatives can be influenced by a C–F…N+ charge–dipole interaction.
Figure 3: Fluorination ridifies the pyrrolidine rings of ligand 10, with several consequences for its G-quadr...
Figure 4: Proline 11 readily undergoes a ring-flip process, but (4R)-fluoroproline 12 is more rigid because o...
Scheme 2: Hyperconjugation rigidifies the ring pucker of a fluorinated organocatalyst 14, leading to higher e...
Figure 5: Fluorinated piperidines prefer the axial conformation, due to stabilising C–F…N+ interactions.
Figure 6: Fluorination can rigidify a substituted azepane, but only if it acts in synergy with the other subs...
Figure 7: The eight-membered N-heterocycle 24 prefers an axial orientation of the fluorine substituent, givin...
Figure 8: Some iminosugars are “privileged structures” that serve as valuable drug leads.
Figure 9: Fluorinated iminosugar analogues 32–34 illuminate the binding interactions of the α-glycosidase inh...
Figure 10: Fluorinated miglitol analogues, and their inhibitory activity towards yeast α-glycosidase.
Figure 11: Analogues of isofagomine (31) have different pKaH values, and therefore exhibit maximal β-glucosida...
Scheme 3: General strategy for the synthesis of fluorinated N-heterocycles via deoxyfluorination.
Figure 12: Late stage deoxyfluorination in the synthesis of multifunctional N-heterocycles.
Scheme 4: During the deoxyfluorination of N-heterocycles, neighbouring group participation can sometimes lead...
Scheme 5: A building block approach for the synthesis of fluorinated aziridines 2 and 3.
Scheme 6: Building block approach for the synthesis of a difluorinated analogue of calystegine B (63).
Scheme 7: Synthesis of fluorinated analogues of brevianamide E (65) and gypsetin (68) via electrophilic fluor...
Scheme 8: Organocatalysed enantioselective fluorocyclisation.
Scheme 9: Synthesis of 3-fluoroazetidine 73 via radical fluorination.
Scheme 10: Synthesis of 3,3-difluoropyrrolidine 78 via a radical cyclisation.
Scheme 11: Chemoenzymatic synthesis of fluorinated β-lactam 4b.
Beilstein J. Org. Chem. 2013, 9, 2660–2668, doi:10.3762/bjoc.9.301
Graphical Abstract
Scheme 1: Key steps from the synthesis of 6-fluoro-D-olivose (6) from D-glucose (1).
Scheme 2: De novo asymmetric syntheses of 6-deoxy-6-fluorohexoses [13].
Scheme 3: Fluorobutenoate building block 14, and related species 16 and 19 from the literature [14-16].
Scheme 4: Fluorobutenoate building blocks 25 and 26 prepared from crotonic acid.
Figure 1: Side product 27 isolated from attempted fluorination.
Figure 2: The ligand panel used in the asymmetric dihydroxylation studies. The bold oxygen shows the point of...
Scheme 5: Typical AD procedure; see Table 1 for outcomes.
Scheme 6: Conversion of enantiomerically-enriched diols to dibenzoates for HPLC analysis.
Figure 3: Diisopropyl L-tartrate (30) used as a chiral modifier for NMR determination of ee.
Figure 4: Partial 19F{1H} NMR spectra (376 MHz, L-(+)-DIPT/CDCl3, 300 K) spectra of (a) racemate 28c, (b) dio...
Figure 5: Partial 19F{1H} NMR (400 MHz, L-(+)-DIPT/CDCl3, 300 K) spectra of 28b and 28a using optimised condi...
Scheme 7: Applying cyclic sulfate methodology to gain access to anti-diastereoisomers (transformations were d...
Scheme 8: Protecting and chain extending the educts of asymmetric dihydroxylation.
Beilstein J. Org. Chem. 2010, 6, No. 62, doi:10.3762/bjoc.6.62
Graphical Abstract
Figure 1: Vicinal difluoride containing building blocks.
Scheme 1: Synthesis of meso-2,3-difluoro-1,4-butanediol.
Scheme 2: Monoprotection of 3, and activation of the remaining alcohol.
Scheme 3: Reaction of 12 leading to defluorinated products.
Figure 2: Molecular overlay of both conformers of 7.
Figure 3: Crystal packing of 7 viewed along the b axis. Short contacts (see text) are shown in light blue.
Figure 4: Crystal structure of 3.
Figure 5: Crystal packing of 3 viewed along the c axis. H-bonds are shown in light blue.
Beilstein J. Org. Chem. 2010, 6, No. 38, doi:10.3762/bjoc.6.38
Graphical Abstract
Figure 1: Conformational effects associated with C–F bonds.
Figure 2: HIV protease inhibitor Indinavir (17) and fluorinated analogues 18 and 19. In analogue 18 the gauche...
Figure 3: Cholesteryl ester transfer protein inhibitors 20 and 21. In the fluorinated analogue 21, nO→σ*CF hy...
Figure 4: HIV reverse transcriptase inhibitor 22 and acid-stable fluorinated analogues 23–25. The F–C–C–O gau...
Figure 5: Dihydroquinidine (26) and fluorinated analogues 27 and 28. Newman projections along the C9–C8 bonds...
Figure 6: The neurotransmitter GABA (29) and fluorinated analogues (R)-30 and (S)-30. Newman projections of (R...
Figure 7: The insect pheromone 31 and fluorinated analogues (S)-32 and (R)-32. The proposed bioactive conform...
Figure 8: Capsaicin (33) and fluorinated analogues (R)-34 and (S)-34.
Figure 9: Asymmetric epoxidation reaction catalysed by pyrrolidine 35. Inset: the geometry of the activated i...
Figure 10: The asymmetric transannular aldol reaction catalysed by trans-4-fluoroproline (41), and its applica...
Figure 11: The asymmetric Stetter reaction catalysed by chiral NHC catalysts 49–52. The ring conformations of ...
Figure 12: A multi-vicinal fluoroalkane.
Figure 13: X-ray crystal structures of diastereoisomeric multi-vicinal fluoroalkanes 55 and 56. The different ...
Figure 14: Examples of fluorinated liquid crystal molecules. Arrows indicate the orientation of the molecular ...
Figure 15: Di-, tri- and tetra-fluoro liquid crystal molecules 60–62.
Figure 16: Collagen mimics of general formula (Pro-Yaa-Gly)10 where Yaa is either 4(R)-hydroxyproline (63) or ...
Figure 17: Enkephalin-related peptide 64 and the fluorinated analogue 65. The electron-withdrawing trifluorome...
Figure 18: The C–F bond influences the conformation of β-peptides. β-Heptapeptide 66 adopts a helical conforma...
Figure 19: The conformations of pseudopeptides 69 and 70 are influenced by the α-fluoroamide effect and the fl...
Beilstein J. Org. Chem. 2009, 5, No. 61, doi:10.3762/bjoc.5.61
Graphical Abstract
Scheme 1: Previous six step route to the vicinal all-syn-trifluoro motif.
Scheme 2: Novel three step successive fluorination strategy from α,β-epoxy alcohols to different diastereoiso...
Scheme 3: Synthesis approach to the requisite α,β-epoxy alcohols 6b and 7b.
Figure 1: X-ray structure (CCDC 750307) and stereochemistry of α,β-epoxy alcohol 7b.
Figure 2: X-ray structure (CCDC 750306) and stereochemistry of α,β-epoxy alcohol 7a.
Scheme 4: Three step sequential fluorination from α,β-epoxy alcohols to eg. the vicinyltrifluoro tosylate 11.
Scheme 5: Unexpected cyclisation of 9b to furan 14 with HF·pyridine. An X-ray structure of 14 (CCDC 750309) r...
Scheme 6: Epoxide ring opening of 9b with 3HF·Et3N required forcing conditions. The structure and stereochemi...
Scheme 7: Three step sequential fluorination from α,β-epoxy alcohol 7b to vicinal trifluoro tosylate 17b.
Scheme 8: Epoxide ring opening with 3HF∙Et3N and synthesis of the all-syn vicinal trifluoro tosylate 17a.
Beilstein J. Org. Chem. 2008, 4, No. 11, doi:10.3762/bjoc.4.11
Beilstein J. Org. Chem. 2005, 1, No. 13, doi:10.1186/1860-5397-1-13
Graphical Abstract
Scheme 1: Reagents: i N3CH2C(O)F, AlMe3
Scheme 2: Reagents: i KF, DMF, 73%; ii NaOH, EtOH then aqHCl, 44%; iii (CO)2Cl2, 90%.
Scheme 3: Reagents: i iPr2EtN, Yb(OTf)3, 9, DCM, 92%; ii I2, THF/ H2O, Na2S2O3, 82%.
Scheme 4: Reagents i. I2, THF/H2O.
Scheme 5: Reagents: (a) I2, THF/H2O, Na2S2O3.
Scheme 6: Reagents: i iPr2EtN, Yb(OTf)3, 9 or PhCHFCOCl, DCM, 92%.
Scheme 7: Reagents: i. LiAlH4, THF, 99%; ii. HCl-Et2O.
Figure 1: ORTEP drawing of (2S, 2'S)-28 showing two crystallographically independent molecules within the uni...
Scheme 8: Reagents: (a) I2, THF/H2O, Na2S2O3.