Search results

Search for "dissociation" in Full Text gives 194 result(s) in Beilstein Journal of Nanotechnology.

Nanomaterials in targeting amyloid-β oligomers: current advances and future directions for Alzheimer's disease diagnosis and therapy

  • Shiwani Randhawa,
  • Trilok Chand Saini,
  • Manik Bathla,
  • Rahul Bhardwaj,
  • Rubina Dhiman and
  • Amitabha Acharya

Beilstein J. Nanotechnol. 2025, 16, 561–580, doi:10.3762/bjnano.16.44

Graphical Abstract
  • ; dissociation; nanomaterials; Review Introduction The etiology of Alzheimer’s disease (AD) has traditionally been linked to the presence of amyloid-β 42 (Aβ42), a protein widely recognized as a key marker of the disease. However, a growing body of recent scientific evidence suggests that it may be the amyloid
  • different therapeutic strategies, highlighting both conventional and emerging methods for addressing the challenges posed by AβOs in AD pathology. Nanoparticle-based approaches for the diagnosis and dissociation/inhibition of AβOs Although conventional approaches for diagnosing and targeting AβOs have laid
PDF
Album
Review
Published 22 Apr 2025

Electron beam-based direct writing of nanostructures using a palladium β-ketoesterate complex

  • Chinmai Sai Jureddy,
  • Krzysztof Maćkosz,
  • Aleksandra Butrymowicz-Kubiak,
  • Iwona B. Szymańska,
  • Patrik Hoffmann and
  • Ivo Utke

Beilstein J. Nanotechnol. 2025, 16, 530–539, doi:10.3762/bjnano.16.41

Graphical Abstract
  • nanostructure and composition of the deposits were determined, and possible volatile products produced under electron-induced dissociation, explaining the composition, are investigated. A method to eliminate the residual gas contamination during FEBID was implemented. [Pd(tbaoac)2] contains large organic
  • ligands and only about 5 atom % palladium in the pristine molecule, yet the obtained palladium content in the deposits amounts to around 30 atom %. This translates to an exceptional removal efficiency of about 90% for the ligand-constituting elements carbon and oxygen through electron-induced dissociation
  • promising precursor for nanoprinting 3D structures with finely focused electron beams. Keywords: 3D nanoprinting; electron-induced molecule dissociation; focused electron beam-induced deposition; metal nanostructures; metalorganic complexes; Introduction Direct fabrication of nanostructures without the
PDF
Album
Supp Info
Full Research Paper
Published 15 Apr 2025

Tailoring of physical properties of RF-sputtered ZnTe films: role of substrate temperature

  • Kafi Devi,
  • Usha Rani,
  • Arun Kumar,
  • Divya Gupta and
  • Sanjeev Aggarwal

Beilstein J. Nanotechnol. 2025, 16, 333–348, doi:10.3762/bjnano.16.25

Graphical Abstract
  • the increase in intensity. However, a decrement in intensity is observed for the films deposited at higher substrate temperatures of 500 and 600 °C. This may be because, at rising substrate temperatures, the chance for dissociation and desorption of atoms increases, which causes a decrease in the
PDF
Album
Supp Info
Full Research Paper
Published 05 Mar 2025

Radiosensitizing properties of dual-functionalized carbon nanostructures loaded with temozolomide

  • Radmila Milenkovska,
  • Nikola Geskovski,
  • Dushko Shalabalija,
  • Ljubica Mihailova,
  • Petre Makreski,
  • Dushko Lukarski,
  • Igor Stojkovski,
  • Maja Simonoska Crcarevska and
  • Kristina Mladenovska

Beilstein J. Nanotechnol. 2025, 16, 229–251, doi:10.3762/bjnano.16.18

Graphical Abstract
  • ) (Table 1). Generally, the particle size was smaller compared to the size of the corresponding non-irradiated formulations, which can be attributed to the penetration power and destructive effect of the gamma rays and the dissociation of certain molecules from the nanocarriers into the surrounding medium
  • dissociation of TMZ into the surrounding medium, and structural changes of the CNs caused by irradiation. In the initial 2 h, 30% and 40% of TMZ from I-MWCNTs-PEG6000-FA-TMZ and I-MWCNTs-G-PEG6000-FA-TMZ, respectively, were released, followed by complete release after 24 and 48 h, respectively (Figure 2c
PDF
Album
Full Research Paper
Published 19 Feb 2025

Precursor sticking coefficient determination from indented deposits fabricated by electron beam induced deposition

  • Alexander Kuprava and
  • Michael Huth

Beilstein J. Nanotechnol. 2025, 16, 35–43, doi:10.3762/bjnano.16.4

Graphical Abstract
  • Fowlkes and Rack [6] where a value of 0.025 was reported for W(CO)6. In this work, a stationary pulsed beam was used to study the adsorption/desorption dynamics. A fit of the results to the continuum model was performed with an estimated value for the energy-integrated dissociation cross section in order
  • density n. This concentration is controlled by four processes: adsorption, desorption, dissociation, and diffusion. Here, we formulate the equation under radially symmetric process conditions: where s is the sticking coefficient, Φ is the precursor flux at the surface, n0 is the maximum precursor site
  • density, τ is the average precursor residence time, σ is the energy-averaged dissociation cross section, and D is the surface diffusion coefficient. This rate equation makes up the balance between all processes that contribute to replenishment and depletion of precursor molecules. The electron beam is
PDF
Album
Supp Info
Full Research Paper
Published 13 Jan 2025

A nanocarrier containing carboxylic and histamine groups with dual action: acetylcholine hydrolysis and antidote atropine delivery

  • Elina E. Mansurova,
  • Andrey A. Maslennikov,
  • Anna P. Lyubina,
  • Alexandra D. Voloshina,
  • Irek R. Nizameev,
  • Marsil K. Kadirov,
  • Anzhela A. Mikhailova,
  • Polina V. Mikshina,
  • Albina Y. Ziganshina and
  • Igor S. Antipin

Beilstein J. Nanotechnol. 2025, 16, 11–24, doi:10.3762/bjnano.16.2

Graphical Abstract
  • cell line (Chang liver). The nanocarrier catalyzes the hydrolysis of acetylcholine into choline and acetic acid, which causes the dissociation of boronate bonds and the subsequent destruction of the nanocarrier, which was shown by fluorescence and NMR spectroscopy. Experimental Equipment Transmission
PDF
Album
Supp Info
Full Research Paper
Published 09 Jan 2025

Heterogeneous reactions in a HFCVD reactor: simulation using a 2D model

  • Xochitl Aleyda Morán Martínez,
  • José Alberto Luna López,
  • Zaira Jocelyn Hernández Simón,
  • Gabriel Omar Mendoza Conde,
  • José Álvaro David Hernández de Luz and
  • Godofredo García Salgado

Beilstein J. Nanotechnol. 2024, 15, 1627–1638, doi:10.3762/bjnano.15.128

Graphical Abstract
  • Simulations Hypothesis Obtaining non-stoichiometric silicon oxide films in a HFCVD reactor is mainly based on two main heterogeneous reactions, which are the dissociation of atomic hydrogen and the reaction of atomic hydrogen with a solid source. The thermochemical study will allow us to obtain thermodynamic
PDF
Album
Full Research Paper
Published 17 Dec 2024

Ion-induced surface reactions and deposition from Pt(CO)2Cl2 and Pt(CO)2Br2

  • Mohammed K. Abdel-Rahman,
  • Patrick M. Eckhert,
  • Atul Chaudhary,
  • Johnathon M. Johnson,
  • Jo-Chi Yu,
  • Lisa McElwee-White and
  • D. Howard Fairbrother

Beilstein J. Nanotechnol. 2024, 15, 1427–1439, doi:10.3762/bjnano.15.115

Graphical Abstract
  • ), dissociative ionization (DI), neutral dissociation (ND), and dipolar dissociation (DD) [44][45][46][47][48][49][50][51][52]. One of the most important factors that govern deposit purity is the identity of ligands present in the precursor. The coordination sphere of ligands is addressed by precursor design [5
  • at low temperature and exposed to ion irradiation (Figure 2). Discussion MS and XPS data support the idea that, upon ion beam exposure, the initial process to occur is Pt–CO bond dissociation, evolving both CO ligands as the first volatile product. The volatilization of CO is readily identified in
  • correlated with the rate of CO loss (Figure 3). Collectively, these observations point towards an initial step that can be described by Equation 1: The preferential loss of CO is attributed to the stability of CO as a volatile species and the relatively lower Pt(II)–CO bond dissociation energy in the
PDF
Album
Supp Info
Full Research Paper
Published 19 Nov 2024

Dual-functionalized architecture enables stable and tumor cell-specific SiO2NPs in complex biological fluids

  • Iris Renata Sousa Ribeiro,
  • Raquel Frenedoso da Silva,
  • Romênia Ramos Domingues,
  • Adriana Franco Paes Leme and
  • Mateus Borba Cardoso

Beilstein J. Nanotechnol. 2024, 15, 1238–1252, doi:10.3762/bjnano.15.100

Graphical Abstract
  • ions. The 20 most intense peptide ions with charge state ≥2 were sequentially isolated to a target value of 5000 and fragmented by collision-induced dissociation in the linear ion trap using a normalized collision energy of 35%. Dynamic exclusion was enabled with an exclusion size list of 500 peptides
PDF
Album
Supp Info
Full Research Paper
Published 07 Oct 2024

Realizing active targeting in cancer nanomedicine with ultrasmall nanoparticles

  • André F. Lima,
  • Giselle Z. Justo and
  • Alioscka A. Sousa

Beilstein J. Nanotechnol. 2024, 15, 1208–1226, doi:10.3762/bjnano.15.98

Graphical Abstract
  • between usNPs and proteins compared to interactions between larger NPs and proteins. Quantitatively, Figure 2B compares experimentally determined apparent dissociation rate constants (koff) and corresponding residence times (tr = 1/koff) for protein interactions with large (conventional) and ultrasmall
  • /koff, where kon and koff are the association and dissociation rate constants of the binding reaction, respectively, and tr is the residence time of the complex. The value of koff (or tr) is determined by short-range non-covalent interactions at the binding interface, reflecting the stability of the
PDF
Album
Review
Published 30 Sep 2024

Direct electron beam writing of silver using a β-diketonate precursor: first insights

  • Katja Höflich,
  • Krzysztof Maćkosz,
  • Chinmai S. Jureddy,
  • Aleksei Tsarapkin and
  • Ivo Utke

Beilstein J. Nanotechnol. 2024, 15, 1117–1124, doi:10.3762/bjnano.15.90

Graphical Abstract
  • twofold: (i) The deposit purity is improved because of the fast desorption of cleaved ligands, and (ii) the volume growth rate is decreased because of short precursor residence times. In addition, surface effects, such as enhanced dissociation due to removal of ligands by chemisorption, as well as an
  • very high sensitivity with respect to electron beam impact are observed during dissociation with the weakly focused beam of a thermal electron emitter. However, for the first time, sufficient vertical growth rates in combination with high fidelity were achieved for a tightly focused electron beam
  • thermal dissociation (cf. Supporting Information File 1, Figure S1, for more details). All deposits shown in the following were obtained for a GIS temperature of 80 °C and a substrate temperature of 60 °C. Depositions with a single dwell spot duration of 5, 30, and 60 min were carried out using 15 kV
PDF
Album
Supp Info
Letter
Published 26 Aug 2024

Water-assisted purification during electron beam-induced deposition of platinum and gold

  • Cristiano Glessi,
  • Fabian A. Polman and
  • Cornelis W. Hagen

Beilstein J. Nanotechnol. 2024, 15, 884–896, doi:10.3762/bjnano.15.73

Graphical Abstract
  • purification of the deposits to compensate for the low electron-stimulated dissociation cross section of water on the substrate [37]. Deposits were made at increasing water flux, indicated by an increase of the total chamber pressure. The carbon and platinum contents were determined afterwards, and the C/Pt
PDF
Album
Supp Info
Full Research Paper
Published 18 Jul 2024

Electron-induced ligand loss from iron tetracarbonyl methyl acrylate

  • Hlib Lyshchuk,
  • Atul Chaudhary,
  • Thomas F. M. Luxford,
  • Miloš Ranković,
  • Jaroslav Kočišek,
  • Juraj Fedor,
  • Lisa McElwee-White and
  • Pamir Nag

Beilstein J. Nanotechnol. 2024, 15, 797–807, doi:10.3762/bjnano.15.66

Graphical Abstract
  • –ligand bonds and leave a pure metallic deposit. However, this has been achieved only for a handful of metals and their precursors. The actual deposits are often contaminated by a high amount of impurities [5]. Several reasons have been put forward for this incomplete dissociation [6]. One of them is the
  • reactions? This is basically impossible to predict a priori since several effects come into play, for example, change in bond dissociation energies, electron density at the metal, and dipole moment. Of the possible experimental approaches to address this question, a crossed-beam gas-phase experiment
  • the gas phase has been probed with respect to its dissociative ionization [10] and dissociative electron attachment [11][12]; there is even information available on its electronic excitation, which is the first step towards neutral dissociation [11]. The gas-phase studies have been complemented by
PDF
Album
Supp Info
Full Research Paper
Published 03 Jul 2024

Laser synthesis of nanoparticles in organic solvents – products, reactions, and perspectives

  • Theo Fromme,
  • Sven Reichenberger,
  • Katharine M. Tibbetts and
  • Stephan Barcikowski

Beilstein J. Nanotechnol. 2024, 15, 638–663, doi:10.3762/bjnano.15.54

Graphical Abstract
  • solvents. This may be attributed to differences in bond dissociation energies, which increase with decreasing solvent chain length as well as chemical constitution. Hence, the solvent decomposition and (permanent) gas evolution are influenced by both physical and chemical properties of the solvents
  • elemental carbon is used as a source to form the initial polyyne fragments, fs-LAL reaches power densities that enable direct ionization and dissociation of the solvent, which may form ionized, short polyynes or cumulenes without intermediate steps. Short C4 polyynes have been observed by femtosecond laser
PDF
Album
Review
Published 05 Jun 2024

Electron-induced deposition using Fe(CO)4MA and Fe(CO)5 – effect of MA ligand and process conditions

  • Hannah Boeckers,
  • Atul Chaudhary,
  • Petra Martinović,
  • Amy V. Walker,
  • Lisa McElwee-White and
  • Petra Swiderek

Beilstein J. Nanotechnol. 2024, 15, 500–516, doi:10.3762/bjnano.15.45

Graphical Abstract
  • deeper depths of the layer. As an alternative explanation, the delayed CO desorption might result from recombination of C and O that was released by electron-induced dissociation of CO ligands. This scenario, however, is less likely considering that such recombinative desorption of CO after thermal
  • surface dissociation was only observed well above room temperature [52]. In contrast to the rapid loss of CO, desorption of H2 shows only a minor decay over all three periods. This points to a continuous C–H bond cleavage within the MA ligand or within products resulting from MA and supports that the MA
  • less likely because we anticipate that reactive species produced by electron exposure of residual H2O and CO would rather react with Ta than form a solid deposit by themselves. In fact, any carbonaceous deposit that might form as consequence of electron-induced dissociation of CO would also be etched
PDF
Album
Supp Info
Full Research Paper
Published 08 May 2024

Sidewall angle tuning in focused electron beam-induced processing

  • Sangeetha Hari,
  • Willem F. van Dorp,
  • Johannes J. L. Mulders,
  • Piet H. F. Trompenaars,
  • Pieter Kruit and
  • Cornelis W. Hagen

Beilstein J. Nanotechnol. 2024, 15, 447–456, doi:10.3762/bjnano.15.40

Graphical Abstract
  • distance to the electron beam focus. The interaction of the incident and scattered electrons with the substrate and adsorbed precursor layer causes the dissociation of the precursor molecules. This results in either deposition of solid precursor fragments (focused electron beam-induced deposition, FEBID
  • modification – proof of principle simulation Low-energy electrons are assumed to be most effective in the dissociation process. The reason is that low-energy electrons interact more efficiently with molecules than high-energy electrons. One dissociation channel is dissociative electron attachment (DEA), which
  • occurs when the electron energy matches that of an anion state. Other dissociation channels, such as neutral dissociation (ND) and dissociative ionization (DI), are threshold processes, but their efficiency declines above roughly 100 eV because the interaction time with the molecule becomes too short
PDF
Album
Supp Info
Full Research Paper
Published 23 Apr 2024

Classification and application of metal-based nanoantioxidants in medicine and healthcare

  • Nguyen Nhat Nam,
  • Nguyen Khoi Song Tran,
  • Tan Tai Nguyen,
  • Nguyen Ngoc Trai,
  • Nguyen Phuong Thuy,
  • Hoang Dang Khoa Do,
  • Nhu Hoa Thi Tran and
  • Kieu The Loan Trinh

Beilstein J. Nanotechnol. 2024, 15, 396–415, doi:10.3762/bjnano.15.36

Graphical Abstract
  • sites are responsible for the adsorption, activation, and dissociation of the reactants, while the desorption occurs at the gold sites. The combination of multiple metals significantly improves the catalytic efficiency through synergistic effects. The nanocomposites not only disrupt the redox
PDF
Album
Review
Published 12 Apr 2024

Graphene removal by water-assisted focused electron-beam-induced etching – unveiling the dose and dwell time impact on the etch profile and topographical changes in SiO2 substrates

  • Aleksandra Szkudlarek,
  • Jan M. Michalik,
  • Inés Serrano-Esparza,
  • Zdeněk Nováček,
  • Veronika Novotná,
  • Piotr Ozga,
  • Czesław Kapusta and
  • José María De Teresa

Beilstein J. Nanotechnol. 2024, 15, 190–198, doi:10.3762/bjnano.15.18

Graphical Abstract
  • deposit, and at a current of 245 pA (higher electron flux) the indent shape. This controllable switching between the hydrocarbons pinning and etching caused by increasing electron flux was explained using the continuum model. The model is based on the dissociation process of adsorbed molecules by
  • dissociation products of water molecules and thus could be actively involved in the SiO2 removal process. Our results, showing topographical changes in SiO2 are partially consistent with former studies reported by Steven Kalceff et al. [24] of either swelling or deswelling of a silica substrate upon electron
PDF
Album
Full Research Paper
Published 07 Feb 2024

CdSe/ZnS quantum dots as a booster in the active layer of distributed ternary organic photovoltaics

  • Gabriela Lewińska,
  • Piotr Jeleń,
  • Zofia Kucia,
  • Maciej Sitarz,
  • Łukasz Walczak,
  • Bartłomiej Szafraniak,
  • Jerzy Sanetra and
  • Konstanty W. Marszalek

Beilstein J. Nanotechnol. 2024, 15, 144–156, doi:10.3762/bjnano.15.14

Graphical Abstract
  • equal to or greater than the binding energy of singlet and triplet excitons. The energy levels system of the considered devices with QDs determines the optimal photocurrent of dissociation for most singlet excitons, which require at least 0.07 eV energy [64]. The production of charge-transfer carrier
PDF
Album
Supp Info
Full Research Paper
Published 02 Feb 2024

A combined gas-phase dissociative ionization, dissociative electron attachment and deposition study on the potential FEBID precursor [Au(CH3)2Cl]2

  • Elif Bilgilisoy,
  • Ali Kamali,
  • Thomas Xaver Gentner,
  • Gerd Ballmann,
  • Sjoerd Harder,
  • Hans-Peter Steinrück,
  • Hubertus Marbach and
  • Oddur Ingólfsson

Beilstein J. Nanotechnol. 2023, 14, 1178–1199, doi:10.3762/bjnano.14.98

Graphical Abstract
  • fabrication of functional gold nanostructures for application in plasmonic and detector technology, we conducted a comprehensive study on [Au(CH3)2Cl]2 as a potential precursor for such depositions. Fundamental electron-induced dissociation processes were studied under single collision conditions, and the
  • , which in turn is critical to the resulting purity of the FEBID deposits. In general, electron-induced fragmentation processes are categorized as dissociative ionization (DI), dissociative electron attachment (DEA), dipolar dissociation (DD), and neutral dissociation (ND) [25]. To fully comprehend the
  • cleanliness of the substrate. Although we have not considered neutral dissociation upon electron excitation in the current gas-phase experiments, it is clear that the electron-induced fragmentation of [Au(CH3)2Cl]2 is strongly influenced in the FEBID experiments as compared to the single collision conditions
PDF
Album
Supp Info
Full Research Paper
Published 06 Dec 2023

Dual-heterodyne Kelvin probe force microscopy

  • Benjamin Grévin,
  • Fatima Husainy,
  • Dmitry Aldakov and
  • Cyril Aumaître

Beilstein J. Nanotechnol. 2023, 14, 1068–1084, doi:10.3762/bjnano.14.88

Graphical Abstract
  • organic blends, charge photogeneration can be understood, in a first approach, as the result of exciton dissociation into Coulomb bound charge transfer (CT) states at the donor–acceptor interfaces. This event is finally followed by the dissociation of the CT states into delocalized carriers of opposite
PDF
Album
Supp Info
Full Research Paper
Published 07 Nov 2023

Fragmentation of metal(II) bis(acetylacetonate) complexes induced by slow electrons

  • Janina Kopyra and
  • Hassan Abdoul-Carime

Beilstein J. Nanotechnol. 2023, 14, 980–987, doi:10.3762/bjnano.14.81

Graphical Abstract
  • these two species, the interaction of slow electrons with the metal chelates also produces a rich variety of fragment anions, which are reported and discussed in the present report. A comprehensive picture of the fragmentation pattern of each ML2 precursor, including the quantification of dissociation
  • electron energy range investigated in the present work, that is, below 10 eV, DEA, as well as neutral dissociation and dissociative ionization, are the mechanisms responsible for the efficient fragmentation of molecules. In the case of dissociative electron attachment, studied in the present work, the
  • incoming scattering electron is captured by the precursor molecule to form a transient negative ion, TNI or [ML2]#−. If the electron autodetachment time of the TNI is longer than the dissociation time, the transient anion undergoes dissociation into a negative fragment and one or more neutral counterpart(s
PDF
Album
Full Research Paper
Published 26 Sep 2023

Humidity-dependent electrical performance of CuO nanowire networks studied by electrochemical impedance spectroscopy

  • Jelena Kosmaca,
  • Juris Katkevics,
  • Jana Andzane,
  • Raitis Sondors,
  • Liga Jasulaneca,
  • Raimonds Meija,
  • Kiryl Niherysh,
  • Yelyzaveta Rublova and
  • Donats Erts

Beilstein J. Nanotechnol. 2023, 14, 683–691, doi:10.3762/bjnano.14.54

Graphical Abstract
  • 20–50% (Figure 3a). Possibly, at these RH levels, the concentration of free charge carriers in the CuO nanowires reduces, as hole trapping [32] occurs due to adsorption of gaseous H2O molecules on the CuO surface, dissociation in H+ and OH−, and formation of surface dipoles (Cu+–OH−). Water reactions
PDF
Album
Full Research Paper
Published 05 Jun 2023

Molecular nanoarchitectonics: unification of nanotechnology and molecular/materials science

  • Katsuhiko Ariga

Beilstein J. Nanotechnol. 2023, 14, 434–453, doi:10.3762/bjnano.14.35

Graphical Abstract
  • heterojunction interface (Figure 10) [126]. This synthesis strategy is based on the difference in dissociation energies of C–Br and C–I bonds. The growth order of the block copolymers of graphene nanoribbons can be controlled. Such heterojunctions provide a viable platform that can be used directly for
  • strategy based on the difference in dissociation energies of C–Br and C–I bonds. Figure 10 was adapted with permission from [126], Copyright 2018 American Chemical Society. This content is not subject to CC-BY-4.0. On-surface synthesis of a C144 hexagon with a zigzag outer edge by hierarchical Ullmann
PDF
Album
Review
Published 03 Apr 2023

Overview of mechanism and consequences of endothelial leakiness caused by metal and polymeric nanoparticles

  • Magdalena Lasak and
  • Karol Ciepluch

Beilstein J. Nanotechnol. 2023, 14, 329–338, doi:10.3762/bjnano.14.28

Graphical Abstract
  • , the dissociation of the cadherin pair cluster is more effective for localized Au NPs than for NPs evenly distributed throughout the endothelium. Localized Au NPs inhibited the rate of rebinding between adjacent VE-cadherin pairs to a greater extent compared to evenly distributed NPs because of the
PDF
Album
Review
Published 08 Mar 2023
Other Beilstein-Institut Open Science Activities