Search results

Search for "scales" in Full Text gives 366 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Measurement of electrostatic tip–sample interactions by time-domain Kelvin probe force microscopy

  • Christian Ritz,
  • Tino Wagner and
  • Andreas Stemmer

Beilstein J. Nanotechnol. 2020, 11, 911–921, doi:10.3762/bjnano.11.76

Graphical Abstract
  • effect is amplified when a significant change in the capacitance gradient is present. To reduce the impact of this component onto the height measurement, the modulation amplitude Uac must be minimized. Since the signal-to-noise ratio (SNR) scales with Uac, this is only possible to a certain extent
PDF
Album
Supp Info
Full Research Paper
Published 15 Jun 2020

Light–matter interactions in two-dimensional layered WSe2 for gauging evolution of phonon dynamics

  • Avra S. Bandyopadhyay,
  • Chandan Biswas and
  • Anupama B. Kaul

Beilstein J. Nanotechnol. 2020, 11, 782–797, doi:10.3762/bjnano.11.63

Graphical Abstract
  • , calculated from the slope of the low-energy edge of the excitonic mode of the PL spectra. The theory of spectral line shape in the Raman spectrum predicts a Lorentzian distribution of a collected signal in a dispersive medium, where the full-width-half-maximum (FWHM) scales as 1/τ, and not surprisingly, τ is
PDF
Album
Supp Info
Full Research Paper
Published 12 May 2020

Quantitative determination of the interaction potential between two surfaces using frequency-modulated atomic force microscopy

  • Nicholas Chan,
  • Carrie Lin,
  • Tevis Jacobs,
  • Robert W. Carpick and
  • Philip Egberts

Beilstein J. Nanotechnol. 2020, 11, 729–739, doi:10.3762/bjnano.11.60

Graphical Abstract
  • such issues. For example, the adsorption of self-assembled monolayers on contacting surfaces is one method by which the surface can be modified to reduce the detrimental impacts of adhesion, friction and wear [15][16][17]. The nanometer length scales over which these processes modify surface
  • pyrolytic graphite (HOPG) or a KBr crystal to negate the effects of varying scales of roughness, which [12] suggests should be a contributing factor. Qualitatively, there is a general mismatch in behavior when comparing the majority of experimental results with the LJ F(z) curves. In particular, the LJ F(z
PDF
Album
Full Research Paper
Published 06 May 2020

Comparison of fresh and aged lithium iron phosphate cathodes using a tailored electrochemical strain microscopy technique

  • Matthias Simolka,
  • Hanno Kaess and
  • Kaspar Andreas Friedrich

Beilstein J. Nanotechnol. 2020, 11, 583–596, doi:10.3762/bjnano.11.46

Graphical Abstract
  • signal generation magnitude compared to the Vegard expansion or their time scales are much shorter than the relaxation times for ESM experiments (Maxwell relaxation times) [30][32]. Electrochemical side reactions may create surface features, which, however, are detectable by subsequent scans of the same
PDF
Album
Supp Info
Full Research Paper
Published 07 Apr 2020

Implementation of data-cube pump–probe KPFM on organic solar cells

  • Benjamin Grévin,
  • Olivier Bardagot and
  • Renaud Demadrille

Beilstein J. Nanotechnol. 2020, 11, 323–337, doi:10.3762/bjnano.11.24

Graphical Abstract
  • –f) and the probe (a, b) signals (shown only for one given delay) are highlighted by half-transparent green and red rectangles, respectively. Note that the time (t) and delay (Δt) scales coincide since the delays are defined with respect to the time origin t = 0 s. However, each data point represents
PDF
Album
Supp Info
Full Research Paper
Published 12 Feb 2020

An advanced structural characterization of templated meso-macroporous carbon monoliths by small- and wide-angle scattering techniques

  • Felix M. Badaczewski,
  • Marc O. Loeh,
  • Torben Pfaff,
  • Dirk Wallacher,
  • Daniel Clemens and
  • Bernd M. Smarsly

Beilstein J. Nanotechnol. 2020, 11, 310–322, doi:10.3762/bjnano.11.23

Graphical Abstract
  • case g(r) corresponds to a pore size contribution. The representation r·g(r) is more appropriate to illustrate the dominating length scales, as the first moment of g(r) (Porod length, lp) is defined as The r·g(r) curves of the pitch-based sample indicate the filling of mesopores of diameters above ca
  • carbon materials. The disorder-induced D band arises from breathing vibrations of carbon rings and the G band resulting from carbon-chain vibrations prove the sp2-hybridized turbostratic microstructure. The G′ band is an overtone, where two phonons are involved. It scales with the number of layers in a
PDF
Album
Supp Info
Correction
Full Research Paper
Published 10 Feb 2020

Understanding nanoparticle flow with a new in vitro experimental and computational approach using hydrogel channels

  • Armel Boutchuen,
  • Dell Zimmerman,
  • Abdollah Arabshahi,
  • John Melnyczuk and
  • Soubantika Palchoudhury

Beilstein J. Nanotechnol. 2020, 11, 296–309, doi:10.3762/bjnano.11.22

Graphical Abstract
  • different dimension scales of the NPs and the vascular network [18][19][20]. These simulations can essentially be categorized on the basis of details in the physics used to define and model the system [5]. Ab initio quantum mechanical simulations represent the highest level of detail, but are most
  • applicable for modeling smaller NP systems or optimizing less detailed simulations due to their increased complexity and computational cost [17]. The coarse grained molecular dynamics simulations can characterize larger systems over time scales greater than 1 ms [21]. These slightly coarser models simulate a
  • interactions of molecules and atoms for a specific time scale. Beyond coarse grained models and molecular modeling, dissipative particle dynamics have been used to simulate the hydrodynamic properties of NPs over larger length scales [22][23]. However, even the dissipative particle dynamics models are limited
PDF
Album
Supp Info
Full Research Paper
Published 06 Feb 2020

Anomalous current–voltage characteristics of SFIFS Josephson junctions with weak ferromagnetic interlayers

  • Tairzhan Karabassov,
  • Anastasia V. Guravova,
  • Aleksei Yu. Kuzin,
  • Elena A. Kazakova,
  • Shiro Kawabata,
  • Boris G. Lvov and
  • Andrey S. Vasenko

Beilstein J. Nanotechnol. 2020, 11, 252–262, doi:10.3762/bjnano.11.19

Graphical Abstract
  • damped oscillatory behavior in a ferromagnetic metal. Hence, since the oscillations are spatially dependent, it is possible to realize a transition from “0” to “π” phase states in S/F/S structures upon changing the F layer thickness [1]. The proximity effect is characterized by the two length scales of
PDF
Album
Full Research Paper
Published 23 Jan 2020

Nonclassical dynamic modeling of nano/microparticles during nanomanipulation processes

  • Moharam Habibnejad Korayem,
  • Ali Asghar Farid and
  • Rouzbeh Nouhi Hefzabad

Beilstein J. Nanotechnol. 2020, 11, 147–166, doi:10.3762/bjnano.11.13

Graphical Abstract
  • scale parameters in governing equations to capture the size effects in nanometer and micrometer scales. The nonclassical theory of modified couple stress employed in this paper includes one material length scale parameter (l) that contributes to the beam model established based on this nonclassical
PDF
Album
Full Research Paper
Published 13 Jan 2020

Molecular architectonics of DNA for functional nanoarchitectures

  • Debasis Ghosh,
  • Lakshmi P. Datta and
  • Thimmaiah Govindaraju

Beilstein J. Nanotechnol. 2020, 11, 124–140, doi:10.3762/bjnano.11.11

Graphical Abstract
  • , while relinquishing the use of traditional silicon-based materials also played a key role. Biomolecular nanolithography is a newer approach to create nanopatterned surfaces using biomolecules as scaffolds [101][102]. The interesting features of this technique are the combination of two separate scales
PDF
Album
Review
Published 09 Jan 2020

Nanosecond resistive switching in Ag/AgI/PtIr nanojunctions

  • Botond Sánta,
  • Dániel Molnár,
  • Patrick Haiber,
  • Agnes Gubicza,
  • Edit Szilágyi,
  • Zsolt Zolnai,
  • András Halbritter and
  • Miklós Csontos

Beilstein J. Nanotechnol. 2020, 11, 92–100, doi:10.3762/bjnano.11.9

Graphical Abstract
  • emergence of such multiple, coexisting physical time scales is a fundamental ingredient to non-volatile data processing. By utilizing the custom-designed pulsed microwave setup also described in this paper in detail, nanosecond-scale switching times were verified. We emphasize that by the simultaneous
PDF
Album
Full Research Paper
Published 08 Jan 2020

A review of demodulation techniques for multifrequency atomic force microscopy

  • David M. Harcombe,
  • Michael G. Ruppert and
  • Andrew J. Fleming

Beilstein J. Nanotechnol. 2020, 11, 76–91, doi:10.3762/bjnano.11.8

Graphical Abstract
  • inherently greater demodulation challenges. Strong OMR is required as higher harmonics are separated by nf0, much closer than the approx. 6f0 second eigenmode spacing [61]. In addition, harmonic content from tip–sample interactions scales with approx. 1/n2[13]. Therefore, the signals of interest are detected
PDF
Album
Review
Published 07 Jan 2020

An investigation on the drag reduction performance of bioinspired pipeline surfaces with transverse microgrooves

  • Weili Liu,
  • Hongjian Ni,
  • Peng Wang and
  • Yi Zhou

Beilstein J. Nanotechnol. 2020, 11, 24–40, doi:10.3762/bjnano.11.3

Graphical Abstract
  • [35] mimicked fish scales to fabricate a bionic surface through coating technology and obtained a remarkable drag reduction performance in a water tunnel experiment. Feng and co-workers [13] mimicked bird feathers to fabricate a bionic surface with transverse grooves through hot-rolling technology and
PDF
Album
Full Research Paper
Published 03 Jan 2020

Label-free highly sensitive probe detection with novel hierarchical SERS substrates fabricated by nanoindentation and chemical reaction methods

  • Jingran Zhang,
  • Tianqi Jia,
  • Yongda Yan,
  • Li Wang,
  • Peng Miao,
  • Yimin Han,
  • Xinming Zhang,
  • Guangfeng Shi,
  • Yanquan Geng,
  • Zhankun Weng,
  • Daniel Laipple and
  • Zuobin Wang

Beilstein J. Nanotechnol. 2019, 10, 2483–2496, doi:10.3762/bjnano.10.239

Graphical Abstract
  • form a structure similar to fish scales with fx = 5 μm and fy = 1 μm. Additionally, the inside of the cavities and the surface of the sample are smooth. However, the surface of the sample, the inside of the cavities, and pile-ups of material are roughened when using HCl and AgNO3 solutions. Ag
PDF
Album
Full Research Paper
Published 13 Dec 2019

Air oxidation of sulfur mustard gas simulants using a pyrene-based metal–organic framework photocatalyst

  • Ghada Ayoub,
  • Mihails Arhangelskis,
  • Xuan Zhang,
  • Florencia Son,
  • Timur Islamoglu,
  • Tomislav Friščić and
  • Omar K. Farha

Beilstein J. Nanotechnol. 2019, 10, 2422–2427, doi:10.3762/bjnano.10.232

Graphical Abstract
  • ) hydrolysis [8][9], 2) oxidation, and 3) dehydrohalogenation [10][11][12] (Scheme 1). The hydrolysis route is limited to small scales because of the hydrophobicity of sulfur mustard gas. The mechanism of degradation by dehydrohalogenation mechanism is still poorly understood and not efficient enough for real
PDF
Album
Supp Info
Full Research Paper
Published 09 Dec 2019

Nitrogen-vacancy centers in diamond for nanoscale magnetic resonance imaging applications

  • Alberto Boretti,
  • Lorenzo Rosa,
  • Jonathan Blackledge and
  • Stefania Castelletto

Beilstein J. Nanotechnol. 2019, 10, 2128–2151, doi:10.3762/bjnano.10.207

Graphical Abstract
PDF
Album
Review
Published 04 Nov 2019

The importance of design in nanoarchitectonics: multifractality in MACE silicon nanowires

  • Stefania Carapezzi and
  • Anna Cavallini

Beilstein J. Nanotechnol. 2019, 10, 2094–2102, doi:10.3762/bjnano.10.204

Graphical Abstract
  • self-assembly. Then, we have studied the surfaces of the nanoarchitectures by means of multifractal analysis. We have found that these systems are not simple monofractals, but that the more complex paradigm of multifractality (different fractal dimensions across different scales) has to be applied to
  • nanosized dimensions of the basic units. Because the spatial layout is self-driven in contrast to a hetero-directed placement, asymmetric interaction potentials and entropic forces can lead to different aggregation schemes from place to place and across the scales of the generated structures. The control
  • from aggregative processes, which are omnipresent in nature, have been characterized by their fractal dimension [21][22][23] that contains information about their geometrical structure at multiple scales. However, sometimes the richness of the organization of shape is such that it is impossible to
PDF
Album
Full Research Paper
Published 31 Oct 2019

Nanostructured and oriented metal–organic framework films enabling extreme surface wetting properties

  • Andre Mähringer,
  • Julian M. Rotter and
  • Dana D. Medina

Beilstein J. Nanotechnol. 2019, 10, 1994–2003, doi:10.3762/bjnano.10.196

Graphical Abstract
  • contact with the surface (see Figure S5.7, Supporting Information File 1). These surface properties resemble those of surface designs found in nature. For example, referring to marine life, fish scales in air show an amphiphilic behavior due to their high surface energy, but under water they turn
PDF
Album
Supp Info
Full Research Paper
Published 09 Oct 2019

First principles modeling of pure black phosphorus devices under pressure

  • Ximing Rong,
  • Zhizhou Yu,
  • Zewen Wu,
  • Junjun Li,
  • Bin Wang and
  • Yin Wang

Beilstein J. Nanotechnol. 2019, 10, 1943–1951, doi:10.3762/bjnano.10.190

Graphical Abstract
  • pressure influence the transport properties of the pure BP devices? 3) How does their length influence the conductance of pure BP devices? 4) Can the conclusions from the system of finite size be transferred to larger scales? To answer these questions, first principles calculations were carried out to
  • calculation, we performed an empirical WKB fitting with parameters obtained from the DFT calculations to predict the pressure-dependent conductance of pure BP devices at larger scales. Using the WKB method, the conductance GWKB can be estimated empirically by [46][47][48][49][50] where A and B are two
PDF
Album
Full Research Paper
Published 24 Sep 2019

Remarkable electronic and optical anisotropy of layered 1T’-WTe2 2D materials

  • Qiankun Zhang,
  • Rongjie Zhang,
  • Jiancui Chen,
  • Wanfu Shen,
  • Chunhua An,
  • Xiaodong Hu,
  • Mingli Dong,
  • Jing Liu and
  • Lianqing Zhu

Beilstein J. Nanotechnol. 2019, 10, 1745–1753, doi:10.3762/bjnano.10.170

Graphical Abstract
  •  6a and 6b. As observed from the two figures, the value scales of the basic current along 30° and 150° are around 4.0 nA and 1.2 μA, respectively, due of the anisotropic absorption of light. Although the basic current induced by daylight illumination turned out to be a non-negligible, the photocurrent
PDF
Album
Correction
Full Research Paper
Published 20 Aug 2019

Materials nanoarchitectonics at two-dimensional liquid interfaces

  • Katsuhiko Ariga,
  • Michio Matsumoto,
  • Taizo Mori and
  • Lok Kumar Shrestha

Beilstein J. Nanotechnol. 2019, 10, 1559–1587, doi:10.3762/bjnano.10.153

Graphical Abstract
  • , molecular motion is virtually inhibited in the vertical direction. Therefore, two significantly different scales of motion, macroscopic lateral motion and nanoscopic vertical motion, are connected at liquid interfaces [163][164][165][166]. For example, motion and function of molecular machines and molecular
PDF
Album
Review
Published 30 Jul 2019

Unipolar magnetic field pulses as an advantageous tool for ultrafast operations in superconducting Josephson “atoms”

  • Daria V. Popolitova,
  • Nikolay V. Klenov,
  • Igor I. Soloviev,
  • Sergey V. Bakurskiy and
  • Olga V. Tikhonova

Beilstein J. Nanotechnol. 2019, 10, 1548–1558, doi:10.3762/bjnano.10.152

Graphical Abstract
  • the increase of the magnetic field strength, compare Figure 2a and Figure 2b), since the carrier oscillations become faster. As a result by increasing the magnetic field strength it is possible to provide the required operations at ultra-short time scales. For example, for μ ≈ 106 arb unit, H ≈ 10−5
PDF
Album
Full Research Paper
Published 29 Jul 2019

Hierarchically structured 3D carbon nanotube electrodes for electrocatalytic applications

  • Pei Wang,
  • Katarzyna Kulp and
  • Michael Bron

Beilstein J. Nanotechnol. 2019, 10, 1475–1487, doi:10.3762/bjnano.10.146

Graphical Abstract
  • scan rate of 5 mV s−1 was applied. Note that the oxidation current scales with the square root of the scan rate, while the double-layer charging current linearly scales with scan rate. Thus, the slow scan rate allows for a much more reliable determination of peak potentials and currents. The fifth
PDF
Album
Supp Info
Full Research Paper
Published 24 Jul 2019

Growth of lithium hydride thin films from solutions: Towards solution atomic layer deposition of lithiated films

  • Ivan Kundrata,
  • Karol Fröhlich,
  • Lubomír Vančo,
  • Matej Mičušík and
  • Julien Bachmann

Beilstein J. Nanotechnol. 2019, 10, 1443–1451, doi:10.3762/bjnano.10.142

Graphical Abstract
  • solid electrolytes. Physical vapour deposition and chemical vapour deposition can be used to deposit lithiated films. However, the issue of conformality on non-planar substrates with large surface area makes them impractical for nanobatteries the capacity of which scales with surface area. Atomic layer
PDF
Album
Full Research Paper
Published 18 Jul 2019

A biomimetic nanofluidic diode based on surface-modified polymeric carbon nitride nanotubes

  • Kai Xiao,
  • Baris Kumru,
  • Lu Chen,
  • Lei Jiang,
  • Bernhard V. K. J. Schmidt and
  • Markus Antonietti

Beilstein J. Nanotechnol. 2019, 10, 1316–1323, doi:10.3762/bjnano.10.130

Graphical Abstract
  • by this approach possess a high nitrogen content with excellent chemical and thermal stability (Figures S2 and S3, Supporting Information File 1). It is also environmentally friendly, sustainable, and can be facilely synthesized on large scales with low cost [28][29]. Figure 2a shows the typical SEM
PDF
Album
Supp Info
Full Research Paper
Published 27 Jun 2019
Other Beilstein-Institut Open Science Activities