Search results

Search for "feedback" in Full Text gives 226 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

In situ observation of deformation processes in nanocrystalline face-centered cubic metals

  • Aaron Kobler,
  • Christian Brandl,
  • Horst Hahn and
  • Christian Kübel

Beilstein J. Nanotechnol. 2016, 7, 572–580, doi:10.3762/bjnano.7.50

Graphical Abstract
  • inspiring discussions and feedback. We thank Paul Vincze, Karlsruhe Institute of Technology (KIT) for the AFM measurements and Torsten Scherer as well as Robby Prang, Karlsruhe Institute of Technology (KIT) for their help with the FIB. Financial support by the German Science Foundation (DFG) as part of the
PDF
Album
Supp Info
Full Research Paper
Published 19 Apr 2016

Length-extension resonator as a force sensor for high-resolution frequency-modulation atomic force microscopy in air

  • Hannes Beyer,
  • Tino Wagner and
  • Andreas Stemmer

Beilstein J. Nanotechnol. 2016, 7, 432–438, doi:10.3762/bjnano.7.38

Graphical Abstract
  • air using a length-extension resonator operating at small amplitudes. An additional slow feedback compensates for changes in the free resonance frequency, allowing stable imaging over a long period of time with changing environmental conditions. Keywords: ambient conditions; drift compensation
  • amplitude setpoint of the first harmonic employed for feedback in amplitude-modulated AFM [19]. Another approach is to adjust the topography feedback parameter according to the difference of trace and retrace, which are scanned with different setpoints [20]. Here, we extend the methods reported by Schiener
  • et al. [19] and Fan et al. [21], applying a feedback based on the Q-factor to stabilise the tip–sample distance. In our implementation the ratio of excitation and amplitude of the first harmonic resonance, and thus the Q-factor, is held constant by a slow feedback to compensate for drift of the free
PDF
Album
Full Research Paper
Published 15 Mar 2016

Efficiency improvement in the cantilever photothermal excitation method using a photothermal conversion layer

  • Natsumi Inada,
  • Hitoshi Asakawa,
  • Taiki Kobayashi and
  • Takeshi Fukuma

Beilstein J. Nanotechnol. 2016, 7, 409–417, doi:10.3762/bjnano.7.36

Graphical Abstract
  • and after the measurement are almost the same (Figure 6a). Figure 6b–f shows FM-AFM images of a mica surface obtained in PBS solution using an AC55 cantilever coated with a PTC layer. After adjusting the imaging parameters such as Δf, A and feedback gains to obtain atomic resolution, long-term FM-AFM
  • commercially available phase-locked loop circuit (OC4, SPECS, Zürich, Switzerland). A commercially available AFM controller (ARC2, Asylum Research, Santa Barbara, CA, USA) was used for the tip–sample distance feedback regulation and acquisition of FM-AFM images. The FM-AFM imaging of a mica surface was
PDF
Album
Supp Info
Full Research Paper
Published 10 Mar 2016

Molecular machines operating on the nanoscale: from classical to quantum

  • Igor Goychuk

Beilstein J. Nanotechnol. 2016, 7, 328–350, doi:10.3762/bjnano.7.31

Graphical Abstract
PDF
Album
Review
Published 03 Mar 2016

High-bandwidth multimode self-sensing in bimodal atomic force microscopy

  • Michael G. Ruppert and
  • S. O. Reza Moheimani

Beilstein J. Nanotechnol. 2016, 7, 284–295, doi:10.3762/bjnano.7.26

Graphical Abstract
  • strain sensitivity on the fifth eigenmode leading to a remarkable signal-to-noise ratio. Experimental results using bimodal AFM imaging on a two component polymer sample validate that the self-sensing scheme can therefore be used to provide both the feedback signal, for topography imaging on the
  • cantilever holder to mount the piezoelectric cantilever used in this work. The signal access module (SAM) of the AFM provides the relevant inputs and outputs to change the feedback signal from the OBD sensor measurement to charge measurement. Approach and retract curves as well as all AFM imaging data were
  • recorded using two synchronized Zürich Instrument HF2LI lock-in amplifiers for which custom imaging scripts were written. Therefore, it is possible to obtain AFM images relating to either sensor while z-axis feedback is performed on one specific sensor. The samples under investigation are a TGZ1 silicon
PDF
Album
Full Research Paper
Published 24 Feb 2016

Large area scanning probe microscope in ultra-high vacuum demonstrated for electrostatic force measurements on high-voltage devices

  • Urs Gysin,
  • Thilo Glatzel,
  • Thomas Schmölzer,
  • Adolf Schöner,
  • Sergey Reshanov,
  • Holger Bartolf and
  • Ernst Meyer

Beilstein J. Nanotechnol. 2015, 6, 2485–2497, doi:10.3762/bjnano.6.258

Graphical Abstract
  • certain surface area. The tip height is controlled by a feedback loop correlating the tip–sample interaction with the deflection of the cantilever. However, the interaction force contains many different components which can only be partly suppressed (e.g., magnetic forces when inspecting non-magnetic
PDF
Album
Full Research Paper
Published 28 Dec 2015

Sub-monolayer film growth of a volatile lanthanide complex on metallic surfaces

  • Hironari Isshiki,
  • Jinjie Chen,
  • Kevin Edelmann and
  • Wulf Wulfhekel

Beilstein J. Nanotechnol. 2015, 6, 2412–2416, doi:10.3762/bjnano.6.248

Graphical Abstract
  • temperature was kept at ≈5 K. The dI/dV spectra were taken using a standard lock-in amplifier technique with a 487 Hz modulation frequency and 20 mV modulation voltage with an open feedback loop. The dI/dV maps were recorded with the same lock-in parameters but with a closed feedback loop. A ball–stick model
PDF
Album
Full Research Paper
Published 16 Dec 2015

Negative differential electrical resistance of a rotational organic nanomotor

  • Hatef Sadeghi,
  • Sara Sangtarash,
  • Qusiy Al-Galiby,
  • Rachel Sparks,
  • Steven Bailey and
  • Colin J. Lambert

Beilstein J. Nanotechnol. 2015, 6, 2332–2337, doi:10.3762/bjnano.6.240

Graphical Abstract
  • in Figure 1 whose conformation can be manipulated using an external electric field and whose conformational changes feedback to produce a nonlinear current–voltage relation. This novel NEM consists of a pendant rotor attached by a single carbon bond to an aromatic backbone. The rotor is designed to
PDF
Album
Supp Info
Full Research Paper
Published 08 Dec 2015

Nanoscale rippling on polymer surfaces induced by AFM manipulation

  • Mario D’Acunto,
  • Franco Dinelli and
  • Pasqualantonio Pingue

Beilstein J. Nanotechnol. 2015, 6, 2278–2289, doi:10.3762/bjnano.6.234

Graphical Abstract
  • the tip [22][36] inducing in this way the formation of a rippled structure along the circumference of a scanned circle (Figure 2). While scanning a PMMA surface with a minimum feedback, the authors have been able to record instantaneous variations in the cantilever vertical displacement. They have
PDF
Album
Review
Published 02 Dec 2015

Kelvin probe force microscopy for local characterisation of active nanoelectronic devices

  • Tino Wagner,
  • Hannes Beyer,
  • Patrick Reissner,
  • Philipp Mensch,
  • Heike Riel,
  • Bernd Gotsmann and
  • Andreas Stemmer

Beilstein J. Nanotechnol. 2015, 6, 2193–2206, doi:10.3762/bjnano.6.225

Graphical Abstract
  • superior resolution of FM-KFM while maintaining robust topography feedback and minimal crosstalk, we introduce a novel FM-KFM controller based on a Kalman filter and direct demodulation of sidebands. We discuss the origin of sidebands in FM-KFM irrespective of the cantilever quality factor and how direct
  • sideband demodulation enables robust amplitude modulated topography feedback. Finally, we demonstrate our single-scan FM-KFM technique on an active nanoelectronic device consisting of a 70 nm diameter InAs nanowire contacted by a pair of 120 nm thick electrodes. Keywords: capacitive crosstalk; frequency
  • established technique that allows for the mapping of local electrostatic potentials with an atomic force microscope (AFM) [1][2][3]. In contrast to electrostatic force microscopy (EFM), which measures merely the effect of electrostatic forces on the oscillation of the tip, a feedback loop nullifies the
PDF
Album
Supp Info
Full Research Paper
Published 23 Nov 2015

Virtual reality visual feedback for hand-controlled scanning probe microscopy manipulation of single molecules

  • Philipp Leinen,
  • Matthew F. B. Green,
  • Taner Esat,
  • Christian Wagner,
  • F. Stefan Tautz and
  • Ruslan Temirov

Beilstein J. Nanotechnol. 2015, 6, 2148–2153, doi:10.3762/bjnano.6.220

Graphical Abstract
  • environment is not fully known. Here we present a further technical development that substantially improves the effectiveness of HCM. By adding Oculus Rift virtual reality goggles to our HCM set-up we provide the experimentalist with 3D visual feedback that displays the currently executed trajectory and the
  • of or as obtained from the SPM. Switching between the log(I) and Δf color-codes can be performed by pressing a custom-defined action button on the Apex device. Results and Discussion We begin the discussion of our results by characterising the precision of the implemented visual feedback system
  • tip was stabilized, the STM current feedback loop was opened and the control over the tip position was passed to the operator. The operator contacted the molecule by moving the tip in a strictly vertical trajectory (x,y tip coordinates frozen) until a sharp jump of the I and Δf bar indicators in the
PDF
Album
Supp Info
Full Research Paper
Published 16 Nov 2015

Controlled switching of single-molecule junctions by mechanical motion of a phenyl ring

  • Yuya Kitaguchi,
  • Satoru Habuka,
  • Hiroshi Okuyama,
  • Shinichiro Hatta,
  • Tetsuya Aruga,
  • Thomas Frederiksen,
  • Magnus Paulsson and
  • Hiromu Ueba

Beilstein J. Nanotechnol. 2015, 6, 2088–2095, doi:10.3762/bjnano.6.213

Graphical Abstract
  • nA at VS = 50 mV. After the feedback was turned off, the tip was laterally displaced along the [001] direction by 2 Å (cross over the molecule) and then moved toward the molecule. Figure 1b shows a typical tunnel current recorded during the approach (black) and subsequent retraction (red), where
  • surface normal. The tip was first positioned over the protrusion of the top molecule in (a) at a height corresponding to VS = 50 mV and I = 1 nA, and the feedback loop was turned off. Then the tip was laterally displaced in the [001] direction by 2 Å (indicated by the cross) and moved toward the molecule
PDF
Album
Full Research Paper
Published 30 Oct 2015

Development of a novel nanoindentation technique by utilizing a dual-probe AFM system

  • Eyup Cinar,
  • Ferat Sahin and
  • Dalia Yablon

Beilstein J. Nanotechnol. 2015, 6, 2015–2027, doi:10.3762/bjnano.6.205

Graphical Abstract
  • effort to overcome the limitations and problems of current high resolution nanoindentation systems such as AFM-based systems. Different than cantilever displacement measured by optical means, our approach uses a secondary AFM probe that is kept in closed-loop feedback contact with the indenter probe
  • tuning forks (above 4000 N/m). During nanoindentation of the specimen, the point of contact can be determined with great accuracy as compared to other nanoindentation tools since the positioning of the tuning forks is controlled with phase feedback. This is also an advantage for the experimentally
  • holds the sample holder and has a range of 80 μm in all directions. The tuning fork is tuned to its resonance frequency, and either the oscillation amplitude or phase can be used for feedback. Based on the amplitude or phase feedback error, each tower can be independently controlled in a closed-loop
PDF
Album
Full Research Paper
Published 12 Oct 2015

An ISA-TAB-Nano based data collection framework to support data-driven modelling of nanotoxicology

  • Richard L. Marchese Robinson,
  • Mark T. D. Cronin,
  • Andrea-Nicole Richarz and
  • Robert Rallo

Beilstein J. Nanotechnol. 2015, 6, 1978–1999, doi:10.3762/bjnano.6.202

Graphical Abstract
PDF
Album
Supp Info
Full Research Paper
Published 05 Oct 2015

Nanocuration workflows: Establishing best practices for identifying, inputting, and sharing data to inform decisions on nanomaterials

  • Christina M. Powers,
  • Karmann A. Mills,
  • Stephanie A. Morris,
  • Fred Klaessig,
  • Sharon Gaheen,
  • Nastassja Lewinski and
  • Christine Ogilvie Hendren

Beilstein J. Nanotechnol. 2015, 6, 1860–1871, doi:10.3762/bjnano.6.189

Graphical Abstract
  • effort moves forward. Interested community members can share feedback or join the National Cancer Informatics Program (NCIP) Nanotechnology Working Group by visiting https://nciphub.org/groups/nanowg/overview, and can learn more about the Nanomaterial Data Curation Initiative, in particular, by visiting
PDF
Album
Supp Info
Commentary
Published 04 Sep 2015

Nonlinear optical properties of near-infrared region Ag2S quantum dots pumped by nanosecond laser pulses

  • Li-wei Liu,
  • Si-yi Hu,
  • Yin-ping Dou,
  • Tian-hang Liu,
  • Jing-quan Lin and
  • Yue Wang

Beilstein J. Nanotechnol. 2015, 6, 1781–1787, doi:10.3762/bjnano.6.182

Graphical Abstract
  • ionic currents contribute to the absorption of the Ag2S QDs, which is affected by the pulse width waveforms. It could also be explained by an effect of nonlinear optical absorption that depends othe pump energy. This may reflect the dynamic behavior of gain or feedback mechanisms in the nonlinear
PDF
Album
Full Research Paper
Published 24 Aug 2015

The Nanomaterial Data Curation Initiative: A collaborative approach to assessing, evaluating, and advancing the state of the field

  • Christine Ogilvie Hendren,
  • Christina M. Powers,
  • Mark D. Hoover and
  • Stacey L. Harper

Beilstein J. Nanotechnol. 2015, 6, 1752–1762, doi:10.3762/bjnano.6.179

Graphical Abstract
  • across the community will be critical to enable the type of iterative feedback between disciplines and sectors necessary to meet the important challenges of responsibly commercializing nanotechnologies. By working together from the beginning to tackle difficult data issues including uncertainty
  • doubt include suggestions on opportunities regarding the potential for linkages and collaborations. We welcome input from the nanomaterial community on the approach for the project laid out in this article and encourage continued feedback as the effort moves forward, including via participation from
  • growing list of nanomaterial data stakeholders. Interested community members can share feedback or join the NCIP by visiting to https://nciphub.org/, and can learn more about the NDIC in particular by visiting https://nciphub.org/groups/nanotechnologydatacurationinterestgroup/wiki/MainPage. NDCI curation
PDF
Full Research Paper
Published 18 Aug 2015

Lower nanometer-scale size limit for the deformation of a metallic glass by shear transformations revealed by quantitative AFM indentation

  • Arnaud Caron and
  • Roland Bennewitz

Beilstein J. Nanotechnol. 2015, 6, 1721–1732, doi:10.3762/bjnano.6.176

Graphical Abstract
  • . In order to measure topography both amplitude and frequency shift are tracked by a feedback loop so as to keep the cantilever oscillation in resonance [15]. For indentation and imaging we used a diamond-coated silicon single crystalline cantilever (Type: CDT-NCLR, manufactured by NanoSensors). The
PDF
Album
Full Research Paper
Published 13 Aug 2015

Analyzing collaboration networks and developmental patterns of nano-enabled drug delivery (NEDD) for brain cancer

  • Ying Huang,
  • Jing Ma,
  • Alan L. Porter,
  • Seokbeom Kwon and
  • Donghua Zhu

Beilstein J. Nanotechnol. 2015, 6, 1666–1676, doi:10.3762/bjnano.6.169

Graphical Abstract
  • advice and feedback.
PDF
Album
Full Research Paper
Published 31 Jul 2015

The eNanoMapper database for nanomaterial safety information

  • Nina Jeliazkova,
  • Charalampos Chomenidis,
  • Philip Doganis,
  • Bengt Fadeel,
  • Roland Grafström,
  • Barry Hardy,
  • Janna Hastings,
  • Markus Hegi,
  • Vedrin Jeliazkov,
  • Nikolay Kochev,
  • Pekka Kohonen,
  • Cristian R. Munteanu,
  • Haralambos Sarimveis,
  • Bart Smeets,
  • Pantelis Sopasakis,
  • Georgia Tsiliki,
  • David Vorgrimmler and
  • Egon Willighagen

Beilstein J. Nanotechnol. 2015, 6, 1609–1634, doi:10.3762/bjnano.6.165

Graphical Abstract
PDF
Album
Supp Info
Full Research Paper
Published 27 Jul 2015

Experiences in supporting the structured collection of cancer nanotechnology data using caNanoLab

  • Stephanie A. Morris,
  • Sharon Gaheen,
  • Michal Lijowski,
  • Mervi Heiskanen and
  • Juli Klemm

Beilstein J. Nanotechnol. 2015, 6, 1580–1593, doi:10.3762/bjnano.6.161

Graphical Abstract
  • Feedback The caNanoLab team is interested in feedback from the user community on the new caNanoLab features and plans for future enhancements. A discussion forum was created to receive this feedback at https://nciphub.org/groups/cananolab_usability. The team is especially interested in the community’s
PDF
Album
Full Research Paper
Published 21 Jul 2015

Electrical properties and mechanical stability of anchoring groups for single-molecule electronics

  • Riccardo Frisenda,
  • Simge Tarkuç,
  • Elena Galán,
  • Mickael L. Perrin,
  • Rienk Eelkema,
  • Ferdinand C. Grozema and
  • Herre S. J. van der Zant

Beilstein J. Nanotechnol. 2015, 6, 1558–1567, doi:10.3762/bjnano.6.159

Graphical Abstract
  • experiment we break and reform the gold contact while recording the current with an applied bias voltage of typically 0.1 V separating the electrodes at a speed of 5 nm/s. A feedback on the conductance is used: we break for 6 nm after reaching 20G0 and we close the junction until the conductance reaches 40G0
PDF
Album
Supp Info
Full Research Paper
Published 17 Jul 2015

Enhanced fullerene–Au(111) coupling in (2√3 × 2√3)R30° superstructures with intermolecular interactions

  • Michael Paßens,
  • Rainer Waser and
  • Silvia Karthäuser

Beilstein J. Nanotechnol. 2015, 6, 1421–1431, doi:10.3762/bjnano.6.147

Graphical Abstract
  • of the ac tunnelling current achieved by modulating the sample bias after switching off the feedback loop. The single crystal Au(111) substrate (MaTecK, Germany) was cleaned in UHV by cycles of Ne+ ion sputtering (1 kV, 10 min) and thermal annealing (600 °C, 20 min). The cleanliness was checked by
PDF
Album
Full Research Paper
Published 29 Jun 2015

Electron and heat transport in porphyrin-based single-molecule transistors with electro-burnt graphene electrodes

  • Hatef Sadeghi,
  • Sara Sangtarash and
  • Colin J. Lambert

Beilstein J. Nanotechnol. 2015, 6, 1413–1420, doi:10.3762/bjnano.6.146

Graphical Abstract
  • in the porphyrin central group in the LUMO and LUMO+1 state. Electro-burnt graphene electrodes Feedback-controlled electro-burnt graphene (EBG) electrodes with nanometre separation were formed using mechanically exfoliated, few-layer graphene [9] and CVD-grown, monolayer graphene [17][18]. To form
  • carbon atoms to instantaneously react with atmospheric oxygen, resulting in combustion. A feedback signal is used to impede this oxidation before the sample is destroyed. After successive repetitions of this process, the graphene nanoribbon becomes more and more narrow and finally breaks to create a
PDF
Album
Full Research Paper
Published 26 Jun 2015

Nano-contact microscopy of supracrystals

  • Adam Sweetman,
  • Nicolas Goubet,
  • Ioannis Lekkas,
  • Marie Paule Pileni and
  • Philip Moriarty

Beilstein J. Nanotechnol. 2015, 6, 1229–1236, doi:10.3762/bjnano.6.126

Graphical Abstract
  • using conventional Δf feedback on the attractive branch. Oscillation amplitudes (A0) between 0.1 and 0.3 nm were typically used for DFM imaging. We reduced any possible electronic crosstalk [19] or so-called “phantom force” [21] effects by ensuring DFM imaging was performed in the absence of a
  • constant Δf feedback and slowly increased the Δf setpoint until stable, high contrast DFM imaging was obtained. Figure 1C is an image of the same nanocrystal as shown in the centre of Figure 1B acquired in constant Δf DFM mode at a Δf of −2 Hz. We note that the appearance of the nanocrystals in DFM
  • feedback is broadly comparable to that in dSTM, with the particles having the same approximate size and shape with little internal contrast. After completing the DFM scan, the tip was positioned over the centre of a nanocrystal and the feedback loop turned off. The same region was then imaged in constant
PDF
Album
Supp Info
Full Research Paper
Published 29 May 2015
Other Beilstein-Institut Open Science Activities