Search results

Search for "organocatalysis" in Full Text gives 191 result(s) in Beilstein Journal of Organic Chemistry.

Asymmetric synthesis of β-amino cyanoesters with contiguous tetrasubstituted carbon centers by halogen-bonding catalysis with chiral halonium salt

  • Yasushi Yoshida,
  • Maho Aono,
  • Takashi Mino and
  • Masami Sakamoto

Beilstein J. Org. Chem. 2025, 21, 547–555, doi:10.3762/bjoc.21.43

Graphical Abstract
  • organic chemistry [2][3][4][5], organocatalysis [6][7], metal catalysis [8][9], biochemistry [10][11], materials science [12][13], and supramolecular chemistry [14][15], although its successful application to asymmetric catalysis has been limited (Figure 1) [16][17][18][19][20]. In 2018, Arai and co
PDF
Album
Supp Info
Letter
Published 12 Mar 2025

Organocatalytic kinetic resolution of 1,5-dicarbonyl compounds through a retro-Michael reaction

  • James Guevara-Pulido,
  • Fernando González-Pérez,
  • José M. Andrés and
  • Rafael Pedrosa

Beilstein J. Org. Chem. 2025, 21, 473–482, doi:10.3762/bjoc.21.34

Graphical Abstract
  • , Universidad de Valladolid, Paseo Belén 7, 47011-Valladolid, Spain 10.3762/bjoc.21.34 Abstract The pharmaceutical chemical industry has long used kinetic resolution to obtain high-value compounds. Organocatalysis has recently been added to this strategy, allowing for the resolution of racemic mixtures with
  • the kinetic resolution at a concentration of approximately ten millimolar (mM) to prevent the Michael retro-Michael equilibrium from affecting the process. Keywords: 1,5-dicarbonyl; equilibrium; kinetic resolution; organocatalysis; retro-Michael; Introduction For many years, enantiomers have been
  • in the reaction mixture [2] and is the most practical method applied in the pharmaceutical industry [3]. However, research in this field has developed new resolution methods known as deracemization [4] and dynamic kinetic resolution (DKR) [5]. Currently, organocatalysis has enabled more efficient
PDF
Album
Supp Info
Full Research Paper
Published 03 Mar 2025

Beyond symmetric self-assembly and effective molarity: unlocking functional enzyme mimics with robust organic cages

  • Keith G. Andrews

Beilstein J. Org. Chem. 2025, 21, 421–443, doi:10.3762/bjoc.21.30

Graphical Abstract
  • -accelerations (1019) [1], tolerance of contaminants, and selectivity associated with the power of enzymes. It is for this reason that I have sought to introduce supramolecular approaches into my organocatalysis [2]. From thermodynamics, there are two components to catalysis: organization (entropic) and
  • hydrophobic hosts [37]. Directed polarization, the basis for organocatalysis, is rare in cavity catalysis. Now, I believe the field of supramolecular catalysis to be on the cusp of putting these two elements – “organization and polarization” or “confinement and dual activation” – together with greater
  • the past few years [20][70][235][315], and true organocatalysis is exceedingly rare [316]. Instead, catalytic systems tend to be composed of cavities that increase substrate solubility [317], or host nanoparticles [318][319][320][321][322][323][324][325][326], metals [44][327][328], photoactive groups
PDF
Album
Supp Info
Perspective
Published 24 Feb 2025

Recent advances in organocatalytic atroposelective reactions

  • Henrich Szabados and
  • Radovan Šebesta

Beilstein J. Org. Chem. 2025, 21, 55–121, doi:10.3762/bjoc.21.6

Graphical Abstract
  • becoming increasingly relevant also in medicine. Many axially chiral compounds are important as catalysts in asymmetric catalysis or have chiroptical properties. This review overviews recent progress in the synthesis of axially chiral compounds via asymmetric organocatalysis. Atroposelective
  • organocatalytic reactions are discussed according to the dominant catalyst activation mode. For covalent organocatalysis, the typical enamine and iminium modes are presented, followed by N-heterocyclic carbene-catalyzed reactions. The bulk of the review is devoted to non-covalent activation, where chiral Brønsted
  • acids feature as the most prolific catalytic structure. The last part of the article discusses hydrogen-bond-donating catalysts and other catalyst motifs such as phase-transfer catalysts. Keywords: asymmetric organocatalysis; atropoisomers; atroposelective synthesis; axial chirality; stereogenic axis
PDF
Album
Review
Published 09 Jan 2025

Non-covalent organocatalyzed enantioselective cyclization reactions of α,β-unsaturated imines

  • Sergio Torres-Oya and
  • Mercedes Zurro

Beilstein J. Org. Chem. 2024, 20, 3221–3255, doi:10.3762/bjoc.20.268

Graphical Abstract
  • imines; asymmetric organocatalysis; cyclization; N-heterocycles; inverse electron demand aza-Diels–Alder reaction; Introduction Nitrogen-containing heterocycles are abundant scaffolds present in natural products, biologically active compounds, pharmaceuticals, synthetic agrochemicals, and functional
  • out IEDADA reactions has been a glowing field in recent years [11][12]. In particular, organocatalysis can provide different activation modes to promote enantioselective IEDADA reactions [13][14], based on three strategies (Figure 3): i) LUMO-lowering activation (Brønsted acid catalysis), ii) HOMO
  • , and it will be a useful reference for organic chemists working in the field of asymmetric organocatalysis. The review is divided into sections, each covering a different catalytic system. Additionally, a chronological order is followed in the subchapters. In order to also give a general overview of
PDF
Album
Review
Published 10 Dec 2024

Advances in the use of metal-free tetrapyrrolic macrocycles as catalysts

  • Mandeep K. Chahal

Beilstein J. Org. Chem. 2024, 20, 3085–3112, doi:10.3762/bjoc.20.257

Graphical Abstract
  • two macrocycles as metal-free catalysts. Keywords: calix[4]pyrroles; electrocatalysis; free-base porphyrins; organocatalysis; photocatalysis; tetrapyrrolic macrocycles; Introduction Tetrapyrrolic macrocycles are a class of cyclic compounds that contain four pyrrolic units in their ring. Examples of
  • these macrocyclic catalysts is in a very nascent stage. In this review, the recent advancement in the field of metal-free macrocycles for catalysis will be summarized; mainly focused on porphyrins and calix[4]pyrroles and in the field of organocatalysis, photocatalysis, and electrocatalysis. Review 1
  • Metal-free tetrapyrrolic macrocycles as supramolecular organocatalysts Supramolecular organocatalysis has recently attracted emerging attention as a green alternative to metal-based catalysis [24][25][26]. Organocatalysis using macrocyclic scaffolds such as crown ethers, cyclodextrins, cucurbiturils
PDF
Album
Review
Published 27 Nov 2024

Enantioselective regiospecific addition of propargyltrichlorosilane to aldehydes catalyzed by biisoquinoline N,N’-dioxide

  • Noble Brako,
  • Sreerag Moorkkannur Narayanan,
  • Amber Burns,
  • Layla Auter,
  • Valentino Cesiliano,
  • Rajeev Prabhakar and
  • Norito Takenaka

Beilstein J. Org. Chem. 2024, 20, 3069–3076, doi:10.3762/bjoc.20.255

Graphical Abstract
  • % yield with 61:39–92:8 enantiomeric ratios. Furthermore, possible mechanisms of propargyl–allenyl isomerization of propargyltrichlorosilane were computationally investigated. Keywords: α-allenic alcohol; computational chemistry; Lewis base catalysis; organocatalysis; propargyltrichlorosilane
PDF
Album
Supp Info
Letter
Published 25 Nov 2024

C–C Coupling in sterically demanding porphyrin environments

  • Liam Cribbin,
  • Brendan Twamley,
  • Nicolae Buga,
  • John E. O’ Brien,
  • Raphael Bühler,
  • Roland A. Fischer and
  • Mathias O. Senge

Beilstein J. Org. Chem. 2024, 20, 2784–2798, doi:10.3762/bjoc.20.234

Graphical Abstract
  • independent faces and trap anions such as pyrophosphate [15]. Saddle-shaped porphyrins have also been exploited by researchers for the use in organocatalysis as bifunctional system [16][17]. Dodecasubstitution of porphyrin, as seen in Figure 1, often results in saddle-shaped distortion; however, ruffled [18
PDF
Album
Supp Info
Full Research Paper
Published 04 Nov 2024

5th International Symposium on Synthesis and Catalysis (ISySyCat2023)

  • Anthony J. Burke and
  • Elisabete P. Carreiro

Beilstein J. Org. Chem. 2024, 20, 2704–2707, doi:10.3762/bjoc.20.227

Graphical Abstract
  • contributed to this thematic issue, Fehér et al. [22] carried out a critical assessment of the factors that affect the activity of immobilized organocatalysts. As mentioned earlier, organocatalysis has proven to be a powerful tool in the preparation of enantiopure compounds. However, their preparation can be
PDF
Album
Editorial
Published 28 Oct 2024

A review of recent advances in electrochemical and photoelectrochemical late-stage functionalization classified by anodic oxidation, cathodic reduction, and paired electrolysis

  • Nian Li,
  • Ruzal Sitdikov,
  • Ajit Prabhakar Kale,
  • Joost Steverlynck,
  • Bo Li and
  • Magnus Rueping

Beilstein J. Org. Chem. 2024, 20, 2500–2566, doi:10.3762/bjoc.20.214

Graphical Abstract
  • have been developed, the combination of electrochemistry with organocatalysis is generally less explored. In this context, Wang et al. combined organocatalysis and electrochemistry for the benzyl amination via C–H/N–H dehydrogenative cross-coupling of alkyl arenes with azoles [39]. According to the
PDF
Album
Review
Published 09 Oct 2024

Evaluating the halogen bonding strength of a iodoloisoxazolium(III) salt

  • Dominik L. Reinhard,
  • Anna Schmidt,
  • Marc Sons,
  • Julian Wolf,
  • Elric Engelage and
  • Stefan M. Huber

Beilstein J. Org. Chem. 2024, 20, 2401–2407, doi:10.3762/bjoc.20.204

Graphical Abstract
  • organocatalysis, previously only iodine(I)-based Lewis acids had been applied. However, after this study, the application of DAI salts as XB donors gained increasing interest and was investigated by several groups [11]. In the last years, important information about structure–activity relationships was also
PDF
Album
Supp Info
Letter
Published 23 Sep 2024

Stereoselective mechanochemical synthesis of thiomalonate Michael adducts via iminium catalysis by chiral primary amines

  • Michał Błauciak,
  • Dominika Andrzejczyk,
  • Błażej Dziuk and
  • Rafał Kowalczyk

Beilstein J. Org. Chem. 2024, 20, 2313–2322, doi:10.3762/bjoc.20.198

Graphical Abstract
  • nucleophiles in this transformation. Keywords: asymmetric catalysis; iminium catalysis; mechanochemistry; organocatalysis; thioesters; Introduction Mechanochemistry, particularly solventless processes under ball milling conditions, offers the opportunity to devise unconventional reaction pathways [1][2][3][4
  • ][7][8]. Furthermore, the integration of mechanochemistry and organocatalysis leads to the development of more sustainable transformations, characterized by reduced reaction times, decreased catalyst loadings, and significantly diminished solvent usage and waste production [9][10][11]. The pioneering
  • sustainable transformations characterized by reduced reaction times. An unprecedented combination of mechanochemistry with organocatalysis, notably chiral amine-catalyzed stereoselective reactions, has been extensively investigated. While primary amine-catalyzed reactions under ball milling conditions are
PDF
Album
Supp Info
Full Research Paper
Published 12 Sep 2024

Catalysing (organo-)catalysis: Trends in the application of machine learning to enantioselective organocatalysis

  • Stefan P. Schmid,
  • Leon Schlosser,
  • Frank Glorius and
  • Kjell Jorner

Beilstein J. Org. Chem. 2024, 20, 2280–2304, doi:10.3762/bjoc.20.196

Graphical Abstract
  • Research (NCCR) Catalysis, ETH Zurich, Zurich CH-8093, Switzerland 10.3762/bjoc.20.196 Abstract Organocatalysis has established itself as a third pillar of homogeneous catalysis, besides transition metal catalysis and biocatalysis, as its use for enantioselective reactions has gathered significant
  • interest over the last decades. Concurrent to this development, machine learning (ML) has been increasingly applied in the chemical domain to efficiently uncover hidden patterns in data and accelerate scientific discovery. While the uptake of ML in organocatalysis has been comparably slow, the last two
  • decades have showed an increased interest from the community. This review gives an overview of the work in the field of ML in organocatalysis. The review starts by giving a short primer on ML for experimental chemists, before discussing its application for predicting the selectivity of organocatalytic
PDF
Album
Review
Published 10 Sep 2024

Factors influencing the performance of organocatalysts immobilised on solid supports: A review

  • Zsuzsanna Fehér,
  • Dóra Richter,
  • Gyula Dargó and
  • József Kupai

Beilstein J. Org. Chem. 2024, 20, 2129–2142, doi:10.3762/bjoc.20.183

Graphical Abstract
  • Zsuzsanna Feher Dora Richter Gyula Dargo Jozsef Kupai Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Műegyetem rkp. 3., H-1111 Budapest, Hungary 10.3762/bjoc.20.183 Abstract Organocatalysis has become a powerful tool in synthetic chemistry
  • applications in organic chemistry. Keywords: asymmetric synthesis; catalyst recycling; heterogenisation; organocatalysis; solid support; Introduction Organocatalysts are small molecules that do not contain a metal atom in the reaction centre and are able to increase the speed of reactions. They have proven
  • their place among the efficient and robust catalysts on numerous occasions since the two seminal works [1][2] published in 2000. Since then, organocatalysis has been combined with many other areas of research, such as photocatalysis, electrochemistry and mechanochemistry [3][4][5], while List and
PDF
Album
Review
Published 26 Aug 2024

Chiral bifunctional sulfide-catalyzed enantioselective bromolactonizations of α- and β-substituted 5-hexenoic acids

  • Sao Sumida,
  • Ken Okuno,
  • Taiki Mori,
  • Yasuaki Furuya and
  • Seiji Shirakawa

Beilstein J. Org. Chem. 2024, 20, 1794–1799, doi:10.3762/bjoc.20.158

Graphical Abstract
  • ; enantioselectivity; halogenation; lactones; organocatalysis; Introduction Catalytic asymmetric halolactonizations of alkenoic acids are powerful methods for the preparation of important chiral lactones in enantioenriched forms [1][2][3][4][5][6][7][8][9][10][11]. A wide variety of chiral catalysts have been applied
PDF
Album
Supp Info
Full Research Paper
Published 30 Jul 2024

Primary amine-catalyzed enantioselective 1,4-Michael addition reaction of pyrazolin-5-ones to α,β-unsaturated ketones

  • Pooja Goyal,
  • Akhil K. Dubey,
  • Raghunath Chowdhury and
  • Amey Wadawale

Beilstein J. Org. Chem. 2024, 20, 1518–1526, doi:10.3762/bjoc.20.136

Graphical Abstract
  • ; organocatalysis; pyrazoles; Introduction N-Heterocycles are attractive molecules owing to their extensive applications in small-molecule drugs, natural products, and agrochemical products [1][2][3]. Among the N-heterocycles, pyrazole is an important structural scaffold, found in several marketed drugs and
  • metal catalytic conditions. In continuation of our work in the field of organocatalysis [26][27][28][29], herein, we present the Michael addition reaction of 4-unsubstituted pyrazolin-5-ones with arylidene/heteroarylideneacetones using cinchona alkaloid-derived primary amine catalysts. The developed
PDF
Album
Supp Info
Full Research Paper
Published 09 Jul 2024

Tetrabutylammonium iodide-catalyzed oxidative α-azidation of β-ketocarbonyl compounds using sodium azide

  • Christopher Mairhofer,
  • David Naderer and
  • Mario Waser

Beilstein J. Org. Chem. 2024, 20, 1510–1517, doi:10.3762/bjoc.20.135

Graphical Abstract
  • . Keywords: azidation; nitration; organocatalysis; oxidation; quaternary ammonium iodides; Introduction Organic compounds containing an azide functionality are highly valuable synthesis targets that offer considerable potential for various applications and further manipulations [1][2][3][4][5][6][7][8][9
PDF
Album
Supp Info
Full Research Paper
Published 05 Jul 2024

Towards an asymmetric β-selective addition of azlactones to allenoates

  • Behzad Nasiri,
  • Ghaffar Pasdar,
  • Paul Zebrowski,
  • Katharina Röser,
  • David Naderer and
  • Mario Waser

Beilstein J. Org. Chem. 2024, 20, 1504–1509, doi:10.3762/bjoc.20.134

Graphical Abstract
  • -selective manner with moderate levels of enantioselectivities (up to 83:17 er). Furthermore, the obtained products can be successfully engaged in nucleophilic ring opening reactions, thus giving highly functionalized α-amino acid derivatives. Keywords: allenoates; amino acids; azlactones; organocatalysis
PDF
Album
Supp Info
Full Research Paper
Published 04 Jul 2024

Evaluation of the enantioselectivity of new chiral ligands based on imidazolidin-4-one derivatives

  • Jan Bartáček,
  • Karel Chlumský,
  • Jan Mrkvička,
  • Lucie Paloušová,
  • Miloš Sedlák and
  • Pavel Drabina

Beilstein J. Org. Chem. 2024, 20, 684–691, doi:10.3762/bjoc.20.62

Graphical Abstract
  • chiral metal complex catalyst but also as an enantioselective organocatalyst [17]. Accordingly, its application in enantioselective organocatalysis, particularly in asymmetric reactions through “enamine activation”, warrants further investigation. Results and Discussion The corresponding copper(II
PDF
Album
Supp Info
Full Research Paper
Published 02 Apr 2024

A laterally-fused N-heterocyclic carbene framework from polysubstituted aminoimidazo[5,1-b]oxazol-6-ium salts

  • Andrew D. Gillie,
  • Matthew G. Wakeling,
  • Bethan L. Greene,
  • Louise Male and
  • Paul W. Davies

Beilstein J. Org. Chem. 2024, 20, 621–627, doi:10.3762/bjoc.20.54

Graphical Abstract
  • ; imidazolium; NHC; Introduction Imidazolium-derived nucleophilic heterocyclic carbenes (NHCs) have had a sustained impact across the fields of organometallic and main group chemistry, transition-metal catalysis, materials synthesis and organocatalysis [1]. Laterally annellated polycyclic NHCs offer a useful
PDF
Album
Supp Info
Letter
Published 18 Mar 2024

Green and sustainable approaches for the Friedel–Crafts reaction between aldehydes and indoles

  • Periklis X. Kolagkis,
  • Eirini M. Galathri and
  • Christoforos G. Kokotos

Beilstein J. Org. Chem. 2024, 20, 379–426, doi:10.3762/bjoc.20.36

Graphical Abstract
  • development of greener synthetic technologies, like photocatalysis, organocatalysis, the use of nanocatalysts, microwave irradiation, ball milling, continuous flow, and many more. Thus, in this review, we summarize the medicinal properties of BIMs and the developed BIM synthetic protocols, utilizing the
  • of green chemistry. Organocatalysis is the acceleration of chemical reactions with the use of small organic compounds, which do not contain any amounts of enzyme or inorganic elements [37][38][39]. The benefits of solid acid catalysis render them as an appealing choice, compared to their liquid
PDF
Album
Review
Published 22 Feb 2024

Catalytic multi-step domino and one-pot reactions

  • Svetlana B. Tsogoeva

Beilstein J. Org. Chem. 2024, 20, 254–256, doi:10.3762/bjoc.20.25

Graphical Abstract
  • ; multi-step reactions; multicomponent reactions; one-pot synthesis; organocatalysis; tandem reactions; transition-metal-catalysis; The synthesis of pharmaceutical ingredients, natural products, agrochemicals, ligand systems, and building blocks for materials science has reached a high level of
PDF
Album
Editorial
Published 08 Feb 2024

Chiral phosphoric acid-catalyzed transfer hydrogenation of 3,3-difluoro-3H-indoles

  • Yumei Wang,
  • Guangzhu Wang,
  • Yanping Zhu and
  • Kaiwu Dong

Beilstein J. Org. Chem. 2024, 20, 205–211, doi:10.3762/bjoc.20.20

Graphical Abstract
  • excellent yield and enantioselectivity. Keywords: asymmetric organocatalysis; chiral Brønsted acid; 3,3-difluoroindoline; Hantzsch ester; transfer hydrogenation; Introduction The introduction of fluoro atoms into organic molecules can alter their lipophilicity, solubility, metabolic stability, and
  • organocatalysis using chiral phosphoric acids has also been studied (Scheme 1b) [26][27][28]. In 2010, Magnus Rueping and his co-workers developped an enantioselective Brønsted acid-catalyzed transfer hydrogenation of 3H-indoles [29]. In 2020, Song and Yu successfully applied a new chiral Brønsted acid
PDF
Album
Supp Info
Letter
Published 01 Feb 2024

Using the phospha-Michael reaction for making phosphonium phenolate zwitterions

  • Matthias R. Steiner,
  • Max Schmallegger,
  • Larissa Donner,
  • Johann A. Hlina,
  • Christoph Marschner,
  • Judith Baumgartner and
  • Christian Slugovc

Beilstein J. Org. Chem. 2024, 20, 41–51, doi:10.3762/bjoc.20.6

Graphical Abstract
  • Matthias R. Steiner Max Schmallegger Larissa Donner Johann A. Hlina Christoph Marschner Judith Baumgartner Christian Slugovc Institute for Chemistry and Technology of Materials, Graz University of Technology, Stremayrgasse 9, 8010 Graz, Austria Christian Doppler Laboratory for Organocatalysis in
  • reactive in chloroform solution, while in methanol the corresponding phosphonium phenolate is formed. Keywords: Lewis-base catalysis; Michael acceptor reactivity; phospha-Michael reaction; phosphonium phenolate zwitterion; Introduction Organocatalysis has emerged in recent years as a valuable and
PDF
Album
Supp Info
Full Research Paper
Published 10 Jan 2024

Aldiminium and 1,2,3-triazolium dithiocarboxylate zwitterions derived from cyclic (alkyl)(amino) and mesoionic carbenes

  • Nedra Touj,
  • François Mazars,
  • Guillermo Zaragoza and
  • Lionel Delaude

Beilstein J. Org. Chem. 2023, 19, 1947–1956, doi:10.3762/bjoc.19.145

Graphical Abstract
  • weaker basicity and greater modularity, the related 1,2,4-triazol-5-ylidene derivatives D have been mainly employed in organocatalysis [6]. Besides these four types of N-heterocyclic carbenes (NHCs), other families of cyclic compounds have been actively pursued to further expand the diversity of singlet
PDF
Album
Supp Info
Full Research Paper
Published 20 Dec 2023
Other Beilstein-Institut Open Science Activities