Search results

Search for "triphenylphosphine" in Full Text gives 232 result(s) in Beilstein Journal of Organic Chemistry. Showing first 200.

Synthesis of N-acetyl diazocine derivatives via cross-coupling reaction

  • Thomas Brandt,
  • Pascal Lentes,
  • Jeremy Rudtke,
  • Michael Hösgen,
  • Christian Näther and
  • Rainer Herges

Beilstein J. Org. Chem. 2025, 21, 490–499, doi:10.3762/bjoc.21.36

Graphical Abstract
  • [23]. Nevertheless, the arylation of monohalogenated N-acetyl diazocines via Stille coupling in our case gave unsatisfying results (Table 2). Reactions with tetrakis(triphenylphosphine)palladium(0) as catalyst resulted in no product 7 formation. Bis(tri-tert-butylphosphine)palladium(0) as catalyst
PDF
Album
Supp Info
Full Research Paper
Published 04 Mar 2025

Molecular diversity of the reactions of MBH carbonates of isatins and various nucleophiles

  • Zi-Ying Xiao,
  • Jing Sun and
  • Chao-Guo Yan

Beilstein J. Org. Chem. 2025, 21, 286–295, doi:10.3762/bjoc.21.21

Graphical Abstract
  • very different to that of the above mentioned reactions of MBH nitriles and formates of isatins. It has been reported that triphenylphosphine can catalyze the cycloaddition reaction of MBH carbonates of isatins with some activated alkenes to give diverse spirooxindoles [38][39][40][41]. The reaction of
  • triphenylphosphine with MBH nitriles of isatins in acetonitrile at room temperature quickly gave red solid products 6a–d in high yields (Scheme 3). In this reaction, triphenylphosphine acted as a nucleophile to finish an allylic SN2 reaction. The obtained triphenylphosphaneylidenes are stable, which can be isolated
  • and were fully characterized via various spectroscopy methods. The further annulation reaction did not proceed under the reaction conditions. The similar reaction of triphenylphosphine and MBH maleimides of isatins also resulted in the corresponding triphenylphosphaneylidenes 6e and 6f in satisfactory
PDF
Album
Supp Info
Full Research Paper
Published 06 Feb 2025

Emerging trends in the optimization of organic synthesis through high-throughput tools and machine learning

  • Pablo Quijano Velasco,
  • Kedar Hippalgaonkar and
  • Balamurugan Ramalingam

Beilstein J. Org. Chem. 2025, 21, 10–38, doi:10.3762/bjoc.21.3

Graphical Abstract
PDF
Album
Review
Published 06 Jan 2025

Synthesis, structure and π-expansion of tris(4,5-dehydro-2,3:6,7-dibenzotropone)

  • Yongming Xiong,
  • Xue Lin Ma,
  • Shilong Su and
  • Qian Miao

Beilstein J. Org. Chem. 2025, 21, 1–7, doi:10.3762/bjoc.21.1

Graphical Abstract
  • Barton–Kellogg reaction with 8b under similar conditions gave the episulfide intermediate, which, however, could not be desulfurized with triisopropyl phosphite, trimethyl phosphite or triphenylphosphine to give the corresponding triene. The subsequent Scholl reaction of 10 with DDQ and triflic acid at
PDF
Album
Supp Info
Full Research Paper
Published 02 Jan 2025

Intramolecular C–H arylation of pyridine derivatives with a palladium catalyst for the synthesis of multiply fused heteroaromatic compounds

  • Yuki Nakanishi,
  • Shoichi Sugita,
  • Kentaro Okano and
  • Atsunori Mori

Beilstein J. Org. Chem. 2024, 20, 3256–3262, doi:10.3762/bjoc.20.269

Graphical Abstract
  • ), tetrabutylammonium bromide (31.7 mg, 0.098 mmol), Pd(OAc)2 (2.2 mg, 10 mol %), and triphenylphosphine (2.8 mg, 10 mol %). The mixture was dissolved in 3.1 mL of DMA and stirring was continued at 110 °C for 24 h. Then, water (3 mL) was added after cooling to room temperature. The product was extracted with
PDF
Album
Supp Info
Full Research Paper
Published 13 Dec 2024

Recent advances in transition-metal-free arylation reactions involving hypervalent iodine salts

  • Ritu Mamgain,
  • Kokila Sakthivel and
  • Fateh V. Singh

Beilstein J. Org. Chem. 2024, 20, 2891–2920, doi:10.3762/bjoc.20.243

Graphical Abstract
  • –acceptor (EDA) complex. The complex is formed of triphenylphosphine, sodium iodide and N,N,N,N-tetramethylethylenediamine (TMEDA) with diaryliodonium reagents (DAIRs) [64]. This activates DAIRs 16 to generate an aryl radical which is utilized in the C–H arylation of various heterocycles 31 to yield the
PDF
Album
Review
Published 13 Nov 2024

Synthesis of fluoroalkenes and fluoroenynes via cross-coupling reactions using novel multihalogenated vinyl ethers

  • Yukiko Karuo,
  • Keita Hirata,
  • Atsushi Tarui,
  • Kazuyuki Sato,
  • Kentaro Kawai and
  • Masaaki Omote

Beilstein J. Org. Chem. 2024, 20, 2691–2703, doi:10.3762/bjoc.20.226

Graphical Abstract
  • allylpalladium chloride dimer or bis(triphenylphosphine)palladium dichloride were used as catalyst, the reaction proceeded with the same yield as that in Table 1, entry 4 (entries 7 and 8). Utilizing palladium catalyst such as bis(triphenylphosphine)palladium dichloride, all these reactions could convert 1a into
  • 2a in good yields (Table 1, entries 9–11). Cross-coupling with palladium bis(trifluoroacetate), which is more reactive than palladium diacetate, gave the corresponding product in high yield of 96% (Table 1, entry 12). Without the addition of triphenylphosphine, the reaction proceeded in only 12
  • % yield (Table 1, entry 13). Thus, it was concluded that triphenylphosphine is necessary for Suzuki–Miyaura cross-coupling of 1 with 4 and that it is involved in the production of palladium(0). Next, the reaction conditions for the Sonogashira cross-coupling were optimized (Table 2). On the basis of a
PDF
Album
Supp Info
Full Research Paper
Published 24 Oct 2024

The scent gland composition of the Mangshan pit viper, Protobothrops mangshanensis

  • Jonas Holste,
  • Paul Weldon,
  • Donald Boyer and
  • Stefan Schulz

Beilstein J. Org. Chem. 2024, 20, 2644–2654, doi:10.3762/bjoc.20.222

Graphical Abstract
  • (15), 85 (15), 74 (100), 59 (25), 55 (60), 43 (60) Heptyltriphenylphosphonium iodide: In a manner similar to [46] triphenylphosphine (1.4 g, 5 mmol) was dissolved in acetonitrile (15 mL). Iodoheptane (1.3 mL, 8 mmol) was added, and the solution was heated to reflux for 1 h and then stirred for 18 h at
PDF
Album
Supp Info
Full Research Paper
Published 18 Oct 2024

A review of recent advances in electrochemical and photoelectrochemical late-stage functionalization classified by anodic oxidation, cathodic reduction, and paired electrolysis

  • Nian Li,
  • Ruzal Sitdikov,
  • Ajit Prabhakar Kale,
  • Joost Steverlynck,
  • Bo Li and
  • Magnus Rueping

Beilstein J. Org. Chem. 2024, 20, 2500–2566, doi:10.3762/bjoc.20.214

Graphical Abstract
PDF
Album
Review
Published 09 Oct 2024

Asymmetric organocatalytic synthesis of chiral homoallylic amines

  • Nikolay S. Kondratyev and
  • Andrei V. Malkov

Beilstein J. Org. Chem. 2024, 20, 2349–2377, doi:10.3762/bjoc.20.201

Graphical Abstract
  • deracemisation of an unsaturated amine 144 was reported by Li Dang and Xin-Yuan Liu (Scheme 30) [45]. They used CF3-radical-induced remote CH-activation, combined with Brønsted acid-catalysed chiral hydrogen atom transfer (HAT). In this reaction, triphenylphosphine first mediated the addition of the CF3-radical
PDF
Album
Review
Published 16 Sep 2024

Harnessing the versatility of hydrazones through electrosynthetic oxidative transformations

  • Aurélie Claraz

Beilstein J. Org. Chem. 2024, 20, 1988–2004, doi:10.3762/bjoc.20.175

Graphical Abstract
  • pyridine, triphenylphosphine or tetraethylammonium cyanide, the corresponding pyridium 109, phosphonium 111 and cyano hydrazones 113 were obtained, respectively (Scheme 21) [69]. In 2020, Ruan and Sun et al. communicated the electrochemical dehydrogenative coupling between (hetero)aromatic or aliphatic
PDF
Album
Review
Published 14 Aug 2024

Regioselective alkylation of a versatile indazole: Electrophile scope and mechanistic insights from density functional theory calculations

  • Pengcheng Lu,
  • Luis Juarez,
  • Paul A. Wiget,
  • Weihe Zhang,
  • Krishnan Raman and
  • Pravin L. Kotian

Beilstein J. Org. Chem. 2024, 20, 1940–1954, doi:10.3762/bjoc.20.170

Graphical Abstract
  • and mild Mitsunobu conditions for the preparation of N2-substituted indazole analogs 16a–q. By directly reacting compound 6 with alcohols 13a–q (2 equiv), diethyl azodicarboxylate (DEAD, 2 equiv), and triphenylphosphine (TPP, 2 equiv) in THF at 50 °C (conditions B), the corresponding N2-substituted
  • character of TsO− and triphenylphosphine oxide, precluding any thermodynamic versus kinetic arguments for regioselectivity. Conclusion We have established highly regioselective N1- and N2-alkylations of methyl 5-bromo-1H-indazole-3-carboxylate from diverse commercially available alcohols with excellent
  • , 268.9902. General procedure for the N2-alkylation using Mitsunobu conditions Preparation of methyl 5-bromo-2-methyl-2H-indazole-3-carboxylate (16a) To a solution of methyl 5-bromo-1H-indazole-3-carboxylate (1.384 g, 5.43 mmol) in THF (15 mL) was added triphenylphosphine (2.85 g, 10.85 mmol) and methanol
PDF
Album
Supp Info
Full Research Paper
Published 09 Aug 2024

Harnessing unprotected deactivated amines and arylglyoxals in the Ugi reaction for the synthesis of fused complex nitrogen heterocycles

  • Javier Gómez-Ayuso,
  • Pablo Pertejo,
  • Tomás Hermosilla,
  • Israel Carreira-Barral,
  • Roberto Quesada and
  • María García-Valverde

Beilstein J. Org. Chem. 2024, 20, 1758–1766, doi:10.3762/bjoc.20.154

Graphical Abstract
  • methodology has several drawbacks, as the need to synthesise the 2-azidobenzoic acid from anthranilic acid and sodium azide, the requirement of anhydrous conditions to perform the Staudinger/aza-Wittig sequence or the generation of large quantities of triphenylphosphine oxide which needs to be removed by
PDF
Album
Supp Info
Full Research Paper
Published 25 Jul 2024

Generation of alkyl and acyl radicals by visible-light photoredox catalysis: direct activation of C–O bonds in organic transformations

  • Mithu Roy,
  • Bitan Sardar,
  • Itu Mallick and
  • Dipankar Srimani

Beilstein J. Org. Chem. 2024, 20, 1348–1375, doi:10.3762/bjoc.20.119

Graphical Abstract
  • iridium photocatalyst [Ir(dF(CF3)ppy)2(dtbbpy)]PF6 leads to excited-state *[Ir(III)], Ered (*[Ir(III)]/[Ir(II)]) = +1.21 V, possessing sufficient energy to oxidize PPh3, forming the triphenylphosphine radical cation. Subsequently, benzoic acid undergoes deprotonation facilitated by a base, producing
  • benzoate. This benzoate then reacts with the triphenylphosphine radical cation, resulting in the formation of the phosphoranyl radical intermediate, which undergoes β-scission, leading to the formation of a benzoyl radical, accompanied by the liberation of a triphenylphosphine oxide molecule. After this
  • phosphoranyl radical intermediate then undergoes β-cleavage, giving rise to a benzylic radical and triphenylphosphine oxide. A terminal hydrogen atom transfer (HAT), facilitated by an aryl thiol, results in the formation of the desired product with concurrent formation of the thiyl radical. The reduction of
PDF
Album
Review
Published 14 Jun 2024

Manganese-catalyzed C–C and C–N bond formation with alcohols via borrowing hydrogen or hydrogen auto-transfer

  • Mohd Farhan Ansari,
  • Atul Kumar Maurya,
  • Abhishek Kumar and
  • Saravanakumar Elangovan

Beilstein J. Org. Chem. 2024, 20, 1111–1166, doi:10.3762/bjoc.20.98

Graphical Abstract
  • inexpensive and commercially available manganese salts such as MnCl2 or Mn(CO)5Br and triphenylphosphine (PPh3) as ligand [46]. Using this catalytic system (10 mol % Mn precursor, 20 mol % PPh3, 1.2 equiv t-BuOK, 130 °C, 20 h), a variety of (hetero)aromatic and aliphatic amines were selectively alkylated in
PDF
Album
Review
Published 21 May 2024

Skeletal rearrangement of 6,8-dioxabicyclo[3.2.1]octan-4-ols promoted by thionyl chloride or Appel conditions

  • Martyn Jevric,
  • Julian Klepp,
  • Johannes Puschnig,
  • Oscar Lamb,
  • Christopher J. Sumby and
  • Ben W. Greatrex

Beilstein J. Org. Chem. 2024, 20, 823–829, doi:10.3762/bjoc.20.74

Graphical Abstract
  • alkoxytriphenylphosphonium chloride (26, R = Bn), which then slowly rearranged over 24 hours at 83 °C in DCE, eliminating triphenylphosphine oxide (Figure 2). A single ion was observed in the ESI mass spectrum for the intermediate at m/z 571.1 corresponding to the [M + PPh3 − H]+, and in the 1H NMR, the H4 adjacent to the
  • the byproduct triphenylphosphine oxide, necessitating chromatography which resulted in some hydrolysis. There are a number of catalytic activation strategies for Appel or Mitsunobu reactions such as those described by the Denton group [30], and Rutjes and co-workers [31], and while these may prove
  • chlorosulfite 25 or the alkoxytriphenylphosphonium chloride 26, respectively. With heating, SO2 or triphenylphosphine oxide is extruded with a concerted migration of the neighbouring O8 leading to an oxocarbenium ion 27, which is then trapped with chloride giving the observed products. The crystal structure for
PDF
Album
Supp Info
Full Research Paper
Published 16 Apr 2024

Mechanisms for radical reactions initiating from N-hydroxyphthalimide esters

  • Carlos R. Azpilcueta-Nicolas and
  • Jean-Philip Lumb

Beilstein J. Org. Chem. 2024, 20, 346–378, doi:10.3762/bjoc.20.35

Graphical Abstract
  • , Shang and Fu initially demonstrated this approach by utilizing catalytic amounts of triphenylphosphine (PPh3) and sodium iodide (NaI) [67]. Upon formation of EDA complex 80, radical addition to silyl enol ether 81 was promoted under blue light irradiation, affording acetophenone product 82 (Scheme 16A
PDF
Album
Perspective
Published 21 Feb 2024

Metal-catalyzed coupling/carbonylative cyclizations for accessing dibenzodiazepinones: an expedient route to clozapine and other drugs

  • Amina Moutayakine and
  • Anthony J. Burke

Beilstein J. Org. Chem. 2024, 20, 193–204, doi:10.3762/bjoc.20.19

Graphical Abstract
  • (entry 1, Table 1). Next, the same procedure was carried out in the presence of molybdenum hexacarbonyl (Mo(CO)6, 2 equiv) as CO surrogate, under the previous conditions, but again we only observed the formation of intermediate 3a in 21% yield (entry 2, Table 1). Changing the ligand to triphenylphosphine
PDF
Album
Supp Info
Full Research Paper
Published 31 Jan 2024

Aromatic systems with two and three pyridine-2,6-dicarbazolyl-3,5-dicarbonitrile fragments as electron-transporting organic semiconductors exhibiting long-lived emissions

  • Karolis Leitonas,
  • Brigita Vigante,
  • Dmytro Volyniuk,
  • Audrius Bucinskas,
  • Pavels Dimitrijevs,
  • Sindija Lapcinska,
  • Pavel Arsenyan and
  • Juozas Vidas Grazulevicius

Beilstein J. Org. Chem. 2023, 19, 1867–1880, doi:10.3762/bjoc.19.139

Graphical Abstract
  • equiv), tetrakis(triphenylphosphine)palladium(0) (11.6 mg, 0.01 mmol, 0.05 equiv), CuI (1.2 mg, 0.006 mmol, 0.03 equiv) in 2 mL of DMF was degassed with Ar. Then, the appropriate ethynyl derivative (0.24 mmol, 1.2 equiv) and 1 mL of triethylamine were added and the resulting mixture was heated at 90 °C
PDF
Album
Supp Info
Full Research Paper
Published 12 Dec 2023

Thienothiophene-based organic light-emitting diode: synthesis, photophysical properties and application

  • Recep Isci and
  • Turan Ozturk

Beilstein J. Org. Chem. 2023, 19, 1849–1857, doi:10.3762/bjoc.19.137

Graphical Abstract
  • ), dimesitylboronfluoride (90%, Sigma-Aldrich), 4,4,5,5-tetramethyl-1,3,2-dioxaborolane (Sigma-Aldrich), tetrakis(triphenylphosphine)palladium(0) (Pd(PPh3)4, 99%, Sigma-Aldrich), were used as received. Diethyl ether and THF were dried over metallic sodium. Dimethylformamide (HPLC grade) was stored over activated molecular
PDF
Album
Supp Info
Full Research Paper
Published 07 Dec 2023

Recent advancements in iodide/phosphine-mediated photoredox radical reactions

  • Tinglan Liu,
  • Yu Zhou,
  • Junhong Tang and
  • Chengming Wang

Beilstein J. Org. Chem. 2023, 19, 1785–1803, doi:10.3762/bjoc.19.131

Graphical Abstract
  • specificity in the synthesis of β-alkylated styrenes 5. This study underscored the broad applicability and selectivity of the NaI/PPh3 catalytic system in facilitating the synthesis of β-alkylated styrenes using diverse redox-active esters. It is worth highlighting that triphenylphosphine is not essential for
  • and colleagues introduced an interesting metal- and oxidant-free photocatalytic C–H alkylation method for coumarins 18 [17]. The method utilized triphenylphosphine and sodium iodide, along with readily available alkyl N-hydroxyphthalimide esters (NHPIs) 3 as the alkylation reagents (Scheme 10
  • amount of ammonium iodide under irradiation in the absence of triphenylphosphine (Scheme 12). The generation of alkyl radicals was attributed to the photoactivation of a transient electron donor–acceptor complex formed between iodide and N-(acyloxy)phthalimide, in line with earlier findings. These
PDF
Album
Review
Published 22 Nov 2023

Morpholine-mediated defluorinative cycloaddition of gem-difluoroalkenes and organic azides

  • Tzu-Yu Huang,
  • Mario Djugovski,
  • Sweta Adhikari,
  • Destinee L. Manning and
  • Sudeshna Roy

Beilstein J. Org. Chem. 2023, 19, 1545–1554, doi:10.3762/bjoc.19.111

Graphical Abstract
  • -substituted triazole 3’a (entry 1, Table 1), in 21% yield, using NiCl2(PCy3)2 as a catalyst and K3PO4 as a base. A methyl handle on the gem-difluoroalkene 1 was used to aid in 1H NMR analysis. The gem-difluoroalkenes were synthesized in one step using sodium 2-chloro-2,2-difluoroacetate and triphenylphosphine
PDF
Album
Supp Info
Letter
Published 05 Oct 2023

Synthesis of ether lipids: natural compounds and analogues

  • Marco Antônio G. B. Gomes,
  • Alicia Bauduin,
  • Chloé Le Roux,
  • Romain Fouinneteau,
  • Wilfried Berthe,
  • Mathieu Berchel,
  • Hélène Couthon and
  • Paul-Alain Jaffrès

Beilstein J. Org. Chem. 2023, 19, 1299–1369, doi:10.3762/bjoc.19.96

Graphical Abstract
PDF
Album
Review
Published 08 Sep 2023

Selective and scalable oxygenation of heteroatoms using the elements of nature: air, water, and light

  • Damiano Diprima,
  • Hannes Gemoets,
  • Stefano Bonciolini and
  • Koen Van Aken

Beilstein J. Org. Chem. 2023, 19, 1146–1154, doi:10.3762/bjoc.19.82

Graphical Abstract
  • appealing production method. The oxygenation of triphenylphosphine was used as a model reaction, since the batch results showed fast kinetics (15 minutes). Since triphenylphosphine is insoluble in the reaction mixture we opted to use an oscillatory flow reactor (OFR), specifically the HANU flow reactor (i.e
  • ., HANU 2X 5 flow reactor) from Creaflow, as this system can easily handle demanding slurry processes under continuous-flow conditions. The reaction was carried out using an adapted setup as illustrated in Scheme 4 as triphenylphosphine is very sticky and tends to clog easily in the feeding tubes. This
  • of CH3CN/H2O 8:2 (v:v). b2 equiv toluene as an additive. c1 equiv LiCl as an additive. dProduct not isolated, GC-FID conversion. Setup used in the flow experiment for the triphenylphosphine oxidation. Proposed extra alternative pathway. Optimization experiments of thioanisole oxidation.a Effect of
PDF
Album
Supp Info
Full Research Paper
Published 31 Jul 2023

Facile access to 3-sulfonylquinolines via Knoevenagel condensation/aza-Wittig reaction cascade involving ortho-azidobenzaldehydes and β-ketosulfonamides and sulfones

  • Ksenia Malkova,
  • Andrey Bubyrev,
  • Stanislav Kalinin and
  • Dmitry Dar’in

Beilstein J. Org. Chem. 2023, 19, 800–807, doi:10.3762/bjoc.19.60

Graphical Abstract
  • conditions reported previously, we began our investigation using o-azidobenzaldehyde (1a), 2-oxopropanesulfonamide 2a, triphenylphosphine, and diethylamine as reagents for the quinoline-3-sulfonamide assembly (Table 1). The reaction mixture was stirred in MeCN at 95 °C for 6 h which led to a mediocre yield
PDF
Album
Supp Info
Full Research Paper
Published 09 Jun 2023
Other Beilstein-Institut Open Science Activities