Search results

Search for "chiral catalyst" in Full Text gives 64 result(s) in Beilstein Journal of Organic Chemistry.

Catalytic enantioselective synthesis of selenium-containing atropisomers via C–Se bond formations

  • Qi-Sen Gao,
  • Zheng-Wei Wei and
  • Zhi-Min Chen

Beilstein J. Org. Chem. 2025, 21, 2447–2455, doi:10.3762/bjoc.21.186

Graphical Abstract
  • reaction yielded the desired product at room temperature with high regioselectivity and stereoselectivity (E/Z ratio >99:1). Notably, when chiral catalyst (cat.1) was used, the reaction afforded the axially chiral product 9 in 43% yield with 84% ee. The proposed mechanism proceeds as follows. Catalyst cat
PDF
Album
Review
Published 06 Nov 2025

C2 to C6 biobased carbonyl platforms for fine chemistry

  • Jingjing Jiang,
  • Muhammad Noman Haider Tariq,
  • Florence Popowycz,
  • Yanlong Gu and
  • Yves Queneau

Beilstein J. Org. Chem. 2025, 21, 2103–2172, doi:10.3762/bjoc.21.165

Graphical Abstract
  • catalysts including Ni/CeO2-γAl2O3, spinal NiAl2O4 and Ni/La2O3-αAl2O3, at 230 °C and 3.2 MPa. Using a chiral catalyst composed of [RuCl2(benzene)]2 and SunPhos, an effective asymmetric hydrogenation of α-hydroxy ketones was reported, yielding chiral terminal 1,2-diols in up to 99% ee. This Ru-catalyzed
PDF
Album
Review
Published 15 Oct 2025

Measuring the stereogenic remoteness in non-central chirality: a stereocontrol connectivity index for asymmetric reactions

  • Ivan Keng Wee On,
  • Yu Kun Choo,
  • Sambhav Baid and
  • Ye Zhu

Beilstein J. Org. Chem. 2025, 21, 1995–2006, doi:10.3762/bjoc.21.155

Graphical Abstract
  • substituents. Intuitively, the intrinsic spatial separation among prochiral stereogenic elements, the reactive sites, and the stereochemical-defining substituents makes stereoinduction for non-central chirality using a chiral catalyst or reagent particularly challenging. However, a quantitative
  • axial chiralities [27][28][29][30] in Scheme 7A to 7D are all [53] processes irrespective of the reaction types, the catalysts, and the scaffolds. The index corresponds to the minimal substructure of the prochiral substrates that a chiral catalyst needs to recognize, if the bond connectivity is the only
  • chirality from the chiral catalyst to the product. In other words, the chiral catalyst needs to recognize, through electronic and steric effects, at least the structural features reflected by the stereocontrol connectivity index to induce enantioselectivity. Therefore, the stereocontrol connectivity index
PDF
Album
Supp Info
Full Research Paper
Published 30 Sep 2025

Chiral phosphoric acid-catalyzed asymmetric synthesis of helically chiral, planarly chiral and inherently chiral molecules

  • Wei Liu and
  • Xiaoyu Yang

Beilstein J. Org. Chem. 2025, 21, 1864–1889, doi:10.3762/bjoc.21.145

Graphical Abstract
  • for accessing chiral compounds. Starting from racemic starting materials, this method entails selective conversion of one enantiomer facilitated by a chiral catalyst, yielding enantioenriched products and allowing for the recovery of unreacted substrate with a high level of enantiopurity [24][25
PDF
Album
Review
Published 10 Sep 2025

Catalytic asymmetric reactions of isocyanides for constructing non-central chirality

  • Jia-Yu Liao

Beilstein J. Org. Chem. 2025, 21, 1648–1660, doi:10.3762/bjoc.21.129

Graphical Abstract
  • L6 as the chiral catalyst, atropisomeric 3-arylpyrroles 34 were generated in 43–98% yield with 82–96% ee. Notably, two by-products 35 and 36 were observed during the reaction, resulting from the aldol reaction of isocyanoacetates with the ketone moiety in 33. The authors have also demonstrated that
  • chiral catalyst. Central-to-axial chirality transfer In parallel with Zhu’s work, Du, Chen, and co-workers reported an alternative way for the preparation of axially chiral 3-arylpyrroles [41] through a catalytic asymmetric Barton–Zard reaction [42] via central-to-axial chirality transfer strategy [43
  • (Scheme 9a) [55]. With Ag2CO3 and L9 as the chiral catalyst, this reaction proceeded smoothly to produce highly functionalized bicyclic 1-pyrrolines 58 bearing a remote C–N stereogenic axis and three contiguous stereogenic carbon centers in high yields (up to 97%) with high stereoselectivities (up to >20
PDF
Album
Perspective
Published 19 Aug 2025

Asymmetric synthesis of β-amino cyanoesters with contiguous tetrasubstituted carbon centers by halogen-bonding catalysis with chiral halonium salt

  • Yasushi Yoshida,
  • Maho Aono,
  • Takashi Mino and
  • Masami Sakamoto

Beilstein J. Org. Chem. 2025, 21, 547–555, doi:10.3762/bjoc.21.43

Graphical Abstract
  • phenyl- or trityl-substituted 7c and 7d yielded products with decreased enantioselectivities, likely due to the inhibition of the interaction between the imines and the chiral catalyst by hydrogen and/or halogen bonding. From these observations, the substituent on the 1-position strongly affected the
PDF
Album
Supp Info
Letter
Published 12 Mar 2025

Organocatalytic kinetic resolution of 1,5-dicarbonyl compounds through a retro-Michael reaction

  • James Guevara-Pulido,
  • Fernando González-Pérez,
  • José M. Andrés and
  • Rafael Pedrosa

Beilstein J. Org. Chem. 2025, 21, 473–482, doi:10.3762/bjoc.21.34

Graphical Abstract
  • chromatography [1]. Sometime later, kinetic resolution (KR) emerged. This method is based on the different reaction rates of each enantiomer in a racemic mixture when they are reacted with a reagent, a chiral catalyst, or an enzyme. This process results in obtaining the less reactive enantioenriched enantiomer
PDF
Album
Supp Info
Full Research Paper
Published 03 Mar 2025

Enantioselective regiospecific addition of propargyltrichlorosilane to aldehydes catalyzed by biisoquinoline N,N’-dioxide

  • Noble Brako,
  • Sreerag Moorkkannur Narayanan,
  • Amber Burns,
  • Layla Auter,
  • Valentino Cesiliano,
  • Rajeev Prabhakar and
  • Norito Takenaka

Beilstein J. Org. Chem. 2024, 20, 3069–3076, doi:10.3762/bjoc.20.255

Graphical Abstract
  • stable allenyltrichlorosilane that affords undesired homopropargylic alcohols [35][36] (Scheme 2b). Furthermore, Iseki [35] and Nakajima [36] evaluated only one chiral catalyst in their independent studies (i.e., no catalyst structure–reactivity and selectivity relationship study). In this context, we
PDF
Album
Supp Info
Letter
Published 25 Nov 2024

A review of recent advances in electrochemical and photoelectrochemical late-stage functionalization classified by anodic oxidation, cathodic reduction, and paired electrolysis

  • Nian Li,
  • Ruzal Sitdikov,
  • Ajit Prabhakar Kale,
  • Joost Steverlynck,
  • Bo Li and
  • Magnus Rueping

Beilstein J. Org. Chem. 2024, 20, 2500–2566, doi:10.3762/bjoc.20.214

Graphical Abstract
  • applications of electrochemical methods in organic synthesis. In this context the Meggers group developed an asymmetric Rh catalyst-promoted alkylation [56]. The Rh complex was used as a chiral catalyst and Cp2Fe as an anodic oxidation catalyst to achieve the enantioselective C(sp3)–H alkenylation of 2
PDF
Album
Review
Published 09 Oct 2024

Synthetic applications of the Cannizzaro reaction

  • Bhaskar Chatterjee,
  • Dhananjoy Mondal and
  • Smritilekha Bera

Beilstein J. Org. Chem. 2024, 20, 1376–1395, doi:10.3762/bjoc.20.120

Graphical Abstract
  • )3 (Scheme 3). They also extended the approach to study enantioselective Cannizzaro reactions of similar substrates using a Cu bisoxazoline (A) [Cu(OTf)2-PhBox] complex as the chiral catalyst, producing the desired enantiomeric compounds in modest yields and up to 33% ee (Scheme 4). The mechanistic
  • . where they applied a FeCl3-based chiral catalyst with an N,N′-dioxide ligand [74]. The optimization of the reaction conditions revealed the L–RaPr2–FeCl3 complex being superior and delivering good to excellent results, thus witnessing a broad substrate scope taking different glyoxal monohydrates 1 and
  • reaction of aryl glyoxals using Cr(ClO4)3 as catalyst. Cu(II)-PhBox-catalyzed asymmetric Cannizzaro reaction. FeCl3-based chiral catalyst applied for the enantioselective intramolecular Cannizzaro reaction reported by Wu et al. Copper bis-oxazoline-catalysed intramolecular Cannizzaro reaction and proposed
PDF
Album
Review
Published 19 Jun 2024
Graphical Abstract
  • enantioselective aza-Friedel–Crafts addition. In the first step, the DDQ-promoted oxidation of 3-indolinonecarboxylate 22 generated indolenines that performed as the potential electrophiles towards indoles 4. The chiral catalyst effectively assembled the reacting partners in a chiral transition state through H
PDF
Album
Review
Published 28 Jun 2023

Strategies to access the [5-8] bicyclic core encountered in the sesquiterpene, diterpene and sesterterpene series

  • Cécile Alleman,
  • Charlène Gadais,
  • Laurent Legentil and
  • François-Hugues Porée

Beilstein J. Org. Chem. 2023, 19, 245–281, doi:10.3762/bjoc.19.23

Graphical Abstract
  • the stereogenic centers formed during the cascade cyclization was secured by the use of benzothiophene-based TADDOL thiol 166 as chiral catalyst. They obtained in one single step a 5.3:1 and 3.4:1 diastereomeric ratio for C14 and C15, respectively, while forming the desired trans [5-8] ring junction
PDF
Album
Review
Published 03 Mar 2023

Total synthesis of grayanane natural products

  • Nicolas Fay,
  • Rémi Blieck,
  • Cyrille Kouklovsky and
  • Aurélien de la Torre

Beilstein J. Org. Chem. 2022, 18, 1707–1719, doi:10.3762/bjoc.18.181

Graphical Abstract
  • authors showed that a key intermediate could be obtained enantioselectively (93% ee) by a combination of a chiral catalyst and chiral auxiliary, although requiring extra steps for auxiliary installation and cleavage. Scheme 12 summarizes the last 3 synthetic strategies for grayanane synthesis. Each group
PDF
Album
Review
Published 12 Dec 2022
Graphical Abstract
  • reaction and stirred for 18 hours at 0 °C. Upon the reaction completion, 3-chloro-1,2-propanediol in highly enantioenriched structure was afforded using chiral catalyst 2f, while non-chiral catalysts 2e and 2g displayed nonenantioselective results (Table 2). To broaden the use of our chiral catalyst, α
PDF
Album
Supp Info
Letter
Published 10 Oct 2022

Tosylhydrazine-promoted self-conjugate reduction–Michael/aldol reaction of 3-phenacylideneoxindoles towards dispirocyclopentanebisoxindole derivatives

  • Sayan Pramanik and
  • Chhanda Mukhopadhyay

Beilstein J. Org. Chem. 2022, 18, 469–478, doi:10.3762/bjoc.18.49

Graphical Abstract
  • operation without chiral catalyst is still an atom-economical and operationally simple procedure to demonstrate the construction of dispirooxindoles. In the recent years, the diastereoselective construction of dispirocyclopentanebisoxindoles consisting of two spirooxindole motifs has acquired attention from
PDF
Album
Supp Info
Full Research Paper
Published 27 Apr 2022

α-Ketol and α-iminol rearrangements in synthetic organic and biosynthetic reactions

  • Scott Benz and
  • Andrew S. Murkin

Beilstein J. Org. Chem. 2021, 17, 2570–2584, doi:10.3762/bjoc.17.172

Graphical Abstract
  • reactions, and enzymatic rearrangements. Review Asymmetric α-ketol rearrangements One major advancement in the field of α-ketol rearrangements is the development of methods for performing the reaction asymmetrically. This is possible by two approaches: (1) stereoselectively through the use of a chiral
  • catalyst in the presence of a substrate possessing a prochiral migrating group or (2) stereospecifically by means of a chiral α-ketol. As an example of an enantioselective rearrangement, complexes of nickel(II) with a series of chiral 1,2-diaminopropane or pyridineoxazoline ligands were evaluated for their
PDF
Album
Review
Published 15 Oct 2021

Visible-light-mediated copper photocatalysis for organic syntheses

  • Yajing Zhang,
  • Qian Wang,
  • Zongsheng Yan,
  • Donglai Ma and
  • Yuguang Zheng

Beilstein J. Org. Chem. 2021, 17, 2520–2542, doi:10.3762/bjoc.17.169

Graphical Abstract
  • study [41][42] in 2017. This metal-catalyzed, photoinduced, and asymmetric radical transformation requires two catalysts, namely, (i) a metal catalyst that promotes electron transfer and (ii) a separate chiral catalyst that facilitates the highly stereoselective bond formation. In 2016, Fu [82
PDF
Album
Review
Published 12 Oct 2021

Enantioselective PCCP Brønsted acid-catalyzed aminalization of aldehydes

  • Martin Kamlar,
  • Robert Reiberger,
  • Martin Nigríni,
  • Ivana Císařová and
  • Jan Veselý

Beilstein J. Org. Chem. 2021, 17, 2433–2440, doi:10.3762/bjoc.17.160

Graphical Abstract
  • -workers, using an (S)-TRIP derivative as the chiral catalyst (Figure 1) [14]. Soon after, Rueping et al. developed a similar methodology catalyzed by other chiral BINOL-phosphoric acids [15]. However, the reaction suffered from limited scope to aromatic aldehydes without an ortho-substitution; the
PDF
Album
Supp Info
Full Research Paper
Published 16 Sep 2021

Halides as versatile anions in asymmetric anion-binding organocatalysis

  • Lukas Schifferer,
  • Martin Stinglhamer,
  • Kirandeep Kaur and
  • Olga García Macheño

Beilstein J. Org. Chem. 2021, 17, 2270–2286, doi:10.3762/bjoc.17.145

Graphical Abstract
  • solvent-separated or solvent-shared ion pairs – in which the components have their own solvent shells –, nonpolar solvents are more likely to lead to contact-ion pairs. As such, the cation and anion are in closer proximity as one solvent shell is shared. If a chiral catalyst binds then to the anion, a
  • performances as nucleophile precursors using a triazolium-amide chiral catalyst 34 [21] (Scheme 8a), as well as by Jacobsen in the desymmetrization of oxetanes 35 using TMSBr and squaramide 37 as catalyst [56] (Scheme 8b). For the latter, a more detailed mechanistic study was recently provided [57]. The
PDF
Album
Review
Published 01 Sep 2021

Asymmetric organocatalyzed synthesis of coumarin derivatives

  • Natália M. Moreira,
  • Lorena S. R. Martelli and
  • Arlene G. Corrêa

Beilstein J. Org. Chem. 2021, 17, 1952–1980, doi:10.3762/bjoc.17.128

Graphical Abstract
  • -hydroxycoumarin (1) with the chiral catalyst 48, as shown in Scheme 15 [48]. The enantioselective synthesis of dihydrocoumarins 51 from an inverse demand [4 + 2] cycloaddition of ketenes 50 with o-quinone methides 49 using carbene catalyst (NHC) 52 was described by Ye and co-workers [49].This transformation
  • this catalyst in a domino reaction of pyranocoumarins 99 [67]. The procedure proved to be efficient for obtaining products with good to excellent yields and enantiomeric excesses, and in some cases starting from three components in a one-pot procedure (Scheme 32). The chiral catalyst 100 allows the
PDF
Album
Review
Published 03 Aug 2021

Development of N-F fluorinating agents and their fluorinations: Historical perspective

  • Teruo Umemoto,
  • Yuhao Yang and
  • Gerald B. Hammond

Beilstein J. Org. Chem. 2021, 17, 1752–1813, doi:10.3762/bjoc.17.123

Graphical Abstract
PDF
Album
Review
Published 27 Jul 2021

A comprehensive review of flow chemistry techniques tailored to the flavours and fragrances industries

  • Guido Gambacorta,
  • James S. Sharley and
  • Ian R. Baxendale

Beilstein J. Org. Chem. 2021, 17, 1181–1312, doi:10.3762/bjoc.17.90

Graphical Abstract
PDF
Album
Review
Published 18 May 2021

Prins cyclization-mediated stereoselective synthesis of tetrahydropyrans and dihydropyrans: an inspection of twenty years

  • Asha Budakoti,
  • Pradip Kumar Mondal,
  • Prachi Verma and
  • Jagadish Khamrai

Beilstein J. Org. Chem. 2021, 17, 932–963, doi:10.3762/bjoc.17.77

Graphical Abstract
  • -stereochemistry in the major product. Asymmetric Prins cyclization Mullen and Gagné reported a first catalytic asymmetric Prins cyclization reaction between 2-allylphenol 292 and glyoxylate ester 293 using (R)-[(tolBINAP)Pt(NC6F5)2][SbF6]2 (294) as chiral catalyst [110]. An optimization study revealed that the
PDF
Album
Review
Published 29 Apr 2021

Recent progress in the synthesis of homotropane alkaloids adaline, euphococcinine and N-methyleuphococcinine

  • Dimas J. P. Lima,
  • Antonio E. G. Santana,
  • Michael A. Birkett and
  • Ricardo S. Porto

Beilstein J. Org. Chem. 2021, 17, 28–41, doi:10.3762/bjoc.17.4

Graphical Abstract
  • provided aldehydes 59a and 59b (Scheme 7). The key step in this synthesis was the allylic transfer, conducted by the dropwise addition of 64 in PhCF3 at −20 °C to a mixture of 59a and 59b and the chiral catalyst S-BINOL-TiIV [OCH(CF3)2]2 providing alcohols 60a and 60b, after 12 h at −20 ºC. In addition to
PDF
Album
Review
Published 05 Jan 2021

Controlling the stereochemistry in 2-oxo-aldehyde-derived Ugi adducts through the cinchona alkaloid-promoted electrophilic fluorination

  • Yuqing Wang,
  • Gaigai Wang,
  • Anatoly A. Peshkov,
  • Ruwei Yao,
  • Muhammad Hasan,
  • Manzoor Zaman,
  • Chao Liu,
  • Stepan Kashtanov,
  • Olga P. Pereshivko and
  • Vsevolod A. Peshkov

Beilstein J. Org. Chem. 2020, 16, 1963–1973, doi:10.3762/bjoc.16.163

Graphical Abstract
  • -aldehyde-derived Ugi adducts 8 with suitable electrophiles in the presence of chiral catalyst or promotor. In this way, the peptidyl position of 8 could be simultaneously functionalized and stereodefined leading to the formation of enantioenriched products 12 (Scheme 1). Towards this goal, we have
PDF
Album
Supp Info
Full Research Paper
Published 11 Aug 2020
Other Beilstein-Institut Open Science Activities