Search results

Search for "low energy" in Full Text gives 272 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Disorder in H+-irradiated HOPG: effect of impinging energy and dose on Raman D-band splitting and surface topography

  • Lisandro Venosta,
  • Noelia Bajales,
  • Sergio Suárez and
  • Paula G. Bercoff

Beilstein J. Nanotechnol. 2018, 9, 2708–2717, doi:10.3762/bjnano.9.253

Graphical Abstract
  • were performed using a Tandem NEC Pelletron 5SDH of 1.7 MV, at two impinging energies: 0.4 MeV (low energy, LE) and 1 MeV (high energy, HE), using two different doses: 1014 ions/cm2 (low dose, LD) and 1016 ions/cm2 (high dose, HD). These irradiation conditions were chosen in order to ensure a maximum
  • of dose and energy. We do not observe a continuous evolution from low dose and low energy to high dose and high energy in our spectra, which may allow us to correlate changes in each component of the D band with a certain kind of defects or defect-like features, including changes in the hybridization
  • impinging energy is approximately four times greater than in the case of lower energy. In fact, SRIM simulations allowed us to estimate penetration depths of 3.3 μm and 12.6 μm for low and high energies, respectively. Hence, a smaller mean free path of the ions results in the case of low energy, which
PDF
Album
Full Research Paper
Published 19 Oct 2018

Two-dimensional semiconductors pave the way towards dopant-based quantum computing

  • José Carlos Abadillo-Uriel,
  • Belita Koiller and
  • María José Calderón

Beilstein J. Nanotechnol. 2018, 9, 2668–2673, doi:10.3762/bjnano.9.249

Graphical Abstract
  • neighboring donors. For two electrons bound to a single donor there are two low-energy levels well separated from the next excited state, one singlet and one triplet, which allows to map the lower-energy-states problem to the Heisenberg spin-1/2 Hamiltonian. For two electrons bound to a donor pair, there are
PDF
Album
Supp Info
Full Research Paper
Published 12 Oct 2018

Pattern generation for direct-write three-dimensional nanoscale structures via focused electron beam induced deposition

  • Lukas Keller and
  • Michael Huth

Beilstein J. Nanotechnol. 2018, 9, 2581–2598, doi:10.3762/bjnano.9.240

Graphical Abstract
  • surface. As the focused electron beam is directed to predefined positions, chemical bonds of precursor molecules at these positions break, mainly via the generated low-energy secondary electrons (SE) [11]. The nonvolatile precursor fragments remain as deposits. Depending on the precursor used, and also on
PDF
Album
Supp Info
Full Research Paper
Published 27 Sep 2018

Directional light beams by design from electrically driven elliptical slit antennas

  • Shuiyan Cao,
  • Eric Le Moal,
  • Quanbo Jiang,
  • Aurélien Drezet,
  • Serge Huant,
  • Jean-Paul Hugonin,
  • Gérald Dujardin and
  • Elizabeth Boer-Duchemin

Beilstein J. Nanotechnol. 2018, 9, 2361–2371, doi:10.3762/bjnano.9.221

Graphical Abstract
  • Grenoble, France and CNRS, Institut NEEL, F-38042 Grenoble, France Laboratoire Charles Fabry, Institut d’Optique, 91127 Palaiseau, France 10.3762/bjnano.9.221 Abstract We report on the low-energy, electrical generation of light beams in specific directions from planar elliptical microstructures. The
  • by design. Inspired by this work, we investigate in the present paper the low-energy (below 3 eV) electrical excitation and the resulting light beams from single elliptical antennas consisting of an elliptical slit etched in a gold film. We theoretically and experimentally show that when the
  • symmetry of the system with respect to the yz-plane). Conclusion We have introduced the working principle of an electrically driven elliptical slit antenna, which is a highly directive, low-energy, electrical microsource of light beams emitting in controlled directions. The emission direction is tailored
PDF
Album
Supp Info
Full Research Paper
Published 03 Sep 2018

Nanoscale characterization of the temporary adhesive of the sea urchin Paracentrotus lividus

  • Ana S. Viana and
  • Romana Santos

Beilstein J. Nanotechnol. 2018, 9, 2277–2286, doi:10.3762/bjnano.9.212

Graphical Abstract
  • (two high-energy surfaces) than on teflon (a low-energy surface) [7]. In order to understand the topography, P. lividus footprints were imaged using different probing methods (peak force tapping in air and fluid) and in various environments: dry, moist and under native conditions (ASW). In all the
PDF
Album
Full Research Paper
Published 24 Aug 2018

Interaction-induced zero-energy pinning and quantum dot formation in Majorana nanowires

  • Samuel D. Escribano,
  • Alfredo Levy Yeyati and
  • Elsa Prada

Beilstein J. Nanotechnol. 2018, 9, 2171–2180, doi:10.3762/bjnano.9.203

Graphical Abstract
  • -dimensional model of the dielectric surroundings, here we show that, under certain circumstances, these interactions lead to a suppression of the Majorana oscillations predicted by simpler theoretical models, and to the formation of low-energy quantum-dot states that interact with the Majorana modes. Both
  • electrostatic solution (i.e., the intrinsic electron–electron interaction part of the problem), treated at the Hartree–Fock level, has a negligible effect on the low-energy spectrum in the topological regime. We may therefore concentrate only on the self-consistency with . In Section 2 of Supporting Information
  • electrostatic potential has direct consequences on the spectral properties of the wire, as we analyze below in Figure 4, but for comparison, let us first see what happens in the non-interacting case. The spectrum of the wire is shown in Figure 3a. There we can observe the emergence of low-energy subgap states
PDF
Album
Supp Info
Full Research Paper
Published 15 Aug 2018

Metal-free catalysis based on nitrogen-doped carbon nanomaterials: a photoelectron spectroscopy point of view

  • Mattia Scardamaglia and
  • Carla Bittencourt

Beilstein J. Nanotechnol. 2018, 9, 2015–2031, doi:10.3762/bjnano.9.191

Graphical Abstract
  • temperatures up to 950 °C the amount of pure substitutional nitrogen (graphitic) and the DOS increase (Figure 3). As mentioned, the low-energy electronic excitation and the selectivity for oxygen dissociation strongly depend on the type of nitrogen dopant present in the sample, as we will discuss in the next
PDF
Album
Review
Published 18 Jul 2018

Defect formation in multiwalled carbon nanotubes under low-energy He and Ne ion irradiation

  • Santhana Eswara,
  • Jean-Nicolas Audinot,
  • Brahime El Adib,
  • Maël Guennou,
  • Tom Wirtz and
  • Patrick Philipp

Beilstein J. Nanotechnol. 2018, 9, 1951–1963, doi:10.3762/bjnano.9.186

Graphical Abstract
  • modifications of MWCNTs by low energy He+ and Ne+ ion irradiation for fluences of 1014 to 1018 ions/cm2, i.e., for imaging conditions found on the HIM [44][45][46]. We present a correlative approach in which ion-irradiation-induced modifications are characterised by Raman spectroscopy and TEM imaging, and the
PDF
Album
Supp Info
Full Research Paper
Published 09 Jul 2018

Synthesis of carbon nanowalls from a single-source metal-organic precursor

  • André Giese,
  • Sebastian Schipporeit,
  • Volker Buck and
  • Nicolas Wöhrl

Beilstein J. Nanotechnol. 2018, 9, 1895–1905, doi:10.3762/bjnano.9.181

Graphical Abstract
  • growing tightly next to each other on the surface and that they are of dense structure. Due to their low energy, the growth species cannot migrate far on the substrate surface and are therefore incorporated into the rather dense graphitic structure of the carbon nanorods. At higher energies, the diffusion
PDF
Album
Full Research Paper
Published 29 Jun 2018

Synthesis of hafnium nanoparticles and hafnium nanoparticle films by gas condensation and energetic deposition

  • Irini Michelakaki,
  • Nikos Boukos,
  • Dimitrios A. Dragatogiannis,
  • Spyros Stathopoulos,
  • Costas A. Charitidis and
  • Dimitris Tsoukalas

Beilstein J. Nanotechnol. 2018, 9, 1868–1880, doi:10.3762/bjnano.9.179

Graphical Abstract
  • landing energy can be controlled via a bias on the substrate. The substrate bias voltage (Vs) enables the NPs either to “soft land” (low-energy deposition) preserving their size and shape, or to land with high-energy impact (high-energy deposition), which depending on the landing energy leads to different
  • aggregation and deposition chamber. In this case of low-energy deposition the energy per atom Eat is about 0.1 eV/atom, which is far below the cohesive energy of the atoms constituting the NPs and nanoparticles do not undergo significant distortion of their shape and size [42][43]. Nanoparticles of different
PDF
Album
Supp Info
Full Research Paper
Published 27 Jun 2018

Numerical analysis of single-point spectroscopy curves used in photo-carrier dynamics measurements by Kelvin probe force microscopy under frequency-modulated excitation

  • Pablo A. Fernández Garrillo,
  • Benjamin Grévin and
  • Łukasz Borowik

Beilstein J. Nanotechnol. 2018, 9, 1834–1843, doi:10.3762/bjnano.9.175

Graphical Abstract
  • dynamics are governing the SPV behavior of the sample, as it is the case for instance for OPV samples exhibiting a high density of low-energy states (traps). Nonetheless, we stress that even if the calculated photo-carrier lifetime values do not fully agree with those reported in [4], the ratio between the
PDF
Album
Full Research Paper
Published 20 Jun 2018

SO2 gas adsorption on carbon nanomaterials: a comparative study

  • Deepu J. Babu,
  • Divya Puthusseri,
  • Frank G. Kühl,
  • Sherif Okeil,
  • Michael Bruns,
  • Manfred Hampe and
  • Jörg J. Schneider

Beilstein J. Nanotechnol. 2018, 9, 1782–1792, doi:10.3762/bjnano.9.169

Graphical Abstract
  • , monochromated Al Kα X-ray source (30–400 µm spot size). The K-Alpha charge compensation system was employed during analysis, using electrons of 8 eV energy and low-energy argon ions to prevent any localized charge build-up. The spectra were fitted with one or more Voigt profiles (binding energy uncertainty
PDF
Album
Supp Info
Full Research Paper
Published 13 Jun 2018

Controllable one-pot synthesis of uniform colloidal TiO2 particles in a mixed solvent solution for photocatalysis

  • Jong Tae Moon,
  • Seung Ki Lee and
  • Ji Bong Joo

Beilstein J. Nanotechnol. 2018, 9, 1715–1727, doi:10.3762/bjnano.9.163

Graphical Abstract
  • photocatalyst must be narrow in order to facilitate the facile adsorption of the low energy photon and high harvesting efficiency under visible-light irradiation conditions [11]. To enhance charge separation efficiency and extend the lifetime of photoexcited electron–hole pairs, properties such as a crystalline
  • anatase/rutile phase with high anatase crystallinity. As shown in both a previous study and our later discussion, a mixed crystalline phase of anatase and rutile in P25 TiO2 can have several beneficial effects such as improved light adsorption in the low energy UV range and separation of photoexcited
PDF
Album
Supp Info
Full Research Paper
Published 08 Jun 2018

Josephson effect in junctions of conventional and topological superconductors

  • Alex Zazunov,
  • Albert Iks,
  • Miguel Alvarado,
  • Alfredo Levy Yeyati and
  • Reinhold Egger

Beilstein J. Nanotechnol. 2018, 9, 1659–1676, doi:10.3762/bjnano.9.158

Graphical Abstract
  • end states. Using Green’s function techniques, the topological superconductor is alternatively described by the low-energy continuum limit of a Kitaev chain or by a more microscopic spinful nanowire model. We show that for the simplest S–TS tunnel junction, only the s-wave pairing correlations in a
  • boundary fermion fields representing the S lead and the effectively spinless TS lead, respectively. For the S lead, we assume the usual BCS model [62], where the operator ψσ annihilates an electron with spin σ at the junction. The TS wire will, for the moment, be described by the low-energy Hamiltonian of
  • , the low-energy limit of a Kitaev chain yields the bGF [40] The matrices τ0,x here act in the Nambu space defined by the spinor ΨTS. Later on we will address how our results change when the TS wire is modeled as spinful nanowire [2][3], where the corresponding bGF has been specified in [43]. We
PDF
Album
Full Research Paper
Published 06 Jun 2018

Friction force microscopy of tribochemistry and interfacial ageing for the SiOx/Si/Au system

  • Christiane Petzold,
  • Marcus Koch and
  • Roland Bennewitz

Beilstein J. Nanotechnol. 2018, 9, 1647–1658, doi:10.3762/bjnano.9.157

Graphical Abstract
  • cantilevers before use. A Au(111) single crystal (MaTeck GmbH, Jülich, Germany) was prepared by repeating a sputter–heating cycle (20 min Ar sputtering at 25 μA/1 keV followed by 1 h annealing at 850 °C) until a sharp (111) pattern was observed by low-energy electron diffraction (LEED). The n-Si(100) sample
PDF
Album
Full Research Paper
Published 05 Jun 2018

Spatial Rabi oscillations between Majorana bound states and quantum dots

  • Jun-Hui Zheng,
  • Dao-Xin Yao and
  • Zhi Wang

Beilstein J. Nanotechnol. 2018, 9, 1527–1535, doi:10.3762/bjnano.9.143

Graphical Abstract
  • energy splitting that exponentially decays as the length of the island increases. The low-energy physics of the island can be described by an effective Hamiltonian [2][3], where and γM and γM′ represent the two Majorana bound states, and δ represents the exponentially protected splitting energy. The
PDF
Album
Full Research Paper
Published 22 May 2018

Robust topological phase in proximitized core–shell nanowires coupled to multiple superconductors

  • Tudor D. Stanescu,
  • Anna Sitek and
  • Andrei Manolescu

Beilstein J. Nanotechnol. 2018, 9, 1512–1526, doi:10.3762/bjnano.9.142

Graphical Abstract
  • between 50–100 meV [29][37]. In this case the corner states are extremely robust to orbital effects of the magnetic field and the low-energy subspace is well separated from higher-energy states. Another interesting aspect of a prismatic shell is that it can host several Majorana states at each end of the
  • hosts the zero-energy Majorana modes and one can obtain an additional experimental knob for exploring a rich phase diagram and observing potentially interesting low-energy physics. The rest of this article is organized as follows. We first describe the coupled-chains tight binding model that we use in
  • model that describes the low-energy physics of a core–shell nanowire with n edges. The model has already been introduced for triangular core–shell nanowires in [29] (Appendix), and also previously considered by other authors, in different forms, for ladder systems [38][39]. A “coarse-grained” shell is
PDF
Album
Full Research Paper
Published 22 May 2018

Interplay between pairing and correlations in spin-polarized bound states

  • Szczepan Głodzik,
  • Aksel Kobiałka,
  • Anna Gorczyca-Goraj,
  • Andrzej Ptok,
  • Grzegorz Górski,
  • Maciej M. Maśka and
  • Tadeusz Domański

Beilstein J. Nanotechnol. 2018, 9, 1370–1380, doi:10.3762/bjnano.9.129

Graphical Abstract
  • μN↑ − μN↓. Individual atoms of the nanochain are coupled with such STM tip through For simplicity, we assume constant couplings The low-energy physics of such proximitized Rashba nanowire can be described by [44] where annihilates (creates) an electron of spin σ at site i with energy εi, and tij
  • effect shows up only in the correlated limit (U > ΓS), but its spectroscopic signatures are qualitatively different for each of the spins. Leakage of the Majorana quasiparticle suppresses the low-energy states of ↑ electrons. We notice that the initial density (for tm = 0) is reduced by half, whereas we
PDF
Album
Full Research Paper
Published 07 May 2018

Disorder-induced suppression of the zero-bias conductance peak splitting in topological superconducting nanowires

  • Jun-Tong Ren,
  • Hai-Feng Lü,
  • Sha-Sha Ke,
  • Yong Guo and
  • Huai-Wu Zhang

Beilstein J. Nanotechnol. 2018, 9, 1358–1369, doi:10.3762/bjnano.9.128

Graphical Abstract
  • ], among which some possible reasons have been proposed, such as the combining effect of high temperature and multisubband occupancy in a Coulomb-blocked nanowire where the non-topological low-energy Andreev bound states and MBSs simultaneously exist [53], the zero-energy pinning effect induced by the
  • wire, respectively. Following the Bogoliubov–de Gennes formalism the Hamiltonian describing the low-energy physics for our one-dimensional superconducting wire is given by where is the Nambu spinor for which cσ(x) annihilates (creates) electrons with spin σ at position x. For numerical calculations
  • not simply neglect the role played by disorder in detecting Majorana energy oscillation experimentally through transport measurements since for some values of Zeeman field the disorder-induced effects can broaden the Majorana energy splitting of the low-energy states while simultaneously narrows the
PDF
Album
Full Research Paper
Published 04 May 2018

Andreev spectrum and supercurrents in nanowire-based SNS junctions containing Majorana bound states

  • Jorge Cayao,
  • Annica M. Black-Schaffer,
  • Elsa Prada and
  • Ramón Aguado

Beilstein J. Nanotechnol. 2018, 9, 1339–1357, doi:10.3762/bjnano.9.127

Graphical Abstract
  • states (MBSs) in engineered topological superconductors. We perform a systematic numerical study of the low-energy Andreev spectrum and supercurrents in short and long superconductor–normal–superconductor junctions made of nanowires with strong Rashba spin–orbit coupling, where an external Zeeman field
  • . In section “Results and Discussion” we discuss how nanowire-based SNS junctions can be readily modeled using the tools of section “Nanowire model”. Then, we describe the low-energy Andreev spectrum and its evolution from the trivial into the topological phase with the emergence of MBSs. In the same
  • the low-energy spectrum of the superconducting nanowire. This spectrum can be numerically obtained by discretising the Hamiltonian given by Equation 1 into a tight-binding lattice: where the symbol means that v couples the nearest-neighbor sites i, j; h = (2t − μ)σ0 + Bσx and v = −tσ0 + itSOσy are
PDF
Album
Supp Info
Full Research Paper
Published 03 May 2018

Circular dichroism of chiral Majorana states

  • Javier Osca and
  • Llorenç Serra

Beilstein J. Nanotechnol. 2018, 9, 1194–1199, doi:10.3762/bjnano.9.110

Graphical Abstract
  • a 2D grid for x and y. When ΔB is increased, the spectrum of low-energy eigenvalues evolves from a gapped (void) spectrum around zero energy at low values of ΔB, to the emergence of chiral near-zero-energy modes for sufficiently large values of ΔB. When the pairing parameters for each layer are
  • gap that tends to close with increasing ΔB by the appearance of a quasi-continuum distribution of eigenvalues. These low-energy states are indicating the presence of propagating Majorana states, energy-discretized due to the finite size of the system. When Δt = Δb (Figure 1a,c) the degeneracy is such
  • distribution between a square and a rectangle (upper vs lower panels). It is remarkable that when a Majorana phase is well developed the low-energy states are equally spaced in energy. This is particularly clear for 2 < ΔB/EU < 4 in Figure 1a and Figure 1c, corresponding to the phases with two Majorana states
PDF
Album
Full Research Paper
Published 16 Apr 2018

Non-equilibrium electron transport induced by terahertz radiation in the topological and trivial phases of Hg1−xCdxTe

  • Alexandra V. Galeeva,
  • Alexey I. Artamkin,
  • Alexey S. Kazakov,
  • Sergey N. Danilov,
  • Sergey A. Dvoretskiy,
  • Nikolay N. Mikhailov,
  • Ludmila I. Ryabova and
  • Dmitry R. Khokhlov

Beilstein J. Nanotechnol. 2018, 9, 1035–1039, doi:10.3762/bjnano.9.96

Graphical Abstract
  • . We show that both the positive photoresponse in films with x < 0.16 and the negative photoconductivity in samples with x > 0.16 have no low-energy threshold. The observed non-threshold positive photoconductivity is discussed in terms of a qualitative model that takes into account a 3D potential well
PDF
Album
Letter
Published 29 Mar 2018

Cyclodextrin inhibits zinc corrosion by destabilizing point defect formation in the oxide layer

  • Abdulrahman Altin,
  • Maciej Krzywiecki,
  • Adnan Sarfraz,
  • Cigdem Toparli,
  • Claudius Laska,
  • Philipp Kerger,
  • Aleksandar Zeradjanin,
  • Karl J. J. Mayrhofer,
  • Michael Rohwerder and
  • Andreas Erbe

Beilstein J. Nanotechnol. 2018, 9, 936–944, doi:10.3762/bjnano.9.86

Graphical Abstract
  • shift for all energy regions [35], as opposed to what is observed. Since the XPS was not sensitive for the region of the highest occupied molecular orbital (HOMO) of β-CD, this region was analyzed by UPS. Figure 3f presents the magnification of the low-energy onset of the UP spectra, which allows for
PDF
Album
Supp Info
Full Research Paper
Published 20 Mar 2018

Towards the third dimension in direct electron beam writing of silver

  • Katja Höflich,
  • Jakub Mateusz Jurczyk,
  • Katarzyna Madajska,
  • Maximilian Götz,
  • Luisa Berger,
  • Carlos Guerra-Nuñez,
  • Caspar Haverkamp,
  • Iwona Szymanska and
  • Ivo Utke

Beilstein J. Nanotechnol. 2018, 9, 842–849, doi:10.3762/bjnano.9.78

Graphical Abstract
  • break [3][4]. The used primary electrons of energies in the kiloelectronvolt range have a focal spot of several nanometers or even less. Secondary electrons are generated by both primary and back-scattered electrons and hence escape in a radius of up to several micrometers [5]. Mainly these low-energy
  • occurring during deposition can be elucidated by surface-science studies in which low-energy electrons dissociate monolayers of precursors under ultra-high vacuum conditions [4]. Based on these results the design of precursors for new materials and enhanced purity of the deposits is conceivable [15][16
PDF
Album
Letter
Published 08 Mar 2018

A review of carbon-based and non-carbon-based catalyst supports for the selective catalytic reduction of nitric oxide

  • Shahreen Binti Izwan Anthonysamy,
  • Syahidah Binti Afandi,
  • Mehrnoush Khavarian and
  • Abdul Rahman Bin Mohamed

Beilstein J. Nanotechnol. 2018, 9, 740–761, doi:10.3762/bjnano.9.68

Graphical Abstract
  • temperature window of 150–500 °C in a diesel engine as well as the low energy consumption and economy of NH3-SCR [9]. In the literature, abundant catalysts at low temperature have been explored such as transitional metals (Mn, Cu, Ce, Fe, Co, Mo) [10][11][12][13], novel metals (Pt, Pd) [14], and metal ion
  • impregnation removed NO at a reaction temperature of 25 °C with a high conversion of 88%. This suggests that the NO removal by AC and ACF could be a serious contributor to sustainable economic growth by offering cost-effective low energy consumption. Although AC and ACF are extremely
PDF
Review
Published 27 Feb 2018
Other Beilstein-Institut Open Science Activities