Search results

Search for "feedback" in Full Text gives 226 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Apparent tunneling barrier height and local work function of atomic arrays

  • Neda Noei,
  • Alexander Weismann and
  • Richard Berndt

Beilstein J. Nanotechnol. 2018, 9, 3048–3052, doi:10.3762/bjnano.9.283

Graphical Abstract
  • of the vertical tip excursion Δz the feedback loop of the STM was disabled at a sample voltage of V = 20 mV and a current of I = 200 pA. The tip was then brought closer to the structure under investigation at a rate of 1.7 nm/s while recording I. Figure 2 shows typical results from a clean (111
PDF
Album
Letter
Published 17 Dec 2018

Investigation of CVD graphene as-grown on Cu foil using simultaneous scanning tunneling/atomic force microscopy

  • Majid Fazeli Jadidi,
  • Umut Kamber,
  • Oğuzhan Gürlü and
  • H. Özgür Özer

Beilstein J. Nanotechnol. 2018, 9, 2953–2959, doi:10.3762/bjnano.9.274

Graphical Abstract
  • the entire cycle. Consequently, while the constant tunnel current is used as feedback loop, the use of very small oscillation amplitudes ensures simultaneous STM/AFM operation as close as possible to the actual STM mode [30][33]. The combination of these two techniques attracts great interest for
PDF
Album
Full Research Paper
Published 28 Nov 2018

In situ characterization of nanoscale contaminations adsorbed in air using atomic force microscopy

  • Jesús S. Lacasa,
  • Lisa Almonte and
  • Jaime Colchero

Beilstein J. Nanotechnol. 2018, 9, 2925–2935, doi:10.3762/bjnano.9.271

Graphical Abstract
  • thus of type “uncleaned-new”, which is “almost clean”, as discussed below in more detail. Figure 2 shows the topography (a), the error signal of the feedback (frequency shift, (b)), the electrostatic capacity signal (EAFM2ν, see Experimental section, (c)) as well as the contact potential (e), which are
  • . 2 kHz), which maintained the cantilever at resonance. Images and spectroscopy were acquired using the frequency as signal for the feedback channel (frequency-modulation dynamic mode; FM-DAFM [49]) at small oscillation, which generally implies non-contact operation (so-called attractive regime), for
  • technique is used: the signal EAFMν is nullified with an auxiliary feedback system by adjusting the tip voltage UDC, then the voltage applied to the tip is precisely the contact potential (UDC = UCP). Frequency detection gives higher spatial resolution than force-detection electrostatic AFM, in addition, it
PDF
Album
Full Research Paper
Published 23 Nov 2018

Charged particle single nanometre manufacturing

  • Philip D. Prewett,
  • Cornelis W. Hagen,
  • Claudia Lenk,
  • Steve Lenk,
  • Marcus Kaestner,
  • Tzvetan Ivanov,
  • Ahmad Ahmad,
  • Ivo W. Rangelow,
  • Xiaoqing Shi,
  • Stuart A. Boden,
  • Alex P. G. Robinson,
  • Dongxu Yang,
  • Sangeetha Hari,
  • Marijke Scotuzzi and
  • Ejaz Huq

Beilstein J. Nanotechnol. 2018, 9, 2855–2882, doi:10.3762/bjnano.9.266

Graphical Abstract
  • in turn depends on the distance between tip and sample. The hybrid STM/AFM system from Quate et al. [145] uses two simultaneously operating feedback loops: one to keep the tip–sample distance constant by measuring the cantilever deflection and adjusting the z-position of the scanner, and the second
  • -point. Since the oscillation amplitude depends on the force between tip and sample, its variation is a direct indicator for the topography and material properties of the sample. Tools that combine both feedback loops, i.e., current and force, are
PDF
Album
Review
Published 14 Nov 2018

Low cost tips for tip-enhanced Raman spectroscopy fabricated by two-step electrochemical etching of 125 µm diameter gold wires

  • Antonino Foti,
  • Francesco Barreca,
  • Enza Fazio,
  • Cristiano D’Andrea,
  • Paolo Matteini,
  • Onofrio Maria Maragò and
  • Pietro Giuseppe Gucciardi

Beilstein J. Nanotechnol. 2018, 9, 2718–2729, doi:10.3762/bjnano.9.254

Graphical Abstract
  • removed from the near-field region of the sample, just excluding the feedback loop of the STM system. Vibrational bands of all molecules agree with the literature [60][61][62][63]. We finally apply our tips to obtain TERS spectra from the N-terminal domain of the Escherichia coli protein HypF (HypF-N
  • oligomers when the STM feedback loop is on (red line) and when it is off (black line). Experimental conditions: λexc = 638 nm, P = 0.11 mW, t = 10 s. (a) STM image of Au(111) terraces on which R6G 10−4 M is adsorbed (∆V = 0.05 V – tip positive, current set point is 80 pA). The gray line indicates the zone
PDF
Album
Supp Info
Full Research Paper
Published 22 Oct 2018

Nanoscale characterization of the temporary adhesive of the sea urchin Paracentrotus lividus

  • Ana S. Viana and
  • Romana Santos

Beilstein J. Nanotechnol. 2018, 9, 2277–2286, doi:10.3762/bjnano.9.212

Graphical Abstract
  • /MULTI/00612/2013, UID/MAR/04292/2013). Dissemination of results was supported by COST Action CA15216. The authors wish to acknowledge Guilherme Santos for his help in sea urchin field collection and three anonymous reviewers for their useful and constructive feedback on the manuscript.
PDF
Album
Full Research Paper
Published 24 Aug 2018

Dumbbell gold nanoparticle dimer antennas with advanced optical properties

  • Janning F. Herrmann and
  • Christiane Höppener

Beilstein J. Nanotechnol. 2018, 9, 2188–2197, doi:10.3762/bjnano.9.205

Graphical Abstract
  • maintained with sub-nanometer accuracy to 2–4 nm by means of a force feedback loop regulating on the frequency shift of the force sensor, which is excited at its resonance frequency. The fluorescence emission rate as a function of the antenna–sample distance is recorded with the feedback loop switched off
PDF
Album
Full Research Paper
Published 17 Aug 2018

Electrospun one-dimensional nanostructures: a new horizon for gas sensing materials

  • Muhammad Imran,
  • Nunzio Motta and
  • Mahnaz Shafiei

Beilstein J. Nanotechnol. 2018, 9, 2128–2170, doi:10.3762/bjnano.9.202

Graphical Abstract
PDF
Album
Supp Info
Review
Published 13 Aug 2018

A scanning probe microscopy study of nanostructured TiO2/poly(3-hexylthiophene) hybrid heterojunctions for photovoltaic applications

  • Laurie Letertre,
  • Roland Roche,
  • Olivier Douhéret,
  • Hailu G. Kassa,
  • Denis Mariolle,
  • Nicolas Chevalier,
  • Łukasz Borowik,
  • Philippe Dumas,
  • Benjamin Grévin,
  • Roberto Lazzaroni and
  • Philippe Leclère

Beilstein J. Nanotechnol. 2018, 9, 2087–2096, doi:10.3762/bjnano.9.197

Graphical Abstract
  • configuration considering no feedback control (right part) and feedback control (left part). The blue (orange) lines correspond to the situation in the dark (under illumination). eΔV (green color) represents the bond dipole in the dark, while eΔVlight (orange color) represents the photovoltage under
PDF
Album
Supp Info
Full Research Paper
Published 01 Aug 2018

The structural and chemical basis of temporary adhesion in the sea star Asterina gibbosa

  • Birgit Lengerer,
  • Marie Bonneel,
  • Mathilde Lefevre,
  • Elise Hennebert,
  • Philippe Leclère,
  • Emmanuel Gosselin,
  • Peter Ladurner and
  • Patrick Flammang

Beilstein J. Nanotechnol. 2018, 9, 2071–2086, doi:10.3762/bjnano.9.196

Graphical Abstract
  • (Bruker Nano Inc., Santa Barbara, CA) using AFM in tapping mode. Tapping mode AFM was performed in amplitude modulation mode. The height of the cantilever position is constantly adjusted (via a feedback loop) to keep constant the ratio of the tip vibrational amplitude in contact with the sample surface to
PDF
Album
Supp Info
Full Research Paper
Published 30 Jul 2018

Electromigrated electrical optical antennas for transducing electrons and photons at the nanoscale

  • Arindam Dasgupta,
  • Mickaël Buret,
  • Nicolas Cazier,
  • Marie-Maxime Mennemanteuil,
  • Reinaldo Chacon,
  • Kamal Hammani,
  • Jean-Claude Weeber,
  • Juan Arocas,
  • Laurent Markey,
  • Gérard Colas des Francs,
  • Alexander Uskov,
  • Igor Smetanin and
  • Alexandre Bouhelier

Beilstein J. Nanotechnol. 2018, 9, 1964–1976, doi:10.3762/bjnano.9.187

Graphical Abstract
  • different strategies available from the literature ranging from the simple ramping of an applied voltage until breakdown to approaches relying on feedback mechanisms [34]. We finally settled on a method where the applied bias is manually adjusted to control the time evolution of the conductance of the
PDF
Album
Full Research Paper
Published 11 Jul 2018

Quantitative comparison of wideband low-latency phase-locked loop circuit designs for high-speed frequency modulation atomic force microscopy

  • Kazuki Miyata and
  • Takeshi Fukuma

Beilstein J. Nanotechnol. 2018, 9, 1844–1855, doi:10.3762/bjnano.9.176

Graphical Abstract
  • the conventional PLL design and their possible solutions. In the conventional design, a low-pass filter with relatively high latency is used in the phase feedback loop, leading to a slow response of the PLL. In the proposed design, a phase detector with a low-latency high-pass filter is located
  • outside the phase feedback loop, while a subtraction-based phase comparator with negligible latency is located inside the loop. This design minimizes the latency within the phase feedback loop and significantly improves the PLL response speed. In addition, we implemented PLLs with the conventional and
  • improvements in bandwidth or resonance frequency of all of the components constituting the tip–sample distance regulation loop, such as the cantilever, cantilever excitation unit, cantilever deflection sensor, scanner, feedback controller, and phase-locked loop (PLL) circuit. In particular, the PLL circuit is
PDF
Album
Supp Info
Full Research Paper
Published 21 Jun 2018

Know your full potential: Quantitative Kelvin probe force microscopy on nanoscale electrical devices

  • Amelie Axt,
  • Ilka M. Hermes,
  • Victor W. Bergmann,
  • Niklas Tausendpfund and
  • Stefan A. L. Weber

Beilstein J. Nanotechnol. 2018, 9, 1809–1819, doi:10.3762/bjnano.9.172

Graphical Abstract
  • ωE vanishes. In AM-KPFM, a feedback loop that minimizes the response amplitude by adjusting UDC. AM detection is ususally more prone to artifacts such cross coupling of the AC drive signal, e.g., into the shaker piezo [21]. Furthermore, Equation 3 shows that the amplitude of the electrostatic force
  • detecting the electrostatic frequency modulation is to use non-linear frequency mixing with a mechanical cantilever oscillation at angular frequency ωm, such as the tapping oscillation used for the height feedback [36]. As the capacitance gradient monotonically decreases away from the surface, it will also
  • cantilevers was ≈225 μm, the width ≈35 μm. Tip, tip cone and cantilever are coated with PtIr (work function 5.5 eV [39]) on both sides. The topography feedback was performed with amplitude modulation (AM) on the first eigenmode and the oscillation amplitude was kept to approximately 40 nm for all methods. To
PDF
Album
Supp Info
Full Research Paper
Published 15 Jun 2018

Direct AFM-based nanoscale mapping and tomography of open-circuit voltages for photovoltaics

  • Katherine Atamanuk,
  • Justin Luria and
  • Bryan D. Huey

Beilstein J. Nanotechnol. 2018, 9, 1802–1808, doi:10.3762/bjnano.9.171

Graphical Abstract
  • leverages photo-conducting AFM, along with an additional proportional-integral-derivative feedback loop configured to maintain open-circuit conditions while scanning. Alternating with short-circuit current mapping efficiently provides complementary insight into the highly microstructurally sensitive local
  • energetic resolution unavoidably conflicts with experimental throughput. Accordingly, this work presents a new approach for directly mapping VOC with nanoscale resolution, requiring a single, standard-speed AFM scan. This leverages the concept of the proportional-integral-derivative (PID) feedback loop that
  • underpins nearly all AFM topography imaging. Normally, this feedback loop continually updates the AFM probe height in order to maintain a constant AFM tip–sample interaction, which is sensed via the integrated cantilever deflection or amplitude that, of course, changes at surface protrusions or depressions
PDF
Album
Supp Info
Full Research Paper
Published 14 Jun 2018

Electrostatically actuated encased cantilevers

  • Benoit X. E. Desbiolles,
  • Gabriela Furlan,
  • Adam M. Schwartzberg,
  • Paul D. Ashby and
  • Dominik Ziegler

Beilstein J. Nanotechnol. 2018, 9, 1381–1389, doi:10.3762/bjnano.9.130

Graphical Abstract
  • an annealed ultra-flat gold surface. The surface is imaged in tapping mode using harmonic excitation with amplitude modulation feedback, a free amplitude of 1 nm and a set-point of 0.8 nm. In harmonic excitation, we observe that intentional switching of the applied Udc by a few volts would result in
  • ) Topographic image of copper grains evaporated onto an annealed ultra-flat gold surface. The image is recorded in air using electrostatic excitation with amplitude modulation feedback and a free amplitude of 1 nm and set-point of 0.8 nm. a) Oscillation amplitude at the resonance frequency of the cantilever
PDF
Album
Full Research Paper
Published 08 May 2018

Artifacts in time-resolved Kelvin probe force microscopy

  • Sascha Sadewasser,
  • Nicoleta Nicoara and
  • Santiago D. Solares

Beilstein J. Nanotechnol. 2018, 9, 1272–1281, doi:10.3762/bjnano.9.119

Graphical Abstract
  • the Fermi level, affecting the work function, which is defined as the energy difference between the local vacuum level and the Fermi level [12]. Usually, KPFM is used as a slow technique aiming at imaging local variations in the CPD. The KPFM feedback circuit applies a dc voltage to the tip (or the
  • simulation results. Furthermore, additional artifacts are observed due to an undesired influence on the z feedback controller and on the photodiode of the beam-deflection system in case of light modulation. Results and Discussion Simulations Numerical simulations of the cantilever motion were performed using
  • -detection voltage and VCPD the contact potential difference. In our numerical simulations, no z feedback is considered and the z position of the cantilever tip is only influenced by electrostatic forces. This was done in order to focus on the effect of the electrostatic forces. To realize time-resolved KPFM
PDF
Album
Full Research Paper
Published 24 Apr 2018

Field-controlled ultrafast magnetization dynamics in two-dimensional nanoscale ferromagnetic antidot arrays

  • Anulekha De,
  • Sucheta Mondal,
  • Sourav Sahoo,
  • Saswati Barman,
  • Yoshichika Otani,
  • Rajib Kumar Mitra and
  • Anjan Barman

Beilstein J. Nanotechnol. 2018, 9, 1123–1134, doi:10.3762/bjnano.9.104

Graphical Abstract
  • stage, which gives high stability to the sample in the presence of feedback loops. The pump beam was chopped at 2 kHz frequency, and the phase-sensitive detection of the Kerr rotation and reflectivity were performed using lock-in amplifiers and an optical bridge detector at room temperature. A variable
PDF
Album
Supp Info
Full Research Paper
Published 09 Apr 2018

Magnetic characterization of cobalt nanowires and square nanorings fabricated by focused electron beam induced deposition

  • Federico Venturi,
  • Gian Carlo Gazzadi,
  • Amir H. Tavabi,
  • Alberto Rota,
  • Rafal E. Dunin-Borkowski and
  • Stefano Frabboni

Beilstein J. Nanotechnol. 2018, 9, 1040–1049, doi:10.3762/bjnano.9.97

Graphical Abstract
  • a two-dimensional magnetization map can be recorded. MFM analysis was performed with a VEECO EnviroScope system, working in tapping mode with amplitude detection feedback. The MFM maps were acquired in two-pass lift-mode, with the magnetic signal collected about 30 nm above the surface. The probe
PDF
Album
Full Research Paper
Published 03 Apr 2018

Nanoscale mapping of dielectric properties based on surface adhesion force measurements

  • Ying Wang,
  • Yue Shen,
  • Xingya Wang,
  • Zhiwei Shen,
  • Bin Li,
  • Jun Hu and
  • Yi Zhang

Beilstein J. Nanotechnol. 2018, 9, 900–906, doi:10.3762/bjnano.9.84

Graphical Abstract
  • AFM tip changed very little, which is quite different from the result in our previous SPFM experiment, in which the apparent height of RGO sheets under a biased tip usually increased sharply when RH was lower than 40% [32]. This is because the set point of the force, which is used as the feedback
PDF
Album
Supp Info
Full Research Paper
Published 16 Mar 2018

Lyapunov estimation for high-speed demodulation in multifrequency atomic force microscopy

  • David M. Harcombe,
  • Michael G. Ruppert,
  • Michael R. P. Ragazzon and
  • Andrew J. Fleming

Beilstein J. Nanotechnol. 2018, 9, 490–498, doi:10.3762/bjnano.9.47

Graphical Abstract
  • , enabling both z-axis feedback and phase contrast imaging to be achieved. This article proposes a model-based multifrequency Lyapunov filter implemented on a field-programmable gate array (FPGA) for high-speed MF-AFM demodulation. System descriptions and simulations are verified by experimental results
  • interactions [2], atomic scale resolution imaging is achieved, which far exceeds the optical diffraction limit. An image generated by constant-force topography AFM depends entirely on its feedback control loop. The composition of a sample is visualized in three-dimensions by plotting the control signal against
  • observables for the characterization of nanomechanical properties. Due to the large bandwidth requirements of tracking high frequencies in MF-AFM, every component of the z-axis feedback loop detailed in Figure 1 needs to be optimized for speed. This includes the lateral and vertical nanopositioner for each
PDF
Album
Full Research Paper
Published 08 Feb 2018

High-contrast and reversible scattering switching via hybrid metal-dielectric metasurfaces

  • Jonathan Ward,
  • Khosro Zangeneh Kamali,
  • Lei Xu,
  • Guoquan Zhang,
  • Andrey E. Miroshnichenko and
  • Mohsen Rahmani

Beilstein J. Nanotechnol. 2018, 9, 460–467, doi:10.3762/bjnano.9.44

Graphical Abstract
  • , respectively. The polarization of the incident beam is along y direction (along the gold bar lengths). A grating resonance in the spectrum occurs around 1235 nm at the grating diffraction edge (λ0 = n × D = 1.45 × 850 nm = 1232.5 nm) due to the constructive diffractive feedback among neighbouring antennas
PDF
Album
Full Research Paper
Published 06 Feb 2018

The nanofluidic confinement apparatus: studying confinement-dependent nanoparticle behavior and diffusion

  • Stefan Fringes,
  • Felix Holzner and
  • Armin W. Knoll

Beilstein J. Nanotechnol. 2018, 9, 301–310, doi:10.3762/bjnano.9.30

Graphical Abstract
  • background interference intensity and adjusts the height of the cover glass to keep the intensity constant. The feedback-loop can also operate during acquisition with a frequency of 20 Hz as illustrated by the red lines in Figure 2e. The blue lines indicate the measured laterally averaged gap distances for
  • of the nanofluidic confinement apparatus. We vary the gap distance for different measurements and then use the feedback-control loop to keep it constant (see Figure 2e) while acquiring frames for 15 s. The number of particles in the field of view reduces with decreasing gap distance. In our
  • distance by 1 nm every 10th frame. (d) Effective gap distance variation Δd in the nanofluidic slit obtained from the local variation in optical path difference. (e) The height of the cover glass (red) is adjusted by a feedback loop to ensure a constant gap distance (blue) during experiments. (a) Contrast
PDF
Album
Full Research Paper
Published 26 Jan 2018

Anchoring of a dye precursor on NiO(001) studied by non-contact atomic force microscopy

  • Sara Freund,
  • Antoine Hinaut,
  • Nathalie Marinakis,
  • Edwin C. Constable,
  • Ernst Meyer,
  • Catherine E. Housecroft and
  • Thilo Glatzel

Beilstein J. Nanotechnol. 2018, 9, 242–249, doi:10.3762/bjnano.9.26

Graphical Abstract
  • of recording a first scan line with a closed feedback loop where the tip–sample distance is regulated using a topographic set point Δf1 and then acquiring a second scan in a open feedback loop following the recorded topography but applying an additional constant Z-offset, reducing the tip–sample
PDF
Album
Supp Info
Full Research Paper
Published 23 Jan 2018

Liquid-crystalline nanoarchitectures for tissue engineering

  • Baeckkyoung Sung and
  • Min-Ho Kim

Beilstein J. Nanotechnol. 2018, 9, 205–215, doi:10.3762/bjnano.9.22

Graphical Abstract
  • the cell density estimated in human connective tissues. Additionally, the mechanical feedback from the matrix to the cell body could stimulate the development of myofibroblast phenotype. This implicates that the LC matrix of dense collagen fibrils can be used as a biocompatible and biodegradable 3D
  • factors (2D/3D topography and mechanical stiffness) and the biochemical factors (cell binding and molecular stimulation). The mechanical feedback from the scaffold is transmitted to the cell nucleus (N) via actin bundles (stress fibers). The chemical signal is generated by growth factors and then
PDF
Album
Review
Published 18 Jan 2018

Combined scanning probe electronic and thermal characterization of an indium arsenide nanowire

  • Tino Wagner,
  • Fabian Menges,
  • Heike Riel,
  • Bernd Gotsmann and
  • Andreas Stemmer

Beilstein J. Nanotechnol. 2018, 9, 129–136, doi:10.3762/bjnano.9.15

Graphical Abstract
  • topography, geometrical artefacts and feedback problems can be minimized by appropriate control schemes [20]. The typical lateral resolution of our SThM and KFM setups is on the order of the tip radius (below 10 nm), at a noise level of 20 μK·Hz−0.5 and 1 mV·Hz−0.5, respectively, depending on operating
  • we detect modulations of the force gradient from the sidebands of the drive frequency fd in the deflection signal. The sidebands at fd ± fm are minimized by matching the dc tip bias to Ulcpd using a feedback loop. The sidebands at fd ± 2fm are proportional to the tip–sample capacitance gradient C
  • ′′ and the KFM sensitivity. The feedback loop in our setup uses both pairs of sidebands and a Kalman filter to continuously estimate the surface potential and to avoid topographical artefacts [20]. Scanning thermal measurements of the InAs nanowire. (a) Setup for SThM measurements. (b) Topography and
PDF
Album
Supp Info
Full Research Paper
Published 11 Jan 2018
Other Beilstein-Institut Open Science Activities