Search results

Search for "magnetic" in Full Text gives 807 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

A distributed active patch antenna model of a Josephson oscillator

  • Vladimir M. Krasnov

Beilstein J. Nanotechnol. 2023, 14, 151–164, doi:10.3762/bjnano.14.16

Graphical Abstract
  • magnetic field, Hy, introduces a chain of Josephson vortices (fluxons) in the JJ. The dc bias current, Ib, exerts a Lorentz force, FL, and causes a unidirectional fluxon motion. Upon collision with the junction edge, the fluxons annihilate. The released energy produces an EMW pulse, which is partially
  • spatial distribution of the input current density in a JJ, described by the perturbed sine-Gordon equation. In the presence of a magnetic field and fluxons, the oscillating current is distributed nonuniformly within the junction. This nonuniformity is essential for the FFO operation. It determines the
  • section. Radiative resistance of a patch antenna A rectangular patch antenna has two radiating slots, which correspond to the left and right edges of the JJ in Figure 1a. The slots can be considered as magnetic current lines (magnetic dipoles) [39]. Radiation from the antenna is determined by the
PDF
Album
Full Research Paper
Published 26 Jan 2023

Batch preparation of nanofibers containing nanoparticles by an electrospinning device with multiple air inlets

  • Dong Wei,
  • Chengwei Ye,
  • Adnan Ahmed and
  • Lan Xu

Beilstein J. Nanotechnol. 2023, 14, 141–150, doi:10.3762/bjnano.14.15

Graphical Abstract
  • purification. Preparation of spinning solution Firstly, 4.5 g PAN and 44 g DMF solution were weighed separately by an electronic balance (XJ120A, Shanghai Precisa Co., LTD), mixed and placed on an unheated magnetic stirrer (HJ-6A, Gongyi Yuhua Instrument Co., LTD.) for stirring for 24 h. Then 1.5 g ZnO
PDF
Album
Full Research Paper
Published 23 Jan 2023

Antimicrobial and mechanical properties of functionalized textile by nanoarchitectured photoinduced Ag@polymer coating

  • Jessica Plé,
  • Marine Dabert,
  • Helene Lecoq,
  • Sophie Hellé,
  • Lydie Ploux and
  • Lavinia Balan

Beilstein J. Nanotechnol. 2023, 14, 95–109, doi:10.3762/bjnano.14.11

Graphical Abstract
  • investigated [26], with specific emphasis on AgNPs [27]. Textiles have been successfully functionalized with AgNPs using a variety of both physical and chemical deposition techniques [28]. To name a few, Mei et al. [29] used magnetic sputtering to deposit AgNPs onto polyimide textiles; OhadiFar et al. [30
  • (PEG600DA) and pentaerythritol triacrylate monomer (PETIA) used as comonomer (PEG600DA/PETIA with a 1:1 weight ratio) were mixed under magnetic stirring with diphenyl(2,4,6-trimethylbenzoyl)phosphine oxide (0.5 wt %) and the metal precursor AgNO3 (3 wt % and 5 wt %) for 1 h. After complete dissolution, this
PDF
Album
Full Research Paper
Published 12 Jan 2023

Frontiers of nanoelectronics: intrinsic Josephson effect and prospects of superconducting spintronics

  • Anatolie S. Sidorenko,
  • Horst Hahn and
  • Vladimir Krasnov

Beilstein J. Nanotechnol. 2023, 14, 79–82, doi:10.3762/bjnano.14.9

Graphical Abstract
  • following novelties are presented in the contributed articles of this volume: - Novel promising spintronic elements and materials with controllable switching between stable parallel, orthogonal, and antiparallel arrangements of magnetic moments of the epitaxial PdFe films and PdFe/Ag/PdFe heterostructures
  • magnetic proximity effect at a ferromagnetic–insulator–superconductor (FIS) interface was investigated through combined experimental and theoretical work [25]. Manifestations of nonlinear features in magnetic dynamics and current–voltage characteristics of the 0 Josephson junction in superconductor
  • –ferromagnet–superconductor (SFS) structures have been predicted and calculated [26]. A quantitative study of the density of states (DOS) in bulk superconductor/ferromagnetic (S/F) bilayers in the diffusive limit has been presented. In addition, an analysis of the dependencies of DOS on magnetic and spin–orbit
PDF
Editorial
Published 10 Jan 2023

Solvent-induced assembly of mono- and divalent silica nanoparticles

  • Bin Liu,
  • Etienne Duguet and
  • Serge Ravaine

Beilstein J. Nanotechnol. 2023, 14, 52–60, doi:10.3762/bjnano.14.6

Graphical Abstract
  • × 1016 part/L) were introduced into a 25 mL flask and the mixture was homogenized using a magnetic bar. A volume of 200 µL of TEOS was added all at once after 5 min. The reaction was kept under stirring at 20 °C for 15 min. The reaction medium was poured into a 50 mL Falcon tube containing 15 mL of
PDF
Album
Full Research Paper
Published 06 Jan 2023

Upper critical magnetic field in NbRe and NbReN micrometric strips

  • Zahra Makhdoumi Kakhaki,
  • Antonio Leo,
  • Federico Chianese,
  • Loredana Parlato,
  • Giovanni Piero Pepe,
  • Angela Nigro,
  • Carla Cirillo and
  • Carmine Attanasio

Beilstein J. Nanotechnol. 2023, 14, 45–51, doi:10.3762/bjnano.14.5

Graphical Abstract
  • and nodal superconductivity, helical vortex states, as well as non-trivial topological effects. Moreover, large values of the upper critical magnetic field have been reported in these materials. Here, we focus on the study of the temperature dependence of the perpendicular magnetic field of NbRe and
  • rotation and relaxation studies [13] and large values of the upper critical magnetic fields [11][14], which are above the Pauli paramagnetic limit [15][16]. In the case of thin films, the structure of NbRe is polycrystalline with grains of small dimensions, typically of the order of 2–3 nm [7][8][17
  • is still lacking. Finally, while the morphological properties are similar to those of NbRe films [18], the values of the electrical resistivity stand slightly higher with respect to NbRe films [4][7][18]. The value of the upper critical magnetic field is a fundamental quantity that gives a measure of
PDF
Album
Full Research Paper
Published 05 Jan 2023

The influence of structure and local structural defects on the magnetic properties of cobalt nanofilms

  • Alexander Vakhrushev,
  • Aleksey Fedotov,
  • Olesya Severyukhina and
  • Anatolie Sidorenko

Beilstein J. Nanotechnol. 2023, 14, 23–33, doi:10.3762/bjnano.14.3

Graphical Abstract
  • , Academiei 3/3, Chisinau 2028, Moldova 10.3762/bjnano.14.3 Abstract The present paper considers a mathematical model describing the time evolution of spin states and magnetic properties of a nanomaterial. We present the results of two variants of nanosystem simulations. In the first variant, cobalt with a
  • ideal structure. In all cases of calculations for cobalt, the ferromagnetic behavior was preserved. Defects in the structure and local arrangement of the atoms cause a deterioration in the magnetic macroscopic parameters, such as a decrease in the magnetization modulus. Keywords: LAMMPS; magnetic
  • . Studying the role of magnetism on the structural features of composites opens up promising possibilities, since it allows predicting and creating new materials with controllable properties. The idea of mutual correlation between material structure and its magnetic properties is being developed in the field
PDF
Album
Full Research Paper
Published 04 Jan 2023

Two-step single-reactor synthesis of oleic acid- or undecylenic acid-stabilized magnetic nanoparticles by thermal decomposition

  • Mykhailo Nahorniak,
  • Pamela Pasetto,
  • Jean-Marc Greneche,
  • Volodymyr Samaryk,
  • Sandy Auguste,
  • Anthony Rousseau,
  • Nataliya Nosova and
  • Serhii Varvarenko

Beilstein J. Nanotechnol. 2023, 14, 11–22, doi:10.3762/bjnano.14.2

Graphical Abstract
  • , wüstite), particularly nanosized particles, show distinct effects on living organisms. Thus, it is of primary importance for their biomedical applications that the morphology and phase-structural state of these materials are investigated. The aim of this work was to obtain magnetic nanoparticles in a
  • obtained in a solvent with a high boiling point via displacement reaction of acetylacetone with a higher acid from Fe(III) acetylacetonate during its elimination from the reaction mixture under vacuum conditions. Magnetic nanoparticles (NPM) were characterized in terms of morphology, hydrodynamic diameter
  • mol of acetylacetonate and up to 5.5 mol/mol. Below the mentioned limit, NPM dispersions were colloidally unstable, and at higher ratios no NPM were formed which could be precipitated by an applied magnetic field. Monodisperse nanoparticles of iron oxides were synthesized with a diameter of 8–13 nm
PDF
Album
Supp Info
Full Research Paper
Published 03 Jan 2023

Observation of collective excitation of surface plasmon resonances in large Josephson junction arrays

  • Roger Cattaneo,
  • Mikhail A. Galin and
  • Vladimir M. Krasnov

Beilstein J. Nanotechnol. 2022, 13, 1578–1588, doi:10.3762/bjnano.13.132

Graphical Abstract
  • rotatable sample holder. The magnetic field is supplied by a superconducting solenoid. Figure 1b and Figure 1d show the I–V curves (up and down bias swipes) for meander and linear arrays, respectively, at zero magnetic field and T ≃ 2.6 K. For both arrays, all JJs switch simultaneously from the
  • of different voltage states at the same current. This will be exploited for accessing a larger variety of states with different number of active junctions in the oscillating resistive state. Figure 2a shows the modulation, Ic(H), of the critical current versus the in-plane magnetic field for the
  • . As discussed below, a magnetic field causes a spread in the modulations Ic for different JJs. Therefore, the measured Ic(H) is lower than the Fraunhofer modulation for an individual JJ. Presumably, the spread of the modulations Ic is caused by the uneven distribution of fluxon numbers in JJs when the
PDF
Album
Full Research Paper
Published 28 Dec 2022

Facile preparation of Au- and BODIPY-grafted lipid nanoparticles for synergized photothermal therapy

  • Yuran Wang,
  • Xudong Li,
  • Haijun Chen and
  • Yu Gao

Beilstein J. Nanotechnol. 2022, 13, 1432–1444, doi:10.3762/bjnano.13.118

Graphical Abstract
  • etherate (BF3·OEt2) and 2,4-dimethylpyrrole were freshly purified by distillation under reduced pressure. Synthesis and characterization of BDP All chemical reagents were obtained from commercial suppliers and used without further purification. 1H nuclear magnetic resonance (NMR) and 13C NMR spectra were
PDF
Album
Full Research Paper
Published 02 Dec 2022

Density of states in the presence of spin-dependent scattering in SF bilayers: a numerical and analytical approach

  • Tairzhan Karabassov,
  • Valeriia D. Pashkovskaia,
  • Nikita A. Parkhomenko,
  • Anastasia V. Guravova,
  • Elena A. Kazakova,
  • Boris G. Lvov,
  • Alexander A. Golubov and
  • Andrey S. Vasenko

Beilstein J. Nanotechnol. 2022, 13, 1418–1431, doi:10.3762/bjnano.13.117

Graphical Abstract
  • 10.3762/bjnano.13.117 Abstract We present a quantitative study of the density of states (DOS) in SF bilayers (where S is a bulk superconductor and F is a ferromagnetic metal) in the diffusive limit. We solve the quasiclassical Usadel equations in the structure considering the presence of magnetic and spin
  • behavior of DOS dependencies on magnetic and spin–orbit scattering times is discussed. Keywords: density of states; Josephson junctions; proximity effect; superconductivity; superconductor/ferromagnet hybrid nanostructures; Introduction It is well-known that superconductivity can be induced in a non
  • ]. In this work, we consider a diffusive SF bilayer, assuming a relatively low interface transparency and the presence of magnetic and spin–orbit scattering. For this purpose, the Kupriyanov–Lukichev (KL) boundary conditions at the superconductor/ferromagnet interface are perfectly suitable [83]. We
PDF
Album
Full Research Paper
Published 01 Dec 2022

Double-layer symmetric gratings with bound states in the continuum for dual-band high-Q optical sensing

  • Chaoying Shi,
  • Jinhua Hu,
  • Xiuhong Liu,
  • Junfang Liang,
  • Jijun Zhao,
  • Haiyan Han and
  • Qiaofen Zhu

Beilstein J. Nanotechnol. 2022, 13, 1408–1417, doi:10.3762/bjnano.13.116

Graphical Abstract
  • completely disappear and the ideal BIC is obtained. Furthermore, the magnetic field distributions of the two modes under resonance are calculated as shown in Figure 3b and Figure 3c. The localized field energy of both modes decreases as α increases, and the magnetic field distributions of both modes
  • dominated by the electric toroidal dipole rather than the SP-BIC dominated by the magnetic dipole [46]. As a result, instead of having to break the symmetry of the structure, as in the case of SP-BIC, a simple change in the grating spacing can transform the BIC into a QBIC, leading to high-Q resonance. The
  • is analytically calculated from the perspective of the complex eigenfrequencies, which is defined as follows [54]: where C and U represent the integration domain for the cavity and the unit cell, respectively. Hnorm represents the magnetic field intensity distributions of the complex eigenfrequencies
PDF
Album
Full Research Paper
Published 25 Nov 2022

Orally administered docetaxel-loaded chitosan-decorated cationic PLGA nanoparticles for intestinal tumors: formulation, comprehensive in vitro characterization, and release kinetics

  • Sedat Ünal,
  • Osman Doğan and
  • Yeşim Aktaş

Beilstein J. Nanotechnol. 2022, 13, 1393–1407, doi:10.3762/bjnano.13.115

Graphical Abstract
  • of 0.2% [77]. The organic phase was added to the aqueous phase on a magnetic stirrer at 550 rpm. The resulting o/w emulsion was sonicated on an ice bath with an ultrasonic probe at 25% power for 1 min (four times at 10 s intervals), and PLGA nanoparticles were obtained. The nanoparticles were stirred
  • continuously for 24 h with a magnetic stirrer and the organic phase was evaporated. Then the PLGA nanoparticles were precipitated by centrifugation at 10000 rpm for 45 min and washed four times with distilled water. DCX-PLGA NPs pellets were suspended in 2 mL of solution containing 5% (w/w) mannitol, frozen at
  • then applied over the gelatin layer. Initially, a 10 percent (w/v) gelatin dispersion was made by heating 50 mL of ultrapure water on a magnetic stirrer to 60 °C, and then 1 mL of the dispersion was added to each well of the 24-well cell plates. The gelatin layer in the experimental model was cooled to
PDF
Album
Full Research Paper
Published 23 Nov 2022

Supramolecular assembly of pentamidine and polymeric cyclodextrin bimetallic core–shell nanoarchitectures

  • Alexandru-Milentie Hada,
  • Nina Burduja,
  • Marco Abbate,
  • Claudio Stagno,
  • Guy Caljon,
  • Louis Maes,
  • Nicola Micale,
  • Massimiliano Cordaro,
  • Angela Scala,
  • Antonino Mazzaglia and
  • Anna Piperno

Beilstein J. Nanotechnol. 2022, 13, 1361–1369, doi:10.3762/bjnano.13.112

Graphical Abstract
  • were added three times at room temperature, every hour, to a solution of nanoG (6.75 mL) to obtain nanoGS determined by a light orange staining of the solution. After each addition of silver ions, the mixture was kept under magnetic stirring at room temperature (20–25 °C) for 1 h. The reduction of
PDF
Album
Supp Info
Full Research Paper
Published 18 Nov 2022

Recent trends in Bi-based nanomaterials: challenges, fabrication, enhancement techniques, and environmental applications

  • Vishal Dutta,
  • Ankush Chauhan,
  • Ritesh Verma,
  • C. Gopalkrishnan and
  • Van-Huy Nguyen

Beilstein J. Nanotechnol. 2022, 13, 1316–1336, doi:10.3762/bjnano.13.109

Graphical Abstract
  • thanks to the significant charge carrier dispersion provided by hybrid orbitals involving the Bi 6s orbital, as seen in Figure 2. Photoinduced electron–hole separation and charge carrier transfer in Bi-based materials are facilitated by a unique layered structure that creates an IEF. A magnetic field is
PDF
Album
Review
Published 11 Nov 2022

Studies of probe tip materials by atomic force microscopy: a review

  • Ke Xu and
  • Yuzhe Liu

Beilstein J. Nanotechnol. 2022, 13, 1256–1267, doi:10.3762/bjnano.13.104

Graphical Abstract
  • mechanical properties of the cantilever beam directly affect the performance, measurement resolution, and image quality of the AFM instrument. AFM probe tips [9][10] are generally fabricated with coatings, carbon nanotubes, magnetic nanoparticles, or even protein functionalization. A combination of probe
  • robustness and durability of nanowire scanning probes are also crucial. Due to their unique properties in electrical, magnetic, and optical research fields [31][32][33], metal nanowires have been prepared by various methods and applied in various fields by domestic and foreign scholars in recent years. Tay
  • coupling another specific H1N1 oligonucleotide fragment using magnetic microspheres as solid-phase support; both were bound to the target DNA (exact match DNA) to form a colorless nucleic acid probe. The two are combined with the target DNA (exact match DNA) to form a colorless capture probe-target DNA
PDF
Album
Review
Published 03 Nov 2022

A super-oscillatory step-zoom metalens for visible light

  • Yi Zhou,
  • Chao Yan,
  • Peng Tian,
  • Zhu Li,
  • Yu He,
  • Bin Fan,
  • Zhiyong Wang,
  • Yao Deng and
  • Dongliang Tang

Beilstein J. Nanotechnol. 2022, 13, 1220–1227, doi:10.3762/bjnano.13.101

Graphical Abstract
  • -oscillatory lenses, through fine modulation of the amplitude and phase of the optical field, have been used in super-resolution imaging [9][10][11], heat-assisted magnetic recording [12], and optical metrology [13]. In order to form the specific super-oscillatory optical field, common super-oscillatory lenses
PDF
Album
Full Research Paper
Published 28 Oct 2022

Design of surface nanostructures for chirality sensing based on quartz crystal microbalance

  • Yinglin Ma,
  • Xiangyun Xiao and
  • Qingmin Ji

Beilstein J. Nanotechnol. 2022, 13, 1201–1219, doi:10.3762/bjnano.13.100

Graphical Abstract
  • industry, detection and separation of enantiomers are essential for their safe usage. With appropriate detectors and transduction signals, various analysis instruments and techniques have been used for chirality detection or chiral separation. They include circular dichroism (CD) [9], nuclear magnetic
  • outstanding sensing properties, with real-time, sensitive and selective chiral detection, high durability, and easy recovery. To understand the chiral recognition between calixarenes and analytes, Zoya I. Kazantseva et al. combined QCM and proton magnetic resonance spectroscopy (1H NMR) techniques to study
  • strengthened. This work presented the great potential of bare metal surfaces as an effective platform for chirality detection. Metals are not only more stable than organic materials in various usage conditions, but also have excellent optical, electrical, and magnetic properties. They may facilitate the design
PDF
Album
Review
Published 27 Oct 2022

Nonlinear features of the superconductor–ferromagnet–superconductor φ0 Josephson junction in the ferromagnetic resonance region

  • Aliasghar Janalizadeh,
  • Ilhom R. Rahmonov,
  • Sara A. Abdelmoneim,
  • Yury M. Shukrinov and
  • Mohammad R. Kolahchi

Beilstein J. Nanotechnol. 2022, 13, 1155–1166, doi:10.3762/bjnano.13.97

Graphical Abstract
  • , 141980, Russia Moscow Institute of Physics and Technology, Dolgoprudny, 141700, Moscow Region, Russia Physics Department, Menofiya University, Faculty of Science, 32511, Shebin Elkom, Egypt 10.3762/bjnano.13.97 Abstract We demonstrate the manifestations of nonlinear features in magnetic dynamics and I–V
  • characteristics of a φ0 Josephson junction in the ferromagnetic resonance region. We show that at small values of the system parameters damping, spin–orbit interaction, and Josephson-to-magnetic energy ratio, the magnetic dynamics is reduced to the dynamics of a scalar Duffing oscillator driven by the Josephson
  • difference with the magnetic moment of a ferromagnet in a φ0 junction leads to a number of unique features important for superconducting spintronics and modern information technology [1][2][3][4][5]. It allows one to control the magnetization precession by the superconducting current and affects the current
PDF
Album
Supp Info
Full Research Paper
Published 21 Oct 2022

A cantilever-based, ultrahigh-vacuum, low-temperature scanning probe instrument for multidimensional scanning force microscopy

  • Hao Liu,
  • Zuned Ahmed,
  • Sasa Vranjkovic,
  • Manfred Parschau,
  • Andrada-Oana Mandru and
  • Hans J. Hug

Beilstein J. Nanotechnol. 2022, 13, 1120–1140, doi:10.3762/bjnano.13.95

Graphical Abstract
  • , the resonance frequency-to-stiffness ratio of thin cantilevers proved to be beneficial for the measurement of ultrasmall forces [28] or, in combination with high cantilever quality factors, the detection of small magnetic fields [29]. For the latter, new tip–sample distance control operation modes
  • acquisition of overview images at larger tip–sample distances. Our instrument is thus well-suited to find specific locations in devices, map weak magnetic or electrostatic forces, and also permits the acquisition of smaller scan range atomic resolution images at specific locations. This manuscript is
  • in the microscope, customized magnetic feedthrough manipulators with hex-key end-pieces are used. Cryostat and preparation chamber are both pumped with 300 L/s ion pumps, which also include titanium sublimation sources. The load-lock chamber is pumped with a 67 L/s turbo pump. The bath cryostat
PDF
Album
Full Research Paper
Published 11 Oct 2022

Green synthesis of zinc oxide nanoparticles toward highly efficient photocatalysis and antibacterial application

  • Vo Thi Thu Nhu,
  • Nguyen Duy Dat,
  • Le-Minh Tam and
  • Nguyen Hoang Phuong

Beilstein J. Nanotechnol. 2022, 13, 1108–1119, doi:10.3762/bjnano.13.94

Graphical Abstract
  • performed using NaOH to create sodium resinate, and zinc resinate was subsequently synthesized from sodium resinate. Rosin (4 g) was dissolved in 24 mL of 0.5 N NaOH at 90 °C under magnetic stirring for 90 min. Then, 40 mL of ZnCl2 (10%) was added to the mixture which was stirred for 60 min to form zinc
  • UV light using green-synthesized ZnO nanoparticles from rosin and zinc chloride salt was investigated using a batch photocatalytic reactor. Firstly, 0.1 g of ZnO NPs was added to 50 mL of MO or MB solution with an initial concentration of 10 mg/L. The solution was then submitted to magnetic stirring
PDF
Album
Full Research Paper
Published 07 Oct 2022

Effects of focused electron beam irradiation parameters on direct nanostructure formation on Ag surfaces

  • Jānis Sniķeris,
  • Vjačeslavs Gerbreders,
  • Andrejs Bulanovs and
  • Ēriks Sļedevskis

Beilstein J. Nanotechnol. 2022, 13, 1004–1010, doi:10.3762/bjnano.13.87

Graphical Abstract
  • on the growth rate of the nanodots was observed. Metals with lower melting points (implying lower interatomic bond energy) produced higher nanodots at similar irradiation parameters. Conversely, metals with higher volume magnetic susceptibility produced much wider nanodots with a higher volume. A
  • nanostructures could be controlled and modified in a beneficial way. This, however, would require further research on the various properties (electric, magnetic, optical, and mechanical) of nanostructures obtained through irradiation by a focused EB on metal surfaces. Conclusion In this work we explored how
PDF
Album
Full Research Paper
Published 22 Sep 2022

Theoretical investigations of oxygen vacancy effects in nickel-doped zirconia from ab initio XANES spectroscopy at the oxygen K-edge

  • Dick Hartmann Douma,
  • Lodvert Tchibota Poaty,
  • Alessio Lamperti,
  • Stéphane Kenmoe,
  • Abdulrafiu Tunde Raji,
  • Alberto Debernardi and
  • Bernard M’Passi-Mabiala

Beilstein J. Nanotechnol. 2022, 13, 975–985, doi:10.3762/bjnano.13.85

Graphical Abstract
  • and magnetic order in a typical diluted magnetic oxide. Such a finding may be crucial for spintronics-related applications. Keywords: defect; ligand field; nickel; oxidation state; oxides; spectroscopy; spintronics; vacancy; X-ray absorption; X-ray absorption near-edge structure (XANES); zirconia
  • ; Introduction The search for room-temperature magnetic semiconductors has been the driving force behind the increasing interest of material scientists and solid-state physicists in magnetic oxides [1]. This is due to their potential applications as building block of spintronic devices. Magnetic oxides are
  • semiconducting or insulating materials doped randomly or uniformly with magnetic impurities in the oxide matrix. A typical example are thin films of uniformly Fe-doped ZrO2 where dopant concentrations, x, from the diluted regime (i.e., x = 1–5 atom % [2]) to very high concentrations (up to x ≈ 25 atom %) have
PDF
Album
Full Research Paper
Published 15 Sep 2022

Comparing the performance of single and multifrequency Kelvin probe force microscopy techniques in air and water

  • Jason I. Kilpatrick,
  • Emrullah Kargin and
  • Brian J. Rodriguez

Beilstein J. Nanotechnol. 2022, 13, 922–943, doi:10.3762/bjnano.13.82

Graphical Abstract
  • techniques to yield multidimensional data sets and aid in isolation of the influence of electrostatic potential, for example, PeakForce infrared-KPFM (PFIR-KPFM) [66], nanomechanical mapping + KPFM [67][68], magnetic force microscopy (MFM) + KPFM [69], piezoresponse force microscopy (PFM) + KPFM [70], and G
PDF
Full Research Paper
Published 12 Sep 2022

Efficiency of electron cooling in cold-electron bolometers with traps

  • Dmitrii A. Pimanov,
  • Vladimir A. Frost,
  • Anton V. Blagodatkin,
  • Anna V. Gordeeva,
  • Andrey L. Pankratov and
  • Leonid S. Kuzmin

Beilstein J. Nanotechnol. 2022, 13, 896–901, doi:10.3762/bjnano.13.80

Graphical Abstract
  • , τm is the magnetic scattering parameter that is found from the fit. W = W0ξ0/d is the effective tunneling parameter for planar tunnel junctions used in our CEB, W0 = R(ξ0)/RN is the tunneling parameter, RN is the normal resistance of the junction, and R(ξ0) is the resistance of Al/Fe absorber with
PDF
Album
Full Research Paper
Published 07 Sep 2022
Other Beilstein-Institut Open Science Activities